

OpenSL ES Specification

Version 1.0.1

September 24th 2009

Copyright © 2007-2009 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast, or otherwise exploited in any manner without the express
prior written permission of the Khronos Group. You may use this specification for
implementing the functionality therein, without altering or removing any trademark, copyright
or other notice from the specification, but the receipt or possession of this specification does not
convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or
sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in
any fashion, provided that NO CHARGE is made for the specification and the latest available
update of the specification for any version of the API is used whenever possible. Such
distributed specification may be reformatted AS LONG AS the contents of the specification are
not changed in any way. The specification may be incorporated into a product that is sold as
long as such product includes significant independent work developed by the seller. A link to
the current version of this specification on the Khronos Group website should be included
whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual
property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the
specification. Under no circumstances will the Khronos Group, or any of its Promoters,
Contributors or Members or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

SAMPLE CODE and EXAMPLES, as identified herein, are expressly depicted herein with a
“grey” watermark and are included for illustrative purposes only and are expressly outside of
the Scope as defined in Attachment A - Khronos Group Intellectual Property (IP) Rights Policy
of the Khronos Group Membership Agreement. A Member or Promoter Member shall have no
obligation to grant any licenses under any Necessary Patent Claims covering SAMPLE CODE
and EXAMPLES.

Khronos, OpenKODE, OpenVG, OpenSL ES and OpenMAX are trademarks of the Khronos
Group Inc. OpenCL is a trademark of Apple Inc., COLLADA is a trademark of Sony
Computer Entertainment Inc. and OpenGL is a registered trademark of Silicon Graphics Inc.
used under license by Khronos. All other product names, trademarks, and/or company names
are used solely for identification and belong to their respective owners.

