/* * Copyright (C) 2024 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hkdf_openssl.h" #include #include "securec.h" #include "detailed_hkdf_params.h" #include "kdf.h" #include "log.h" #include "memory.h" using namespace std; using namespace testing::ext; namespace { class CryptoHkdfTest : public testing::Test { public: static void SetUpTestCase(); static void TearDownTestCase(); void SetUp(); void TearDown(); }; void CryptoHkdfTest::SetUpTestCase() {} void CryptoHkdfTest::TearDownTestCase() {} void CryptoHkdfTest::SetUp() // add init here, this will be called before test. { } void CryptoHkdfTest::TearDown() // add destroy here, this will be called when test case done. { } static const char *g_keyData = "012345678901234567890123456789"; static const char *g_infoData = "infostring"; static const char *g_saltData = "saltstring"; constexpr uint32_t OUT_PUT_MAX_LENGTH = 128; constexpr uint32_t OUT_PUT_NORMAL_LENGTH = 32; HWTEST_F(CryptoHkdfTest, CryptoHkdfTest1, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfErrTest1, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; generator->base.destroy(nullptr); ret = generator->generateSecret(nullptr, &(params.base)); EXPECT_EQ(ret, HCF_INVALID_PARAMS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest2, TestSize.Level0) { // mode is default, info data is nullptr HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = nullptr, .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest3, TestSize.Level0) { // default mode is EXTRACT_AND_EXPAND HcfKdf *generator = nullptr; HcfKdf *generator1 = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); HcfResult ret1 = HcfKdfCreate("HKDF|SHA256|EXTRACT_AND_EXPAND", &generator1); EXPECT_EQ(ret1, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfHkdfParamsSpec params1 = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret1 = generator->generateSecret(generator, &(params1.base)); EXPECT_EQ(ret1, HCF_SUCCESS); EXPECT_EQ(params.output.data, params1.output.data); HcfObjDestroy(generator); HcfObjDestroy(generator1); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest4, TestSize.Level0) { // mode is EXTRACT_ONLY HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256|EXTRACT_ONLY", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest5, TestSize.Level0) { // mode is EXPAND_ONLY HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256|EXPAND_ONLY", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest6, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA1", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest7, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA384", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest8, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA512", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest9, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SM3", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTest10, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA224", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError1, TestSize.Level1) { // mode is EXPAND_ONLY, salt data is nullptr HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256|EXPAND_ONLY", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob info = {.data = nullptr, .len = 0}; HcfBlob key = {.data = nullptr, .len = 0}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError2, TestSize.Level1) { // mode is EXTRACT_ONLY, salt data is nullptr HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256|EXTRACT_ONLY", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = nullptr, .len = 0}; HcfBlob key = {.data = nullptr, .len = 0}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError3, TestSize.Level1) { // mode is default, data is nullptr HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = nullptr, .len = 0}; HcfBlob key = {.data = nullptr, .len = 0}; HcfBlob info = {.data = nullptr, .len = 0}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError4, TestSize.Level1) { // mode is default, key data is nullptr HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = nullptr, .len = 0}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError5, TestSize.Level1) { // use basic params HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); HcfKdfParamsSpec params = { .algName = "HKDF", }; ret = generator->generateSecret(generator, ¶ms); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError6, TestSize.Level1) { // use nullptr params HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); ret = generator->generateSecret(generator, nullptr); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError7, TestSize.Level1) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|abcd", &generator); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError8, TestSize.Level1) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("ABCD|SM3", &generator); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError9, TestSize.Level1) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate(nullptr, &generator); EXPECT_NE(ret, HCF_SUCCESS); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestError10, TestSize.Level1) { HcfResult ret = HcfKdfCreate(nullptr, nullptr); EXPECT_NE(ret, HCF_SUCCESS); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestVectors1, TestSize.Level1) { uint8_t keyData[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; uint8_t infoData[] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9 }; uint8_t saltData[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c }; uint8_t expectSecret[] = { 0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a, 0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36, 0x2f, 0x2a, 0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c, 0x5d, 0xb0, 0x2d, 0x56, 0xec, 0xc4, 0xc5, 0xbf, 0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18, 0x58, 0x65 }; HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[42] = {0}; HcfBlob output = {.data = out, .len = 42}; HcfBlob salt = {.data = saltData, .len = sizeof(saltData)}; HcfBlob key = {.data = keyData, .len = sizeof(keyData)}; HcfBlob info = {.data = infoData, .len = sizeof(infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); EXPECT_EQ(memcmp(params.output.data, expectSecret, sizeof(expectSecret)), 0); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfTestVectors2, TestSize.Level1) { uint8_t keyData[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f }; uint8_t infoData[] = { 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; uint8_t saltData[] = { 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf }; uint8_t expectSecret[] = { 0xb1, 0x1e, 0x39, 0x8d, 0xc8, 0x03, 0x27, 0xa1, 0xc8, 0xe7, 0xf7, 0x8c, 0x59, 0x6a, 0x49, 0x34, 0x4f, 0x01, 0x2e, 0xda, 0x2d, 0x4e, 0xfa, 0xd8, 0xa0, 0x50, 0xcc, 0x4c, 0x19, 0xaf, 0xa9, 0x7c, 0x59, 0x04, 0x5a, 0x99, 0xca, 0xc7, 0x82, 0x72, 0x71, 0xcb, 0x41, 0xc6, 0x5e, 0x59, 0x0e, 0x09, 0xda, 0x32, 0x75, 0x60, 0x0c, 0x2f, 0x09, 0xb8, 0x36, 0x77, 0x93, 0xa9, 0xac, 0xa3, 0xdb, 0x71, 0xcc, 0x30, 0xc5, 0x81, 0x79, 0xec, 0x3e, 0x87, 0xc1, 0x4c, 0x01, 0xd5, 0xc1, 0xf3, 0x43, 0x4f, 0x1d, 0x87 }; HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256|EXTRACT_AND_EXPAND", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[82] = {0}; HcfBlob output = {.data = out, .len = 82}; HcfBlob salt = {.data = saltData, .len = sizeof(saltData)}; HcfBlob key = {.data = keyData, .len = sizeof(keyData)}; HcfBlob info = {.data = infoData, .len = sizeof(infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); EXPECT_EQ(memcmp(params.output.data, expectSecret, sizeof(expectSecret)), 0); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfErr11, TestSize.Level0) { HcfKdf *generator = nullptr; HcfResult ret = HcfKdfCreate("HKDF|SHA256", &generator); EXPECT_EQ(ret, HCF_SUCCESS); uint8_t out[OUT_PUT_MAX_LENGTH] = {0}; HcfBlob output = {.data = out, .len = OUT_PUT_NORMAL_LENGTH}; HcfBlob salt = {.data = reinterpret_cast(const_cast(g_saltData)), .len = strlen(g_saltData)}; HcfBlob key = {.data = reinterpret_cast(const_cast(g_keyData)), .len = strlen(g_keyData)}; HcfBlob info = {.data = reinterpret_cast(const_cast(g_infoData)), .len = strlen(g_infoData)}; HcfHkdfParamsSpec params = { .base = { .algName = "HKDF", }, .key = key, .salt = salt, .info = info, .output = output, }; ret = generator->generateSecret(generator, &(params.base)); EXPECT_EQ(ret, HCF_SUCCESS); const char *algName = generator->getAlgorithm(nullptr); ASSERT_EQ(algName, nullptr); HcfObjDestroy(generator); } HWTEST_F(CryptoHkdfTest, CryptoHkdfErr12, TestSize.Level0) { HcfResult ret = HcfKdfHkdfSpiCreate(nullptr, nullptr); EXPECT_EQ(ret, HCF_INVALID_PARAMS); HcfKdfDeriveParams params = {}; params.algo = HCF_ALG_HKDF; params.md = HCF_OPENSSL_DIGEST_SHA256; params.mode = HCF_ALG_MODE_EXTRACT_AND_EXPAND; HcfKdfSpi *spiObj = nullptr; ret = HcfKdfHkdfSpiCreate(¶ms, &spiObj); EXPECT_EQ(ret, HCF_SUCCESS); (void)spiObj->base.destroy(nullptr); ret = spiObj->generateSecret(nullptr, nullptr); EXPECT_EQ(ret, HCF_INVALID_PARAMS); HcfObjDestroy(spiObj); } }