/* * Copyright (c) 2020-2021 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "animator/interpolation.h" #include "gfx_utils/graphic_math.h" namespace OHOS { /* B(t) = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */ int16_t Interpolation::GetBezierInterpolation(int16_t t, int16_t u0, int16_t u1, int16_t u2, int16_t u3) { int64_t invT = 1024 - t; // Intergerlize the standard equation, 1.0f is divided into 1024 parts int64_t invT2 = invT * invT; int64_t invT3 = invT2 * invT; int64_t t2 = t * t; int64_t t3 = t2 * t; int64_t ret = invT3 * u0; ret += BEZIER_COEFFICIENT * invT2 * t * u1; ret += BEZIER_COEFFICIENT * invT * t2 * u2; ret += t3 * u3; uint64_t uret = (ret < 0) ? (-ret) : ret; int16_t value = static_cast(uret >> 30); // 30: cubic shift return (ret < 0) ? (-value) : value; } /* B(t) = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */ float Interpolation::GetBezierInterpolation(float t, float u0, float u1, float u2, float u3) { float invT = 1 - t; float invT2 = invT * invT; float invT3 = invT2 * invT; float t2 = t * t; float t3 = t2 * t; float ret = invT3 * u0; ret += BEZIER_COEFFICIENT * invT2 * t * u1; ret += BEZIER_COEFFICIENT * invT * t2 * u2; ret += t3 * u3; return ret; } /* B(t) = 3(P1-P0)(1-t)^2 + 6(P2-P1)t(1-t) + 3(P3-P2)t^2 */ float Interpolation::GetBezierDerivative(float t, float u0, float u1, float u2, float u3) { float invT = 1 - t; float d0 = u1 - u0; float d1 = u2 - u1; float d2 = u3 - u2; constexpr int8_t BESSEL_SQUARE_COEFFICIENT = (BEZIER_COEFFICIENT - 1) * BEZIER_COEFFICIENT; float ret = BEZIER_COEFFICIENT * d0 * invT * invT; ret += BESSEL_SQUARE_COEFFICIENT * d1 * invT * t; ret += BEZIER_COEFFICIENT * d2 * t * t; return ret; } float Interpolation::GetBezierY(float x, float x1, float y1, float x2, float y2) { /* P={x,y}; P0={0,0}; P1={x1,y1}; P2={x2,y2}; P3={1,1} * P = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */ float t = x; float xt = GetBezierInterpolation(t, 0, x1, x2, 1); /* Attention: precision must be carefully selected * too small may lead to misconvergence and a decrease of performance * too large may cause the curve rugged even make some points outlier */ constexpr float PRECISION = 0.05f; // 0.05f make several outliers near inflection point int8_t iterationCnt = 10; // iterate at most 10 times /* Newton Method to solve t from x */ while ((MATH_ABS(xt - x) > PRECISION) && (iterationCnt-- > 0)) { t = t + (x - xt) / GetBezierDerivative(t, 0, x1, x2, 1); xt = GetBezierInterpolation(t, 0, x1, x2, 1); } return GetBezierInterpolation(t, 0, y1, y2, 1); } } // namespace OHOS