Table of Contents

PART 1: USER MANUAL ... 1
1 OVERVIEW ... 2

1.1 PURPOSE OF THIS DOCUMENT..2

1.1.1 About the Khronos Group...2

1.2 SCOPE...2

1.3 INTENDED AUDIENCE..2

1.4 A BRIEF HISTORY OF OPENSL ES...3

1.5 RELATIONSHIP TO OPENMAX AL 1.0...3

1.6 CONVENTIONS USED ..5

1.6.1 Parameter Range Notation ...5

1.6.2 Format and Typographic Conventions ..6

1.7 DEFINITION OF TERMS ..6

1.8 ACKNOWLEDGEMENTS ...6
2 FEATURES AND PROFILES .. 8

2.1 MOTIVATION ...8

2.2 PROFILE DEFINITION ..9

2.3 PROFILES ...9

2.4 OPTIONALITY RULES OF FEATURES AND PROFILES... 11

2.5 PROFILE NOTES .. 12

2.6 BEHAVIOR FOR UNSUPPORTED FEATURES... 12
3 DESIGN OVERVIEW.. 13

3.1 OBJECT MODEL .. 13

3.1.1 Objects and Interfaces... 13

3.1.2 Getters and Setters... 15

3.1.3 Representation in Code.. 16

3.1.4 The SLObjectItf Interface... 17

3.1.5 The Engine Object and SLEngineItf Interface .. 17

3.1.6 The Relationship Between Objects and Interfaces 18

3.1.7 The SLDynamicInterfaceManagementItf Interface.................................. 20

3.1.8 Resource Allocation... 20

3.2 THREADING MODEL.. 22

3.2.1 Mode of Operation .. 22

3.2.2 Thread Safety .. 22

3.3 NOTIFICATIONS .. 23

3.4 ERROR REPORTING .. 23

3.5 EXTENSIBILITY ... 24

3.5.1 Principles... 24

3.5.2 Permitted Modifications to Physical Code .. 25

3.5.3 Extending Supported Interface Types .. 25

3.5.4 Extending Supported Object Types .. 25

3.5.5 Extending Method Parameter Ranges... 26

3.5.6 Result Codes .. 26

3.5.7 Interface ID Allocation Scheme... 26

3.5.8 Avoiding Naming Collisions... 26
4 FUNCTIONAL OVERVIEW.. 28

4.1 OBJECT OVERVIEW .. 28

4.1.1 Engine Object... 28

4.1.1.1 Devices ...29

4.1.2 Media Objects .. 29

4.1.2.1 Data Source and Sink Structures ...29

4.1.3 Metadata Extractor Object.. 30

4.1.4 Audio Output Mix Object .. 30

4.1.5 LED Array Control Object ... 31

4.1.6 Vibration Control Object... 31

4.2 SAMPLED AUDIO ... 32

4.2.1 Recommended Codec .. 32

4.3 PLAYBACK OF MIDI ... 32

4.3.1 Support of Mobile DLS ... 32

4.3.2 Programmatic Control of the MIDI Player.. 33

4.4 3D AUDIO .. 33

4.4.1 3D Sources .. 34

4.4.1.1 3D Groups ... 34

4.4.1.2 When is a Player Rendered in 3D?... 34

4.4.2 3D Parameters ... 35

4.4.2.1 Coordinate System ... 35

4.4.2.2 Precision ... 35

4.4.2.3 Interactivity... 36

4.4.3 Levels of 3D Sources ... 36

4.4.4 3D Positioning Multi-Channel Players ... 36

4.4.4.1 3D and MIDI Players ... 36

4.4.5 Object Relationships.. 36

4.5 EFFECTS .. 37

4.5.1 Effects Architecture ... 37

4.5.2 Bass Boost... 37

4.5.3 Equalization ... 38

4.5.4 Virtualization.. 38

4.5.5 Reverberation... 38

4.6 EXAMPLE USE CASES.. 39

4.6.1 Sampled Audio Playback .. 39

4.6.2 MIDI Playback .. 40

4.6.3 3D Audio ... 41

4.6.4 Recording Audio ... 42

4.6.5 Reading Metadata ... 43

4.7 MINIMUM REQUIREMENTS .. 43

4.7.1 Phone Profile.. 45

4.7.1.1 Use Case 1...45

4.7.1.2 Use Case 2...46

4.7.1.3 Use Case 3...47

4.7.2 Music Profile... 48

4.7.2.1 Use Case 1...48

4.7.3 Game Profile .. 49

4.7.3.1 Use Case 1...49

4.7.3.2 Use Case 2...50

4.7.3.3 Use Case 3...51

4.7.3.4 Use Case 4...52

4.7.3.5 Use Case 5...53

4.7.3.6 Use Case 6...54

4.7.3.7 Use Case 7...55

4.7.3.8 Use Case 8...56

4.7.4 Data Sources ... 57
PART 2: API RERERENCE... 58
5 BASE TYPES AND UNITS... 59

5.1 STANDARD UNITS ... 59

5.2 BASE TYPES .. 59

6 FUNCTIONS.. 61

6.1 SLCREATEENGINE FUNCTION ... 61

6.2 SLQUERYNUMSUPPORTEDENGINEINTERFACES FUNCTION... 62

6.3 SLQUERYSUPPORTEDENGINEINTERFACES FUNCTION .. 63
7 OBJECT DEFINITIONS .. 64

7.1 3D GROUP.. 65

7.2 AUDIO PLAYER ... 67

7.3 AUDIO RECORDER ... 72

7.4 ENGINE OBJECT.. 74

7.5 LED ARRAY I/O DEVICE.. 76

7.6 LISTENER OBJECT.. 77

7.7 METADATA EXTRACTOR OBJECT.. 79

7.8 MIDI PLAYER OBJECT... 80

7.9 OUTPUT MIX.. 85

7.10 VIBRA I/O DEVICE .. 88
8 INTERFACE DEFINITIONS .. 89

8.1 SL3DCOMMITITF.. 90

8.2 SL3DDOPPLERITF... 93

8.3 SL3DGROUPINGITF ... 100

8.4 SL3DLOCATIONITF.. 103

8.5 SL3DMACROSCOPICITF .. 117

8.6 SL3DSOURCEITF.. 126

8.7 SLAUDIODECODERCAPABILITIESITF .. 144

8.8 SLAUDIOENCODERITF .. 147

8.9 SLAUDIOENCODERCAPABILITIESITF .. 149

8.10 SLAUDIOIODEVICECAPABILITIESITF ... 152

8.11 SLBASSBOOSTITF... 170

8.12 SLBUFFERQUEUEITF .. 174

8.13 SLDEVICEVOLUMEITF... 179

8.14 SLDYNAMICINTERFACEMANAGEMENTITF ... 183

8.15 SLDYNAMICSOURCEITF... 190

8.16 SLEFFECTSENDITF .. 192

8.17 SLENGINEITF .. 198

8.18 SLENGINECAPABILITIESITF .. 221

8.19 SLENVIRONMENTALREVERBITF .. 231

8.20 SLEQUALIZERITF .. 247

8.21 SLLEDARRAYITF .. 258

8.22 SLMETADATAEXTRACTIONITF.. 264

8.23 SLMETADATATRAVERSALITF ... 277

8.24 SLMIDIMESSAGEITF ... 284

8.25 SLMIDIMUTESOLOITF ... 291

8.26 SLMIDITEMPOITF .. 302

8.27 SLMIDITIMEITF... 306

8.28 SLMUTESOLOITF .. 311

8.29 SLOBJECTITF .. 317

8.30 SLOUTPUTMIXITF ... 330

8.31 SLPITCHITF .. 335

8.32 SLPLAYITF ... 339

8.33 SLPLAYBACKRATEITF ... 351

8.34 SLPREFETCHSTATUSITF .. 359

8.35 SLPRESETREVERBITF ... 366

8.36 SLRATEPITCHITF .. 369

8.37 SLRECORDITF ... 373

8.38 SLSEEKITF ... 383

8.39 SLTHREADSYNCITF ... 387

8.40 SLVIBRAITF .. 390

8.41 SLVIRTUALIZERITF .. 396

8.42 SLVISUALIZATIONTITF.. 402

8.43 SLVOLUMEITF.. 406
9 MACROS AND TYPEDEFS... 415

9.1 STRUCTURES ... 415

9.1.1 SLAudioCodecDescriptor .. 415

9.1.2 SLAudioEncoderSettings .. 417

9.1.3 SLAudioInputDescriptor ... 418

9.1.4 SLAudioOutputDescriptor ... 421

9.1.5 SLBufferQueueState .. 423

9.1.6 SLDataFormat_MIME ... 424

9.1.7 SLDataFormat_PCM... 424

9.1.8 SLDataLocator_Address ... 425

9.1.9 SLDataLocator_IODevice.. 426

9.1.10 SLDataLocator_BufferQueue... 426

9.1.11 SLDataLocator_MIDIBufferQueue .. 427

9.1.12 SLDataLocator_OutputMix .. 427

9.1.13 SLDataLocator_URI ... 427

9.1.14 SLDataSink .. 428

9.1.15 SLDataSource... 429

9.1.16 SLEngineOption .. 430

9.1.17 SLEnvironmentalReverbSettings.. 430

9.1.18 SLHSL ... 431

9.1.19 SLInterfaceID... 431

9.1.20 SLLEDDescriptor ... 432

9.1.21 SLMetadataInfo .. 432

9.1.22 SLVec3D.. 433

9.1.23 SLVibraDescriptor ... 433

9.2 MACROS .. 434

9.2.1 SL_AUDIOCODEC.. 434

9.2.2 SL_AUDIOPROFILE and SL_AUDIOMODE .. 435

9.2.3 SLAPIENTRY... 440

9.2.4 SL_BOOLEAN ... 440

9.2.5 SL_BYTEORDER.. 440

9.2.6 SL_CHARACTERENCODING... 441

9.2.7 SL_CONTAINERTYPE ... 443

9.2.8 SL_DATAFORMAT.. 445

9.2.9 SL_DATALOCATOR.. 445

9.2.10 SL_DEFAULTDEVICEID .. 446

9.2.11 SL_DEVICECONNECTION ... 446

9.2.12 SL_DEVICELOCATION.. 447

9.2.13 SL_DEVICESCOPE... 448

9.2.14 SL_DYNAMIC_ITF ... 449

9.2.15 SL_ENGINEOPTION... 450

9.2.16 SL_EQUALIZER... 450

9.2.17 SL_I3DL2 Environmental Reverb Presets .. 451

9.2.18 SL_IODEVICE... 453

9.2.19 SL_METADATA_FILTER .. 453

9.2.20 SL_METADATATRAVERSALMODE ... 454

9.2.21 SL_MIDIMESSAGETYPE.. 454

9.2.22 SL_MILLIBEL .. 455

9.2.23 SL_MILLIHERTZ_MAX .. 455

9.2.24 SL_MILLIMETER_MAX.. 455

9.2.25 SL_NODE_PARENT .. 455

9.2.26 SL_NODETYPE .. 456

9.2.27 SL_OBJECT_EVENT ... 457

9.2.28 SL_OBJECT_STATE.. 458

9.2.29 SL_OBJECTID... 458

9.2.30 SL_PCMSAMPLEFORMAT .. 459

9.2.31 SL_PLAYEVENT ... 459

9.2.32 SL_PLAYSTATE ... 460

9.2.33 SL_PREFETCHEVENT ... 460

9.2.34 SL_PREFETCHSTATUS.. 460

9.2.35 SL_PRIORITY ... 461

9.2.36 SL_PROFILES ... 461

9.2.37 SL_RATECONTROLMODE.. 462

9.2.38 SL_RATEPROP .. 462

9.2.39 SL_RECORDEVENT .. 463

9.2.40 SL_RECORDSTATE .. 463

9.2.41 SL_REVERBPRESET ... 464

9.2.42 SL_RESULT .. 464

9.2.43 SL_ROLLOFFMODEL... 466

9.2.44 SL_SAMPLINGRATE ... 466

9.2.45 SL_SEEKMODE ... 467

9.2.46 SL_SPEAKER .. 468

9.2.47 SL_TIME.. 469

9.2.48 SL_VOICETYPE ... 469

PART 3: APPENDICES.. 470
APPENDIX A: REFERENCES ... 471
APPENDIX B: SAMPLE CODE.. 473

B.1 AUDIO PLAYBACK AND RECORDING .. 473

B.1.1 Buffer Queue.. 473

B.1.2 Recording .. 477

B.2 DYNAMIC INTERFACE MANAGEMENT ... 481

B.3 MIDI.. 485

