/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ops/maxpool_builder.h" #include "ops_test.h" using namespace testing; using namespace testing::ext; using namespace OHOS::NeuralNetworkRuntime::Ops; namespace OHOS { namespace NeuralNetworkRuntime { namespace UnitTest { class MaxPoolPadBuilderTest : public OpsTest { public: void SetUp(); void TearDown(); void SetPad(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type); void SetRoundMode(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type); void SetGlobal(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type); void SetPadParam(); public: MaxPoolBuilder m_builder; std::vector m_inputs{0}; std::vector m_outputs{1}; std::vector m_params{2, 3, 4, 5, 6, 7}; std::vector m_input_dim{1, 3, 3, 1}; std::vector m_output_dim{1, 2, 2, 1}; std::vector m_kenelsize_dim{2}; std::vector m_stride_dim{2}; std::vector m_pad_dim{4}; std::vector m_param_dim{}; }; void MaxPoolPadBuilderTest::SetUp() {} void MaxPoolPadBuilderTest::TearDown() {} void MaxPoolPadBuilderTest::SetRoundMode(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type) { std::shared_ptr tensor = TransToNNTensor(dataType, dim, quantParam, type); int32_t* roundModeValue = new (std::nothrow) int32_t(0); EXPECT_NE(nullptr, roundModeValue); tensor->SetBuffer(roundModeValue, sizeof(int32_t)); m_allTensors.emplace_back(tensor); } void MaxPoolPadBuilderTest::SetGlobal(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type) { std::shared_ptr tensor = TransToNNTensor(dataType, dim, quantParam, type); bool* globalValue = new (std::nothrow) bool(false); EXPECT_NE(nullptr, globalValue); tensor->SetBuffer(globalValue, sizeof(bool)); m_allTensors.emplace_back(tensor); } void MaxPoolPadBuilderTest::SetPad(OH_NN_DataType dataType, const std::vector &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type) { int32_t padNum{4}; std::shared_ptr tensor = TransToNNTensor(dataType, dim, quantParam, type); int64_t* padValue = new (std::nothrow) int64_t[padNum]{0, 0, 0, 0}; EXPECT_NE(nullptr, padValue); tensor->SetBuffer(padValue, sizeof(int64_t) * padNum); m_allTensors.emplace_back(tensor); } void MaxPoolPadBuilderTest::SetPadParam() { SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); } /** * @tc.name: maxpool_build_pad_001 * @tc.desc: Verify the success of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_001, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_002 * @tc.desc: Verify the forbidden of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_002, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); EXPECT_EQ(OH_NN_OPERATION_FORBIDDEN, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_003 * @tc.desc: Verify the missing input of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_003, TestSize.Level1) { m_inputs = {}; m_outputs = {0}; m_params = {1, 2, 3, 4, 5, 6}; m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_004 * @tc.desc: Verify the missing output of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_004, TestSize.Level1) { m_inputs = {0}; m_outputs = {}; m_params = {1, 2, 3, 4, 5, 6}; m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_005 * @tc.desc: Verify the inputIndex out of bounds of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_005, TestSize.Level1) { m_inputs = {8}; m_outputs = {1}; m_params = {2, 3, 4, 5, 6, 7}; m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_006 * @tc.desc: Verify the outputIndex out of bounds of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_006, TestSize.Level1) { m_inputs = {0}; m_outputs = {8}; m_params = {2, 3, 4, 5, 6, 7}; m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_007 * @tc.desc: Verify the invalid kernelSize of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_007, TestSize.Level1) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); int32_t kernelsNum{2}; std::shared_ptr tensor = TransToNNTensor(OH_NN_INT32, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); int32_t* valueKernelSize = new (std::nothrow) int32_t[kernelsNum]{1, 1}; EXPECT_NE(nullptr, valueKernelSize); tensor->SetBuffer(valueKernelSize, sizeof(int32_t) * kernelsNum); m_allTensors.emplace_back(tensor); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); m_paramsIndex = m_params; EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_008 * @tc.desc: Verify the invalid stride of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_008, TestSize.Level1) { SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); m_paramsIndex = m_params; SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); int32_t strideNum{2}; std::shared_ptr tensor = TransToNNTensor(OH_NN_INT32, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); int32_t* strideValue = new (std::nothrow) int32_t[strideNum]{1, 1}; EXPECT_NE(nullptr, strideValue); tensor->SetBuffer(strideValue, sizeof(int32_t) * strideNum); m_allTensors.emplace_back(tensor); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_009 * @tc.desc: Verify the invalid pad of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_009, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); int32_t padNum{4}; std::shared_ptr tensor = TransToNNTensor(OH_NN_INT32, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); int32_t* padValue = new (std::nothrow) int32_t[padNum]{0, 0, 0, 0}; EXPECT_NE(nullptr, padValue); tensor->SetBuffer(padValue, sizeof(int32_t) * padNum); m_allTensors.emplace_back(tensor); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_010 * @tc.desc: Verify the invalid activation of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_010, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); int32_t* activationValue = new (std::nothrow) int32_t(0); EXPECT_NE(nullptr, activationValue); tensor->SetBuffer(activationValue, sizeof(int32_t)); m_allTensors.emplace_back(tensor); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_011 * @tc.desc: Verify the invalid roundMode of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_011, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT64, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); int64_t* roundModeValue = new (std::nothrow) int64_t(0); EXPECT_NE(nullptr, roundModeValue); tensor->SetBuffer(roundModeValue, sizeof(int64_t)); m_allTensors.emplace_back(tensor); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_012 * @tc.desc: Verify the invalid activation of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_012, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); int32_t* globalValue = new (std::nothrow) int32_t(0); EXPECT_NE(nullptr, globalValue); tensor->SetBuffer(globalValue, sizeof(int32_t)); m_allTensors.emplace_back(tensor); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_013 * @tc.desc: Verify the activation scalar length of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_013, TestSize.Level1) { m_param_dim = {2}; m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); int8_t* activationValue = new (std::nothrow) int8_t[2]{1, 2}; EXPECT_NE(nullptr, activationValue); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); tensor->SetBuffer(activationValue, 2 * sizeof(int8_t)); m_allTensors.emplace_back(tensor); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_014 * @tc.desc: Verify the maxpool without set kernelsize of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_014, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); m_allTensors.emplace_back(tensor); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_015 * @tc.desc: Verify the maxpool without set stride of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_015, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); m_allTensors.emplace_back(tensor); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_016 * @tc.desc: Verify the maxpool without set pad of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_016, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); m_allTensors.emplace_back(tensor); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_017 * @tc.desc: Verify the maxpool without set activation of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_017, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); m_allTensors.emplace_back(tensor); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_018 * @tc.desc: Verify the avgpool without set activation of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_018, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); m_allTensors.emplace_back(tensor); SetGlobal(OH_NN_BOOL, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_build_pad_019 * @tc.desc: Verify the avgpool without set activation of the build function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_build_pad_019, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetKernelSize(OH_NN_INT64, m_kenelsize_dim, nullptr, OH_NN_MAX_POOL_KERNEL_SIZE); SetStride(OH_NN_INT64, m_stride_dim, nullptr, OH_NN_MAX_POOL_STRIDE); SetPad(OH_NN_INT64, m_pad_dim, nullptr, OH_NN_MAX_POOL_PAD); SetActivation(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_ACTIVATION_TYPE); SetRoundMode(OH_NN_INT32, m_param_dim, nullptr, OH_NN_MAX_POOL_ROUND_MODE); std::shared_ptr tensor = TransToNNTensor(OH_NN_INT8, m_param_dim, nullptr, OH_NN_MAX_POOL_GLOBAL); m_allTensors.emplace_back(tensor); EXPECT_EQ(OH_NN_INVALID_PARAMETER, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); } /** * @tc.name: maxpool_getprimitive_pad_001 * @tc.desc: Verify the behavior of the GetPrimitive function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_getprimitive_pad_001, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors)); LiteGraphTensorPtr primitive = m_builder.GetPrimitive(); LiteGraphTensorPtr expectPrimitive = {nullptr, DestroyLiteGraphPrimitive}; EXPECT_NE(expectPrimitive, primitive); std::vector expectKernelSize = mindspore::lite::MindIR_MaxPoolFusion_GetKernelSize(primitive.get()); std::vector kernelSizeValueTest{1, 1}; EXPECT_EQ(kernelSizeValueTest, expectKernelSize); std::vector expectStrides = mindspore::lite::MindIR_MaxPoolFusion_GetStrides(primitive.get()); std::vector strideValueTest{1, 1}; std::vector expectPadValue = mindspore::lite::MindIR_MaxPoolFusion_GetPad(primitive.get()); std::vector padValueValueTest{0, 0, 0, 0}; EXPECT_EQ(padValueValueTest, expectPadValue); int8_t activationValue = 0; int expectActivation = mindspore::lite::MindIR_MaxPoolFusion_GetActivationType(primitive.get()); EXPECT_EQ(activationValue, expectActivation); mindspore::lite::RoundMode roundModeValue = mindspore::lite::ROUND_MODE_FLOOR; auto expectRoundMode = mindspore::lite::MindIR_MaxPoolFusion_GetRoundMode(primitive.get()); EXPECT_EQ(roundModeValue, expectRoundMode); bool globalValue = false; bool expectGlobal = mindspore::lite::MindIR_MaxPoolFusion_GetGlobal(primitive.get()); EXPECT_EQ(globalValue, expectGlobal); } /** * @tc.name: maxpool_getprimitive_pad_002 * @tc.desc: Verify the behavior of the GetPrimitive function * @tc.type: FUNC */ HWTEST_F(MaxPoolPadBuilderTest, maxpool_getprimitive_pad_002, TestSize.Level1) { m_paramsIndex = m_params; SaveInputTensor(m_inputs, OH_NN_FLOAT32, m_input_dim, nullptr); SaveOutputTensor(m_outputs, OH_NN_FLOAT32, m_output_dim, nullptr); SetPadParam(); LiteGraphTensorPtr primitive = m_builder.GetPrimitive(); LiteGraphTensorPtr expectPrimitive = {nullptr, DestroyLiteGraphPrimitive}; EXPECT_EQ(expectPrimitive, primitive); } } // namespace UnitTest } // namespace NeuralNetworkRuntime } // namespace OHOS