/ohos5.0/foundation/ai/neural_network_runtime/frameworks/native/neural_network_runtime/ |
H A D | transform.cpp | 45 case OH_NN_FLOAT64: in GetTypeSize() 77 case OH_NN_FLOAT64: in TransformDataType() 155 return OH_NN_FLOAT64; in TransformDataType()
|
H A D | hdi_prepared_model_v1_0.cpp | 50 case OH_NN_FLOAT64: in TransDataType()
|
H A D | hdi_prepared_model_v2_0.cpp | 51 case OH_NN_FLOAT64: in TransDataType()
|
H A D | hdi_prepared_model_v2_1.cpp | 51 case OH_NN_FLOAT64: in TransDataType()
|
/ohos5.0/foundation/ai/neural_network_runtime/frameworks/native/neural_network_core/ |
H A D | validation.cpp | 23 if (dataType >= OH_NN_UNKNOWN && dataType <= OH_NN_FLOAT64) { in ValidateTensorDataType()
|
H A D | tensor_desc.cpp | 45 case OH_NN_FLOAT64: in GetTypeSize()
|
/ohos5.0/foundation/ai/neural_network_runtime/test/unittest/components/v1_0/transform/ |
H A D | transform_test.cpp | 244 OH_NN_DataType dataType = OH_NN_FLOAT64; 499 EXPECT_EQ(OH_NN_FLOAT64, result);
|
/ohos5.0/foundation/ai/neural_network_runtime/test/unittest/components/v2_0/transform/ |
H A D | transform_test.cpp | 244 OH_NN_DataType dataType = OH_NN_FLOAT64; 499 EXPECT_EQ(OH_NN_FLOAT64, result);
|
/ohos5.0/foundation/ai/neural_network_runtime/interfaces/kits/c/neural_network_runtime/ |
H A D | neural_network_runtime_type.h | 316 OH_NN_FLOAT64 = 12 enumerator
|
/ohos5.0/docs/zh-cn/application-dev/reference/apis-neural-network-runtime-kit/ |
H A D | _neural_network_runtime.md | 70 …32 = 8, OH_NN_UINT64 = 9, OH_NN_FLOAT16 = 10, OH_NN_FLOAT32 = 11,<br/>OH_NN_FLOAT64 = 12<br/>} | N… 500 | OH_NN_FLOAT64 | 张量数据类型为float64 | 654 | OH_NN_OPS_COS<sup>12+</sup> | 逐元素计算输入数据的余弦值。<br/>输入:<br/>- input,n维张量,数值类型为OH_NN_FLOAT64、OH_NN_FL… 655 | OH_NN_OPS_LOG<sup>12+</sup> | 逐元素计算输入的自然对数。<br/>输入:<br/>- input,n维张量,数值必须大于0,数值类型为OH_NN_FLOAT64、O… 660 | OH_NN_OPS_RECIPROCAL<sup>12+</sup> | 逐元素计算输入的倒数。<br/>输入:<br/>- input,n维张量,数据类型为数值类型为OH_NN_FLOAT64… 661 | OH_NN_OPS_SIN<sup>12+</sup> | 逐元素计算输入的正弦值。<br/>输入:<br/>- input,n维张量,数值类型为OH_NN_FLOAT64、OH_NN_FLOA… 665 | OH_NN_OPS_CEIL<sup>12+</sup> | 对输入的每个元素做向上取整。<br/>输入:<br/>- input,n维张量,数据类型为OH_NN_FLOAT64、OH_NN_F… 668 | OH_NN_OPS_FLOOR<sup>12+</sup> | 对输入的每个元素做向下取整。<br/>输入:<br/>- input,n维张量,数据类型为OH_NN_FLOAT64、OH_NN_… 670 …归一化处理,最终得到一个概率分布向量。<br/>输入:<br/>- 2维张量,形状为[batchSize,numClasses],数据类型为OH_NN_FLOAT64、OH_NN_FLOAT32、…
|