B.3.1 Simple MIDI... 485

B.3.2 MIDI Buffer Queue.. 486

B.3.3 Advanced MIDI: MIDI messaging .. 489

B.4 METADATA EXTRACTION .. 493

B.4.1 Simple Metadata Extraction.. 493

B.5 3D AUDIO.. 495

B.5.1 Simple 3D.. 495

B.5.2 Advanced 3D.. 498

B.6 EFFECTS .. 506

B.6.1 Environmental Reverb ... 506

B.6.2 Equalizer ... 513

B.7 IO DEVICES AND CAPABILITIES .. 519

B.7.1 Engine capabilities .. 519
APPENDIX C: USE CASE SAMPLE CODE.. 523

C.1 INTRODUCTION .. 523

C.2 MUSIC PROFILE .. 523

C.2.1 Object Relationships.. 523

C.2.2 Example Code .. 524

C.3 PHONE PROFILE.. 533

C.3.1 Object Relationships.. 533

C.3.2 Example Code .. 534

C.4 GAME PROFILE ... 541

C.4.1 Object Relationships.. 541

C.4.2 Example Code .. 542
APPENDIX D: OBJECT-INTERFACE MAPPING... 552

OpenSL ES 1.0.1 Specification 1

PART 1: USER MANUAL

2 OpenSL ES 1.0.1 Specification

1 Overview

1.1 Purpose of this Document
This document specifies the Application Programming Interface (API) for OpenSL ES™ 1.0.
Developed as an open standard by the Khronos Group, OpenSL ES is a native language
application-level audio API for embedded mobile multimedia devices. It provides a device-
independent cross-platform interface for applications to access a device’s audio capabilities.

1.1.1 About the Khronos Group

The Khronos Group is a member-funded industry consortium focused on the creation of
open standard, royalty-free APIs to enable the authoring and accelerated playback of
dynamic media on a wide variety of platforms and devices. All Khronos members can
contribute to the development of Khronos API specifications, are empowered to vote at
various stages before public deployment, and may accelerate the delivery of their
multimedia platforms and applications through early access to specification drafts and
conformance tests. The Khronos Group is responsible for open APIs such as OpenGL® ES,
OpenKODE™, OpenMAX™ and OpenVG™.

1.2 Scope
OpenSL ES is an application-level C-language audio API designed for resource-constrained
devices. Particular emphasis has been made to ensure that the API is suitable for mobile
embedded devices, including basic mobile phones, smart “feature” phones, PDAs and
mobile digital music players. The API is suitable for both lower-end devices and feature-
rich, higher-end devices.

OpenSL ES’s API design devotes particular attention to application-developer friendliness.
Its status as an open cross-platform API enables developers to port the same source
across multiple devices with minimal effort. Thus, OpenSL ES provides a stable base for
application development.

This document specifies the OpenSL ES API. It does not define or suggest how to
implement the API.

1.3 Intended Audience
This specification is meant for application-developers and implementers. The document is
split into two sections: a user guide and an API reference. Application-developers can use
this document as a user guide to learn about how to use OpenSL ES and they can refer to
the API reference when developing their applications. Implementers of the API can use this
specification to determine what constitutes an implementation conforming to the
OpenSL ES standard.

OpenSL ES 1.0.1 Specification 3

1.4 A Brief History of OpenSL ES
OpenSL ES was originally conceived with the aim to reduce the amount fragmentation that
exists for audio applications on mobile devices. Prior to the release of OpenSL ES there
were many, mostly proprietary, audio APIs. Any developer wanting to deliver their audio
application on many devices would have to spend most of their time porting their
application. Even when an audio API was supported on multiple devices, there was little
guarantee of what level of functionality could be relied on between the devices. It was
clear that as more advanced audio functionality would start to become commonplace on
mobile devices the fragmentation would only worsen.

This situation inspired companies with a wide range of backgrounds – such as mobile
phone handset manufacturers, PC audio hardware manufacturers, MIDI vendors, audio
silicon vendors and audio software vendors - to create OpenSL ES. An open standard, C-
language audio API for mobile embedded devices, OpenSL ES provides a guarantee of
what functionality will be supported in all implementations of the API.

1.5 Relationship to OpenMAX AL 1.0
OpenSL ES is an application-level enhanced audio API, also designed for mobile embedded
devices. OpenMAX AL 1.0 [OMXAL], also from the Khronos Group, is an application-level
multimedia playback and recording API for mobile embedded devices. As such, both APIs
do overlap in certain basic audio functionality (such as audio playback, audio recording and
basic MIDI). The Venn diagram in Figure 1 illustrates the functional overlap in the two APIs.

Figure 1: OpenSL ES 1.0 versus OpenMAX AL 1.0

4 OpenSL ES 1.0.1 Specification

As the Venn diagram shows, OpenSL ES has advanced audio features like effects
(reverberation, stereo widening, bass boost, etc.) and positional 3D audio that are not part
of OpenMAX AL 1.0. Similarly, OpenMAX AL 1.0 has audio features like analog radio tuner
and RDS that are not part of OpenSL ES.

The primary focus of OpenSL ES is advanced audio and MIDI functionality for mobile
devices. The primary focus of OpenMAX AL 1.0 is media (audio, video, and image) capture
and rendering. Further, both OpenSL ES and OpenMAX AL 1.0 are partitioned into profiles
based on market segments:

• OpenSL ES 1.0 has three overlapping profiles: Phone, Music and Game.

• OpenMAX AL 1.0 has two overlapping profiles: Media Player and Media
Player/Recorder.

Each of these profiles has well-defined feature sets and conformance requirements. For
example, to be compliant with the OpenMAX AL 1.0 Media Player profile, an OpenMAX AL
1.0 implementation must provide audio, image and video playback functionality. An audio-
only OpenMAX AL 1.0 implementation would not be compliant with either profile of the
OpenMAX AL 1.0 specification.

This segmentation into profiles ensures that there will be no confusion whatsoever
regarding which API is suitable for a particular set of use cases.

• Example 1: an audio-only application will have no need for video and image
functionality and therefore would likely pick one of the OpenSL ES profiles,
depending on the use cases of interest.

• Example 2: a media playback and recording application would use the OpenMAX AL
1.0 Media Player/Recorder profile.

• Example 3: An advanced multimedia/game application that needs
audio/video/image playback and recording as well as advanced audio features like
3D audio and effects would use both the Media Player/Recorder profile of OpenMAX
AL 1.0 and the Game profile of OpenSL ES 1.0.

The two APIs have been designed such that their architecture is identical. Further, each
API has identical API methods for the same functionality. At the same time, the APIs are
also independent – each can be used as a standalone API by itself (as in Examples 1
and 2) or can co-exist with the other on the same device (as in Example 3).

OpenSL ES 1.0.1 Specification 5

1.6 Conventions Used
When this specification discusses requirements and features of the OpenSL ES API, specific
words are used to indicate the requirement of a feature in an implementation. The table
below shows a list of these words.

Table 1: Requirement Terminology

Word Definition

May The stated functionality is an optional requirement for an implementation of
the OpenSL ES API. Optional features are not required by the specification
but may have conformance requirements if they are implemented. This is an
optional feature as in “The implementation may have vendor-specific
extensions.”

