/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ops/gelu_builder.h" #include "ops_test.h" using namespace testing; using namespace testing::ext; using namespace OHOS::NeuralNetworkRuntime::Ops; namespace OHOS { namespace NeuralNetworkRuntime { namespace UnitTest { class GeluBuilderTest : public OpsTest { public: void SetUp() override; void TearDown() override; protected: void SetApproximate(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type); protected: GeluBuilder m_gelu; std::vector m_inputs {0}; std::vector m_outputs {1}; std::vector m_params {2}; std::vector m_inputDim {1, 5, 1, 1}; std::vector m_outputDim {1, 5, 1, 1}; std::vector m_paramsDim {}; }; void GeluBuilderTest::SetUp() {} void GeluBuilderTest::TearDown() {} void GeluBuilderTest::SetApproximate(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type) { std::shared_ptr outQuantizedTensor = TransToNNTensor(dataType, dim, quantParam, type); bool* outQuantizedValue = new (std::nothrow) bool(false); EXPECT_NE(nullptr, outQuantizedValue); outQuantizedTensor->SetBuffer(outQuantizedValue, sizeof(bool)); m_allTensors.emplace_back(outQuantizedTensor); } /** * @tc.name: gelu_build_001 * @tc.desc: Verify that the build function returns a successful message. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_001, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_SUCCESS, ret); } /** * @tc.name: gelu_build_002 * @tc.desc: Verify that the build function returns a failed message with true m_isBuild. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_002, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); EXPECT_EQ(OH_NN_SUCCESS, m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors)); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_OPERATION_FORBIDDEN, ret); } /** * @tc.name: gelu_build_003 * @tc.desc: Verify that the build function returns a failed message with invalided input. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_003, TestSize.Level0) { m_inputs = {0, 1}; m_outputs = {2}; m_params = {3}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_build_004 * @tc.desc: Verify that the build function returns a failed message with invalided output. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_004, TestSize.Level0) { std::vector m_outputs = {1, 2}; m_params = {3}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_build_005 * @tc.desc: Verify that the build function returns a failed message with empty allTensor. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_005, TestSize.Level0) { OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputs, m_outputs, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_build_006 * @tc.desc: Verify that the build function returns a failed message without output tensor. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_006, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputs, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_build_007 * @tc.desc: Verify that the build function returns a failed message with a virtual parameter. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_007, TestSize.Level0) { m_params = {2, 3}; std::vector paramDim = {}; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); std::shared_ptr paramTensor; paramTensor = TransToNNTensor(OH_NN_INT32, paramDim, nullptr, OH_NN_TENSOR); m_allTensors.emplace_back(paramTensor); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_build_008 * @tc.desc: Verify that the build function returns a failed message with invalid approximate's dataType. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_008, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); std::shared_ptr approximateTensor = TransToNNTensor(OH_NN_INT64, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); int64_t* approximateValue = new (std::nothrow) int64_t[1] {0}; EXPECT_NE(nullptr, approximateValue); approximateTensor->SetBuffer(approximateValue, sizeof(int64_t)); m_allTensors.emplace_back(approximateTensor); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_build_009 * @tc.desc: Verify that the build function returns a failed message with passing invalid approximate param. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_009, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: Gelu_build_011 * @tc.desc: Verify that the build function returns a failed message without set buffer for approximate. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_build_011, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_INT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_INT32, m_outputDim, nullptr); std::shared_ptr approximateTensor = TransToNNTensor(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); m_allTensors.emplace_back(approximateTensor); OH_NN_ReturnCode ret = m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors); EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret); } /** * @tc.name: gelu_getprimitive_001 * @tc.desc: Verify that the getPrimitive function returns a successful message * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_getprimitive_001, TestSize.Level0) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_inputDim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_outputDim, nullptr); SetApproximate(OH_NN_BOOL, m_paramsDim, nullptr, OH_NN_GELU_APPROXIMATE); bool approximateValue = false; EXPECT_EQ(OH_NN_SUCCESS, m_gelu.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors)); LiteGraphPrimitvePtr primitive = m_gelu.GetPrimitive(); LiteGraphPrimitvePtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive); EXPECT_NE(expectPrimitive, primitive); mindspore::lite::ActivationType activationType = mindspore::lite::ACTIVATION_TYPE_GELU; auto returnValue = mindspore::lite::MindIR_Activation_GetActivationType(primitive.get()); EXPECT_EQ(returnValue, activationType); auto returnApproximateValue = mindspore::lite::MindIR_Activation_GetApproximate(primitive.get()); EXPECT_EQ(returnApproximateValue, approximateValue); } /** * @tc.name: gelu_getprimitive_002 * @tc.desc: Verify that the getPrimitive function returns a failed message without build. * @tc.type: FUNC */ HWTEST_F(GeluBuilderTest, gelu_getprimitive_002, TestSize.Level0) { GeluBuilder gelu; LiteGraphPrimitvePtr primitive = m_gelu.GetPrimitive(); LiteGraphPrimitvePtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive); EXPECT_EQ(expectPrimitive, primitive); } } } }