H A D | _neural_nework_runtime.md | 70 …32 = 8, OH_NN_UINT64 = 9, OH_NN_FLOAT16 = 10, OH_NN_FLOAT32 = 11,<br/>OH_NN_FLOAT64 = 12<br/>} | N… 500 | OH_NN_FLOAT64 | 张量数据类型为float64 | 654 | OH_NN_OPS_COS<sup>12+</sup> | 逐元素计算输入数据的余弦值。<br/>输入:<br/>- input,n维张量,数值类型为OH_NN_FLOAT64、OH_NN_FL… 655 | OH_NN_OPS_LOG<sup>12+</sup> | 逐元素计算输入的自然对数。<br/>输入:<br/>- input,n维张量,数值必须大于0,数值类型为OH_NN_FLOAT64、O… 660 | OH_NN_OPS_RECIPROCAL<sup>12+</sup> | 逐元素计算输入的倒数。<br/>输入:<br/>- input,n维张量,数据类型为数值类型为OH_NN_FLOAT64… 661 | OH_NN_OPS_SIN<sup>12+</sup> | 逐元素计算输入的正弦值。<br/>输入:<br/>- input,n维张量,数值类型为OH_NN_FLOAT64、OH_NN_FLOA… 665 | OH_NN_OPS_CEIL<sup>12+</sup> | 对输入的每个元素做向上取整。<br/>输入:<br/>- input,n维张量,数据类型为OH_NN_FLOAT64、OH_NN_F… 668 | OH_NN_OPS_FLOOR<sup>12+</sup> | 对输入的每个元素做向下取整。<br/>输入:<br/>- input,n维张量,数据类型为OH_NN_FLOAT64、OH_NN_… 670 …归一化处理,最终得到一个概率分布向量。<br/>输入:<br/>- 2维张量,形状为[batchSize,numClasses],数据类型为OH_NN_FLOAT64、OH_NN_FLOAT32、…
|
H A D | neural__network__runtime__type_8h.md | 69 …_UINT32 = 8, OH_NN_UINT64 = 9, OH_NN_FLOAT16 = 10, OH_NN_FLOAT32 = 11,OH_NN_FLOAT64 = 12<br/>} | N…
|
/ohos5.0/docs/en/application-dev/reference/apis-neural-network-runtime-kit/ |
H A D | neural__network__runtime__type_8h.md | 69 …_UINT32 = 8, OH_NN_UINT64 = 9, OH_NN_FLOAT16 = 10, OH_NN_FLOAT32 = 11,OH_NN_FLOAT64 = 12<br>} | Da…
|
H A D | _neural_network_runtime.md | 70 …T32 = 8, OH_NN_UINT64 = 9, OH_NN_FLOAT16 = 10, OH_NN_FLOAT32 = 11,<br>OH_NN_FLOAT64 = 12<br>} | Da… 500 | OH_NN_FLOAT64 | float64 type.| 654 …br>Input:<br>- **input**: *n*-dimensional tensor whose data type is **OH_NN_FLOAT64**, **OH_NN_FLO… 655 …br>Input:<br>- **input**: *n*-dimensional tensor whose data type is **OH_NN_FLOAT64**, **OH_NN_FLO… 660 …br>Input:<br>- **input**: *n*-dimensional tensor whose data type is **OH_NN_FLOAT64**, **OH_NN_FLO… 661 …br>Input:<br>- **input**: *n*-dimensional tensor whose data type is **OH_NN_FLOAT64**, **OH_NN_FLO… 665 …br>Input:<br>- **input**: *n*-dimensional tensor whose data type is **OH_NN_FLOAT64**, **OH_NN_FLO… 668 …br>Input:<br>- **input**: *n*-dimensional tensor whose data type is **OH_NN_FLOAT64**, **OH_NN_FLO… 670 …: 2D tensor whose shape is [batchSize, numClasses] and data type is **OH_NN_FLOAT64**, **OH_NN_FLO…
|
/ohos5.0/foundation/ai/neural_network_runtime/test/unittest/components/v1_0/hdi_prepared_model/ |
H A D | hdi_prepared_model_test.cpp | 602 inputTensor.dataType = OH_NN_FLOAT64;
|
/ohos5.0/foundation/ai/neural_network_runtime/test/unittest/components/v2_0/hdi_prepared_model/ |
H A D | hdi_prepared_model_test.cpp | 597 inputTensor.dataType = OH_NN_FLOAT64;
|
/ohos5.0/foundation/ai/neural_network_runtime/test/unittest/components/v2_1/hdi_prepared_model/ |
H A D | hdi_prepared_model_test.cpp | 596 inputTensor.dataType = OH_NN_FLOAT64;
|