Shall The stated functionality is a requirement for an implementation of the
OpenSL ES API. If an implementation fails to meet a shall statement, it is
not considered as conforming to this specification. Shall is always used as a
requirement, as in “The implementation shall support the play interface.”

Should The stated functionality is not a requirement for an implementation of the
OpenSL ES API but is recommended or is a good practice. Should is usually
used as follows: “An OpenSL ES implementation of the game profile should
be capable of playing content encoded with an MP3 codec.” While this is a
recommended practice, an implementation could still be considered as
conforming to the OpenSL ES API without implementing this functionality.

Will The stated functionality is not a requirement for an implementation of the
OpenSL ES API. Will is typically used when referring to a third party, as in
“the application framework will correctly handle errors.”

1.6.1 Parameter Range Notation

Valid parameter ranges are specified using both enumerated lists of valid values and
sequential ranges. The ranges are specified using the following interval notation [ISO31-
11]: (a, b) for open intervals, [a, b] for closed intervals, and (a, b] and [a, b) for half-
closed intervals, defined as follows:

}|{),[
}|{],(
}|{],[
}|{),(

bxaxba
bxaxba
bxaxba
bxaxba

<≤=
≤<=
≤≤=
<<=

6 OpenSL ES 1.0.1 Specification

1.6.2 Format and Typographic Conventions

This document uses the following conventions:

Table 2: Format and Typographic Conventions

Format Meaning

Courier font Sample code, API parameter specifications

1.7 Definition of Terms
The following terms in are used in this specification:

Table 3: Specification Terminology

Word Definition

3D source A player or group of players positioned in 3D space.

Application A software program that makes calls to the OpenSL ES API. An
application is the client of the API.

Implementation A realization of the OpenSL ES specification. One example is a
software library that conforms to the OpenSL ES specification.

Platform A software and hardware architecture that supports running
applications.

1.8 Acknowledgements
The OpenSL ES specification is the result of the contributions of many people. The
following is a partial list of contributors, including the respective companies represented at
the time of their contribution:

Stewart Chao, AMD (now with Qualcomm)
Tom Longo, AMD (now with Qualcomm)
Wilson Kwan, AMD (now with Qualcomm)
Chris Grigg, Beatnik
Andrew Ezekiel Rostaing, Beatnik
Roger Nixon, Broadcom
Tim Granger, Broadcom
Wolfgang Schildbach, Coding Technologies
Peter Clare, Creative
Jean-Michel Trivi, Creative
Robert Alm, Ericsson
Lewis Balfour, Ericsson
Harald Gustafsson, Ericsson

OpenSL ES 1.0.1 Specification 7

Håkan Gårdrup, Ericsson
Erik Noreke, Ericsson (Chair)
Jacob Ström, Ericsson
Pierre Bossart, Freescale
Brian Murray, Freescale
Jarmo Hiipakka, Nokia
Yeshwant Muthusamy, Nokia
Matti Paavola, Nokia
Scott Peterson, NVIDIA
Neil Trevett, NVIDIA
Jim Van Welzen, NVIDIA
Gregor Brandt, QSound
Brian Schmidt, QSound
John Mortimer, QSound
Mark Williams, QSound
Scott Willing, QSound
Ytai Ben-Tsvi, Samsung (Past Editor)
Natan Linder, Samsung
Gal Sivan, Samsung
Weijun Wang, SKY MobileMedia
Tim Jones, Sonaptic
Jonathan Page, Sonaptic
Stephan Tassart, ST Microelectronics
Tim Renouf, Tao Group
Brian Evans, Symbian
Pavan Kumar, Symbian
James Ingram, Symbian
Rajeev Ragunathan, Symbian
Leo Estevez, Texas Instruments
Danny Jochelson, Texas Instruments
Nathan Charles, ZiiLABS (Past Chair)

8 OpenSL ES 1.0.1 Specification

2 Features and Profiles
OpenSL ES was designed with audio application developers in mind. It provides support for
a number of audio features that facilitate the development of a wide range of applications
on the target devices. Supported features include:

 Playback of audio and MIDI: Includes playback of PCM and encoded content, MIDI
ringtones and UI sounds, as well as extraction of metadata embedded in the content.

 Effects and controls: Includes general audio controls such as volume, rate, and pitch,
music player effects such as equalizer, bass boost, preset reverberation and stereo
widening, as well as advanced 3D effects such as Doppler, environmental reverberation,
and virtualization.

 Advanced MIDI: Includes support for SP-MIDI, mobile DLS, mobile XMF, MIDI
messages, and the ability to use the output of the MIDI engine as a 3D sound source.

 3D Audio: Includes 3D positional audio and 3D groups (grouping of 3D sound sources).
3D audio functionality facilitates the use of OpenSL ES as the audio companion to
OpenGL ES (a 2D/3D graphics API from Khronos) for gaming.

OpenSL ES also provides optional support for LED and vibra control, 3D macroscopic
control, and audio recording. Audio recording - in PCM as well as non-PCM formats – can
be from a microphone, a line-in jack. Section 2.4 discusses optional features in the API.

These audio features enable the development of applications such as music players, ring-
tone players, voice recorders, simple 2D games as well as advanced 3D games, and MIDI
sequencers, to name a few.

2.1 Motivation
The need for segmenting the set of OpenSL ES features into profiles arose from the
following considerations:

 The realization that the set of OpenSL ES features was quite large.
 The fact that OpenSL ES would most likely be used for a range of devices catering to

quite different market segments. Therefore, not all implementations of OpenSL ES
would need (or could accommodate) all of the functionality represented by this large
set of features.

Segmentation of the API into profiles based on market segments is considered a better
approach than one based solely on technical criteria.

OpenSL ES 1.0.1 Specification 9

2.2 Profile Definition
An OpenSL ES profile is a defined subset of features that satisfy typical use cases for a
given market segment. Any feature may be included in any profile, and any device may
support any number of profiles.

2.3 Profiles
OpenSL ES is segmented into three profiles: Phone, Music and Game. A short description
and rationale of each of the profiles is discussed below:

 Phone: This is the basic profile that is designed for the low-end or “basic” mobile
phone market segment. This includes ringtone and alert tone playback (that is, basic
MIDI functionality), basic audio playback, and simple 2D audio games. Recording
functionality, which is commonly used for recording voice memos on mobile phones, is
an optional feature and is not part of any profile. Optional features and their
relationship to profiles are described in more detail in section 2.4, below.

 Music: This profile is designed for the music-centric mobile device market.
Characteristics of such devices include high-quality audio, the ability to support
multiple music audio codecs, and the ability to play music from local files. Some high-
end devices could also support streaming audio from remote servers (although this is
not mandated functionality in OpenSL ES). A mobile phone that has a built-in music
player would incorporate both the Phone and Music profiles. A digital music-only mobile
device would use only the Music profile.

 Game: This profile is designed for the game-centric mobile device market.
Characteristics of such devices include advanced MIDI functionality, and sophisticated
audio capabilities such as 3D audio, audio effects, and the ability to handle buffers of
audio. A mobile phone that offers sophisticated game-playing ability would incorporate
both the Phone and Game profiles. A game-only device would use only the Game
profile.

Other combinations of these three profiles are also possible; a full-featured game-and-
music mobile phone would incorporate all three profiles: Phone, Music and Game, and a
PDA handheld with only wireless network capability but no mobile phone functionality
might incorporate only the Music and Game profiles.

It is worth noting here that these three profiles are by no means distinct (and thus should
not be confused with levels); they do indeed overlap – mostly in basic audio API
functionality, but also in areas that reflect the increasing sophistication in even the “basic”
mobile phones that are likely to be in the marketplace in the near future. Conversely, none
of the profiles is a superset of one of the other two profiles.

The following table lists the features in the three profiles of OpenSL ES. A “Y” in a cell
indicates that the listed API feature is mandatory in that profile, while a blank cell indicates
the absence of that feature.

10 OpenSL ES 1.0.1 Specification

Table 4: Features of the Three OpenSL ES Profiles

API (Profile) Feature Phone Music Game

PLAYBACK AND PROCESSING CONTROLS

Play multiple sounds at a given time Y Y Y

Playback of mono and stereo sounds Y Y Y

Basic playback controls Y Y Y

End to end looping Y Y Y

Segment looping Y

Query and set the playback position Y Y Y

Position-related callbacks and
notifications

Y Y Y

Sound prioritization Y Y Y

Route audio to multiple simultaneous
outputs

Y

Volume control Y Y Y

Audio balance and pan control Y Y

Metadata retrieval Y Y

Modify playback pitch and rate Y

Playback of sounds in secondary storage Y Y Y

Buffers & buffer queues Y

CAPABILITY QUERIES

Query capabilities of the implementation Y Y Y

Enumerate audio I/O devices Y Y Y

Query audio I/O device capabilities Y Y Y

EFFECTS

Stereo widening Y Y

Virtualization Y Y

Reverberation Y Y

Equalization Y Y

Effect send control Y Y

MIDI

Support for: SP-MIDI, Mobile DLS,
Mobile XMF

Y Y

OpenSL ES 1.0.1 Specification 11

API (Profile) Feature Phone Music Game

MIDI messages Y Y

MIDI tempo Y Y

MIDI buffer queues Y Y

Adjustable MIDI tick length Y Y

JSR-135 tone control Y Y

MIDI track and channel mute/solo Y

3D AUDIO

Positional 3D audio Y

Sound cones Y

Multiple distance models Y

Source and listener velocity Y

Source and listener orientation Y

3D sound grouping Y

Simultaneous commit of multiple 3D
controls

 Y

2.4 Optionality Rules of Features and Profiles
To minimize confusion among developers and reduce fragmentation, the API adheres to
the following rules on features and profiles:

1. All features within a profile are mandatory – this is critical in assuring developers and
implementers that if they pick a profile, all the functionality representative of that
profile will indeed be present. Then, applications written to specific profile(s) will indeed
be portable across OpenSL ES implementations of those profile(s).

2. A feature that does not fit in any of the profiles is considered optional and part of a
separate standardized “extension” of OpenSL ES. It is also best not to categorize
features in this extension in any way, to avoid a potentially confusing combinatorial
explosion (“Profile X with Extension Categories 1 and 2”, or “Profile X with Extension
Categories 2 and 3,” and so on) and effectively negating the benefits of Rule #1.
Vendors are free to pick and choose from this extension to augment their
implementations of any of the profiles.

3. Vendors are free to implement features from more than one profile, but they can claim
compliance with a profile only if they implement all of the features of that profile.
Example: if a vendor implements the Phone profile in its entirety but just three of the
features in the Music profile, then that vendor can claim compliance only with the
Phone profile.

12 OpenSL ES 1.0.1 Specification

The following table lists some of the optional features in OpenSL ES 1.0 with the reason for
their optionality.

Table 5: Optional Features in OpenSL ES

Optional Feature Reason for Optionality

Audio recording from a microphone
or on-device, line-in jack

Implies hardware dependency (presence
of a microphone or line-in jack)

Haptics – support non-audio
output devices such as LEDs and
vibrator(s)

Implies hardware dependency (presence
of LEDs and vibrators)

Macroscopic behavior in 3D audio
Cutting edge feature for mobile devices
that will be supported by advanced
implementations

2.5 Profile Notes
Profiles notes are used within this specification to identify objects and interfaces where
support is optional in one or more of the profiles. Profile notes are not used where an
object or interface is mandated in all three profiles. Here are some representative
examples of profile notes found in the specification:

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

2.6 Behavior for Unsupported Features
If an application attempts to use a feature that is not present in a specific implementation
of OpenSL ES, the implementation shall fail the request to use the feature, returning the
SL_RESULT_FEATURE_UNSUPPORTED error code [see section 3.4 on Error Reporting]. This
can happen either when calling GetInterface() on an unsupported interface or when
attempting to call a method not supported in an interface. Further, if an interface with an
unknown ID is used (either during object creation or in a GetInterface() call), this same
result code shall be returned. This facilitates portability of applications using non-standard
extensions.

OpenSL ES 1.0.1 Specification 13

3 Design Overview
3.1 Object Model
3.1.1 Objects and Interfaces
The OpenSL ES API adopts an object-oriented approach using the C programming
language. The API includes two fundamental concepts on which are built all other
constructs: an object and an interface.

An object is an abstraction of a set of resources, assigned for a well-defined set of tasks,
and the state of these resources. An object has a type determined on its creation. The
object type determines the set of tasks that the object can perform. This can be
considered similar to a class in C++.

An interface is an abstraction of a set of related features that a certain object provides.
An interface includes a set of methods, which are functions of the interface. An interface
also has a type which determines the exact set of methods of the interface. We can define
the interface itself as a combination of its type and the object to which it is related.

An interface ID identifies an interface type. This identifier is used within the source code
to refer to the interface type.

Objects and interfaces are tightly related – an object exposes one or more interfaces, all
of which have different interface types, that is, an object may contain at most one
interface of each interface type. A given interface instance is exposed by exactly one
object. The application controls the object’s state and performs the object operations
exclusively through the interfaces it exposes. Thus, the object itself is a completely
abstract notion, and has no actual representation in code, yet it is very important to
understand that behind every interface stands an object.

The relationship between object types and interface types is as follows. The object type
determines the types of interfaces that may be exposed by objects of this type. Each
object type definition in this document includes a detailed list of the interfaces on that
object.

PROFILE NOTES
The set of interface types allowed for a given object type may vary across profiles. This
will be explicitly stated in this document, per object, and per interface type.

An object’s lifetime is the time between the object’s creation and its destruction. The
application explicitly performs both object creation and destruction, as will be explained
later in this document.

An object maintains a state machine with the following states:

 Unrealized (initial state): The object is alive but has not allocated resources. It is
not yet usable; its interfaces’ methods cannot yet be called.

 Realized: The object’s resources are allocated and the object is usable.

14 OpenSL ES 1.0.1 Specification

 Suspended (optional state): The object has fewer resources than it requires in order
to be usable but it maintains the state it was in at the moment of suspension. This
state is optional to the extent that, in the face of resource loss, the implementation has
the option of putting an object either in the Suspended state or the Unrealized state.

The following state diagram illustrates the states and transitions.

Figure 2: Object state diagram

When the application destroys an object, that object implicitly transitions through the
Unrealized state. Thus it frees its resources and makes them available to other objects.

See section 3.1.7 for more details on resource allocation.

The following example demonstrates the transition between object states:

SLresult res;
SLAudioPlayer player;
SLPlayItf playbackItf;
SLint32 priority;
SLboolean preemptable;
SLuint32 state;
SLmillibel vol;

/* create an audio player */
res = (*eng)->CreateAudioPlayer(eng, ..., &player);
CheckErr(res);
/* Realizing the object in synchronous mode. */
res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
...

OpenSL ES 1.0.1 Specification 15

...

...

...
/* Checking the object’s state since we would like to use it now, and its
resources may have been stolen. */
res = (*player)->GetState(player, &state);
if (SL_OBJECT_STATE_SUSPENDED == state)
{
 /* Resuming state synchronously. */
 res = (*player)->Resume(player, SL_BOOLEAN_FALSE);
 while (SL_RESULT_RESOURCE_ERROR == res)
 {
 /* Not enough resources. Increasing object priority. */
 res = (*player)->GetPriority(player, &priority, &preemptable);
 res = (*player)->SetPriority(player, INT_MAX, SL_BOOLEAN_FALSE);
 /* trying again */
 res = (*player)->Resume(player, SL_BOOLEAN_FALSE);
 }
} else
{
 if (SL_OBJECT_STATE_UNREALIZED == res)
 {
 /* Realizing state synchronously. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
 while (SL_RESULT_RESOURCE_ERROR == res)
 {
 /* Not enough resources. Increasing object priority. */
 res = (*player)->GetPriority(player, &priority,
&preemptable);
 res = (*player)->SetPriority(player, INT_MAX,
SL_BOOLEAN_FALSE);
 /* trying again */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
 }
 }
}

3.1.2 Getters and Setters
Getters and setters provide access to object properties. An application uses a setter to
change the value of an object’s property and a getter to retrieve a value of an object’s
property.

Unless explicitly specified in a getter’s method name, a getter shall always return the exact
value that was set by a previous call to a setter, even if that value had been rounded off
internally by the implementation. An exception to this rule is that a Boolean getter must
return only logically (but not necessarily numerically) the same value as was set.

16 OpenSL ES 1.0.1 Specification

Here is a short example that demonstrates the use of a getter and a setter:

SLresult res;
SLVolumeItf volumeItf;
SLmillibel vol;

res = (*volumeItf)->GetVolumeLevel(volumeItf, &vol); CheckErr(res);
res = (*volumeItf)->SetVolumeLevel(volumeItf, vol + 7); CheckErr(res);

Unless specified otherwise, applications are responsible for allocation and deallocation of
memory buffers used in the interface methods.

3.1.3 Representation in Code

As stated in the previous section, objects have no representation in code. OpenSL ES
refers to an object via its SLObjectItf interface [see sections 3.1.4 and 8.29].

The API represents interfaces as C-structs, where all the fields are method-pointers,
representing the methods. These interface structures are always stored and passed as
pointer-to-pointer-to-struct and never by value (this level of indirection enables more
efficient API implementations).

Each of the interface methods has a first argument, called self, whose type is the
interface type. Thus when calling an interface method, the caller must pass the interface
pointer in this argument. Additionally, each of the callback prototypes has a first argument
called caller, whose type is the interface type. Here is an example of a simple interface:

struct SLSomeInterfaceItf_;
typedef const struct SLSomeInterfaceItf_ * const * SLSomeInterfaceItf;

struct SLSomeInterfaceItf_ {
 SLresult (*Method1) (
 SLSomeInterfaceItf self,
 SLint32 prm
);
 SLresult (*Method2) (
 SLSomeInterfaceItf self
);
};

This interface is called SLSomeInterfaceItf and has two methods: Method1() and
Method2(). Such an interface will be used as follows:

SLuint32 i;
SLresult res;
SLSomeInterfaceItf someItf;

/* ... obtain this interface somehow ... */
res = (*someItf)->Method1(someItf, 13);
res = (*someItf)->Method2(someItf);

Note that this code excludes the mechanism for obtaining the interface itself, which will be
explained in the following sections.

OpenSL ES 1.0.1 Specification 17

3.1.4 The SLObjectItf Interface

SLObjectItf is a special interface type fundamental to the architecture. Every object type
in the API exposes this interface. It is the “entry-point” for an object since every
method that creates a new object actually returns the SLObjectItf of this object. Using
this interface, an application may perform all the basic operations on the object and may
access other interfaces exposed by the object.

The application destroys the object by calling the Destroy() method of the SLObjectItf
interface.

The application obtains other interfaces of the object by calling the GetInterface()
method of the SLObjectItf interface. The application retrieves an interface by its type ID
which uniquely identifies it; an object cannot contain more than one interface of a certain
type.

The application controls the state of the object by calling the Realize() and Resume()
methods of the SLObjectItf interface.

For a complete and detailed specification of this interface type, see section 8.29.

3.1.5 The Engine Object and SLEngineItf Interface
Other fundamental entities in the architecture are the engine object and the SLEngineItf
interface. These entities serve as the API‘s entry-point. The application begins an
OpenSL ES session by creating an engine object.

The engine object is created using the global function slCreateEngine()
[see section 6.1]. The result of engine object creation is a SLObjectItf interface,
regardless of the implementation.

After creating the engine object, the application can obtain this object‘s SLEngineItf
interface. This interface contains creation methods for all the other object types in the API.

To create an object process:

 Create and realize an engine object if one has not been created already.
 Obtain the SLEngineItf interface from this object.

 Call the appropriate object creation method of this interface.
 If the call succeeds, the method will return an SLObjectItf interface of the new object.

 After working with the object, call the Destroy() method of the SLObjectItf to free
the object and its resources.

For a complete and detailed specification of the engine object and the SLEngineItf
interface type, please refer to sections 7.4 and 8.17 respectively.

18 OpenSL ES 1.0.1 Specification

3.1.6 The Relationship Between Objects and Interfaces
The set of interfaces exposed by an object is determined by three factors:

 The object’s type
 The interfaces requested by the application during the object’s creation
 The interfaces added and removed by the application during the object’s lifetime

An object’s type determines the set of interfaces that will always exist, regardless of
whether the application requests them or not. These interfaces are called implicit
interfaces and every object type has its own set of implicit interfaces that will exist on
every object of this type. The SLObjectItf interface, introduced in section 3.1.4, is
fundamentally required on every object, so it is designated as implicit on all object types,
that is, the application never needs to explicitly request that it be exposed on any object.

Every object type also defines a set of interfaces that are available on objects of this type,
but will not be exposed by an object unless explicitly requested by the application during
the object’s creation. These explicitly requested interfaces are called explicit interfaces.

Finally, every object type also defines a set of interfaces that may be added and removed
by the application during the object’s lifetime. These types of interfaces are called dynamic
interfaces and they are managed by a dedicated interface, called
SLDynamicInterfaceManagementItf [see section 8.14], which enables this dynamic
binding. Attempts to dynamically add or remove implicit interfaces on an object will fail.

The set of explicit and dynamic interfaces for a given object type may vary between
implementations [see section 3.5]. However, for a given profile, each object type has a set
of mandated explicit interfaces and a set of mandated dynamic interfaces that shall be
supported by every implementation.

When an application requests explicit interfaces during object creation, it can flag any
interface as required. If an implementation is unable to satisfy the request for an interface
that is not flagged as required (i.e. it is not required), this will not cause the object to fail
creation. On the other hand, if the interface is flagged as required and the implementation
is unable to satisfy the request for the interface, the object will not be created.

The following table summarizes whether an object is created and an interface is exposed,
according to how the specification relates their types and how the application designates
the interface at the object’s creation1.

1 The reader is advised that there are known on-screen rendering issues with the following tables at
certain screen resolutions and it may be necessary to increase the zoom level to fully view the table
cell borders.

OpenSL ES 1.0.1 Specification 19

Table 6: Interface Exposure Rules During Object Creation

Determined by the application

Interface requested by application
Interface marked as
required

Interface not
marked as required

Interface not
requested by
application

Implicit Mandated
interface

Explicit
Available

D
et

er
m

in
ed

 b
y

im
p
le

m
en

ta
ti
o
n
 &

sp

ec
if
ic

at
io

n

Optional

interface Not
available

Key:

 Object is created and interface is exposed, subject to resource constraints

 Object is created but interface is not exposed

 Object is not created and interface is not exposed

The next table summarizes whether interface is exposed on an object when the application
requests to add the interface dynamically, according to whether the specification mandates
support for the interface on the object type and whether this support is mandated
dynamically or not.

Table 7: Interface Exposure Rules for Dynamic Adding of Interface

 Determined by application

 Application dynamically adds interface

Mandated interface
Available Mandated

dynamic Optional
interface

Not available

D
et

er
m

in
ed

 b
y

im
p
le

m
en

ta
ti
o
n
 &

sp

ec
if
ic

at
io

n

Not mandated dynamic ?

Key:

 Interface is exposed, subject to resource constraints

 Interface is not exposed

? Interface may be exposed (implementation dependent), subject to resource constraints

20 OpenSL ES 1.0.1 Specification

3.1.7 The SLDynamicInterfaceManagementItf Interface

The SLDynamicInterfaceManagementItf interface provides methods for handling interface
exposure on an object after the creation and realization of the object. The
SLDynamicInterfaceManagementItf itself is an implicit interface on all object types.

The dynamic nature of an interface is unrelated to it being optional or mandated for an
object. An interface that is “mandated” as dynamic can actually be realized both at object
creation time as well as dynamically, at any point in the object‘s lifetime (using the
SLDynamicInterfaceManagementItf). Interfaces that represent a significant resource
drain if realized on object creation but that are never used, are prime candidates for
dynamic interfaces. By making them dynamic, the application developer can use them only
when needed, often resulting in significant resource optimization. Dynamic interfaces are
explicitly called out in the “Mandated Interfaces” sections of the corresponding objects in
Section 7.

Although this interface provides a method for requesting the acquisition of an additional
interface, namely AddInterface(), the implementation may deny the request. The criteria
for denial are implementation-dependent. For example, the state of an object’s player or
recorder may influence the success or failure of dynamic interface addition. Upon a
successful AddInterface() call for a specified interface, that interface is immediately
usable. There is no separate call to “realize” the given interface. The interface instance is
obtained, just as for static interfaces, by using the GetInterface() method.

An application may retire a dynamic interface with a RemoveInterface() call. After a
RemoveInterface() call, the dynamic interface is no longer usable. When an object is
unrealized, all interfaces, including the dynamic interfaces, are unusable and effectively
removed from the object.

3.1.8 Resource Allocation

The exact amount of resources available on an OpenSL ES implementation may vary
across different implementations and over the lifetime of an engine object. As a result, an
application using the OpenSL ES API must always be prepared to handle cases of failure in
object realization or dynamic interface addition. In addition, an object’s resources may be
stolen by another entity (such as another object, or the underlying system) without prior
notice.

To allow applications to influence the resource allocation by the system, a priority
mechanism is introduced. Priority values are set on a per-object basis. Applications can
use these object priorities to influence the behavior of the system when resource conflicts
arise. For example, when a high-priority object needs a certain resource and the resource
is currently assigned to a lower-priority object, the resource will most likely be “stolen”
from the low-priority object (by the system) and re-assigned to the high-priority object. An
application can change the priority of an object at any point during the lifetime of the
object. It is also worth noting that these object priorities set by the application are
confined to this instance of the API engine. They are unrelated to the priorities that may be

OpenSL ES 1.0.1 Specification 21

assigned by the system to the application itself and other components running on the
system, for the purposes of resource management.

When a resource is stolen from an object, this object will automatically transition to either
the Suspended state or the Unrealized state, depending on whether its interface states are
preserved or reset, respectively. To which of the states the object transitions is determined
solely by the implementation. When in either of these two states, all of this object’s
interfaces, except for the SLObjectItf interface and the
SLDynamicInterfaceManagementItf interface, become unusable, and return an
appropriate error code. Dynamic interfaces are treated the same as any other interfaces. If
the object the dynamic interface is exposed on is suspended or unrealized, the dynamic
interfaces will be suspended or unrealized, respectively.

The application may request to be notified of such a transition. This is done by registering
for a notification on the object. The application may also request to be notified when
resources become available again, which may allow for the object to regain usability. The
notification will include any dynamic interfaces as well, that is, the notification is sent when
all the interfaces and the object can have their resources. Individual notification is NOT
sent for each dynamic interface.

The application may attempt to recover an Unrealized or Suspended object by calling its
Realize() or Resume() methods, respectively. If the call succeeds, the object will return
to the Realized state, and its interface states will be either recovered or reset to default,
depending on whether it was unrealized or suspended. The RemoveInterface() method is
special and can be used in any object state to retire dynamically exposed interfaces. This
may help in successfully realizing or resuming the object.

When a stolen resource is freed, the implementation checks whether this resource can be
used in order to recover an interface in a resources stolen state. The check is made in
object priority order, from high to low. It is not guaranteed, however, that attempting to
recover an object after getting this notification will succeed.

An important difference regarding interfaces that are exposed dynamically is how
resources are managed. When a dynamic interface loses its resources, a notification is sent
but the object state is not affected. Also, other interfaces on the same object are not
affected. The application may register for notification of dynamic interface resource
changes.

After a lost resources notification, the dynamically exposed interface will become unusable.
Two different types of lost resources notification can be received– resource lost, and
resource lost permanently. The first type of notification indicates that the dynamic
interface may be resumed by the application after a resource available notification has
been received. When the ResumeInterface() call succeeds, the dynamic interface will be
fully recovered. The second type of notification means that the current instance of the
exposed dynamic interface can not recover from the resource loss and shall be retired by
the application.

22 OpenSL ES 1.0.1 Specification

3.2 Threading Model

3.2.1 Mode of Operation

The OpenSL ES API is generally synchronous. This means that an API method will return
only after its operation is complete, and any state changes caused by the method call will
be immediately reflected by subsequent calls.

However, in some specific cases, a synchronous operation is not desirable, due to
operations that may take a long time. In such cases, the actual termination of the
operation will be signaled by a notification. Any state changes caused by the call are
undefined between the time of the call and until the time of notification.

Asynchronous functions will be clearly designated as such in their documentation.
Otherwise, a synchronous mode of operation should be assumed.

3.2.2 Thread Safety

The OpenSL ES API may operate in one of two modes, which determine the behavior of the
entire API regarding reentrancy:

 Thread-safe mode: The application may call the API functions from several contexts
concurrently. The entire API will be thread-safe – that is, any combination of the API
functions may be invoked concurrently (including invocation of the same method more
than once concurrently) by multiple application threads, and are guaranteed to behave
as specified.

 Non-thread-safe mode: The application needs to take care of synchronization and
ensure that at any given time a maximum of one API method is being called. The entire
API is not thread-safe – that is, the application needs to ensure that at any given time
a maximum of one of the API functions is being executed, or else undefined behavior
should be expected.

An implementation shall support one or more of these modes.

The mode of operation is determined on engine creation, and cannot be changed during
the lifetime of the engine object. An implementation shall support at least one of these
modes, and should document which modes are supported.

Note that a application written to work with non-thread-safe mode will be able to work
with a thread-safe mode engine without change. As a result, a valid implementation of
thread-safe mode is automatically considered a valid implementation of the non-thread-
safe mode; however, implementations of both modes may choose to implement them
differently. Implementers should note that implementation of thread-safe mode assumes
knowledge of the threading mechanisms used by the application.

OpenSL ES 1.0.1 Specification 23

3.3 Notifications
In several cases, the application needs to be notified when some event occurred inside the
OpenSL ES implementation, such as when playback of a file has ended, or when an
asynchronous method has completed. These notifications are implemented as callback
functions – the application registers a method whose signature is specified by the API, and
this method will be called by the OpenSL ES implementation every time a certain event
occurs.

Callback functions are registered per-interface and per-event type, thus registering a
callback for a certain event on a given object (through one of its interfaces) will not cause
this callback to be called if the same event occurs on a different object, or if a different
event occurs on the same object. The event type is simply designated by the method that
was used to register the callback.

At any given time, a maximum of one callback function may be registered per-interface,
per-event type. Registering a new callback on the same interface, using the same
registration method, will un-register the old callback. Similarly, registering NULL is the way
to un-register an existing callback without registering a new one.

The context from which the callbacks are invoked is undefined, and typically
implementation- and OS-dependent. Thus the application cannot rely on any system call or
OpenSL ES API call to work from within this call. However, to avoid a dead-end, each
implementation should document the list of functions that can be safely called from the
callback context. It is highly recommended that the implementation provide at least the
means of posting messages to other application threads, where the event shall be handled.
In addition, the SLThreadSyncItf interface [see section 8.39] must be usable from within
the callback context.

The application should be aware of the fact that callbacks may be invoked concurrently
with other callbacks, concurrently with application invocation of an API method, or even
from within API calls, and thus should be prepared to handle the required synchronization,
typically using the SLThreadSyncItf interface [see section 8.39].

For more specific details, refer to the engine object documentation [see section 7.4].

3.4 Error Reporting
Almost every API method indicates its success or failure by a result code (except for
methods that are not allowed to fail under any circumstances). An API method’s
documentation states the valid result codes for that method and an implementation shall
return one of these result codes. For synchronous methods, the result code is the return
value of the method. For asynchronous functions, the result code is contained in the data
of the notification sent upon the completion of the operation.

24 OpenSL ES 1.0.1 Specification

Every API method has a set of pre-conditions associated with it, consisting of:

 Ranges for parameters
 API state in which the method should be called
 Context from which the method can be called

The pre-conditions are clearly documented for every method. When the application violates
any of the pre-conditions, the method call will fail, and the method’s result code will
indicate the violation. The API will remain stable and its state will not be affected by the
call. However, it is recommended that applications do not rely on this behavior and avoid
violating the pre-conditions. The main value of this behavior is to aid in the debug process
of applications, and to guarantee stability in extreme conditions, and specifically under
race-conditions.

However, the API’s behavior may be undefined (and even unstable) in any of the following
conditions:

 Corruption of the self parameter, which is passed as every method’s first parameter,
or any other parameter passed by pointer.

 Violation of the threading policy.

3.5 Extensibility

3.5.1 Principles

The OpenSL ES API was designed with extensibility in mind. An extended API is defined as
one that provides functionality additional to that defined by the specification, yet
considered still conforming to the specification.

The main principles of the extensibility mechanism are:

 Any application written to work with the standard API will still work, unchanged, on the
extended API.

 For an application that makes use of extensions, it will be possible and simple to
identify cases where these extensions are not supported, and thus to degrade its
functionality gracefully.

Possible extensions may include vendor-specific extensions as well as future versions of
OpenSL ES.

OpenSL ES 1.0.1 Specification 25

3.5.2 Permitted Modifications to Physical Code

The OpenSL ES header files shall be edited only for the following purpose:

 To amend definitions of types (for example, 32 bit signed integers) such that they have
correct representation.

Any vendor-specific extensions to the API shall reside in header files other than the
OpenSL ES header files.

3.5.3 Extending Supported Interface Types

An extended API may introduce new interface types and expose these interfaces on either
existing object types or on extended object types [see section 3.5.4].

An extended API may also expose standard interfaces on standard / extended object types
that do not normally require exposing these interfaces.

The extended interfaces will be defined in a manner similar to standard interfaces. The
extended interface types will have unique IDs, generated by the extension provider.

Note that the extended API may not alter standard interfaces or apply different semantics
on standard interfaces, even if the syntax is preserved. An exception to this rule is
extending the valid parameter range of functions, detailed later.

Functions may not be added to any of the interfaces defined in the specification. To do that,
a new interface which includes the desired standard interface must be defined, along with
a new interface ID which must be generated.

It is also highly recommended that whenever an interface’s signature changes (even
slightly), a new interface ID will be generated, and the modified interface will be
considered a new one. This is to protect application applications already written to work
with the original interface.

3.5.4 Extending Supported Object Types

An extended API may introduce new object types to those specified in the standard API.
The extended objects may expose either standard or extended interface types. Should it
expose standard interfaces – they must still behave as specified. Otherwise, the extended
API may provide extended interface types with different semantics.

The extended objects will be created by utilizing the CreateExtensionObject() function
in the SLEngineItf on the engine object or extended interfaces with creation functions.
These extended interfaces typically will be exposed by the standard engine object, but can
also be exposed on other objects.

26 OpenSL ES 1.0.1 Specification

3.5.5 Extending Method Parameter Ranges

An extended API may support a greater range of parameters for a standard method than
the range mandated by the specification. The semantics of the extended range are left to
the extended API’s specification. However, for mandated ranges, the API shall behave
exactly according to the specification.

Care must be taken when the extended API is vendor-specific in these cases – future
versions of the API may use these extended values for different purposes. To help guard
against collisions with future API versions, implementations of an extended API shall have
the most significant bit set on any extensions to an enumeration (a fixed set of discrete
unsigned values). For example:

#define SL_SEEKMODE_FAST ((SLuint16) 0x0001)
#define SL_SEEKMODE_ACCURATE ((SLuint16) 0x0002)
/* ACME extension to SEEKMODE enumeration */
#define SL_SEEKMODE_ACME_FOO ((SLuint16) 0x8001)

The most significant bit does not need to be set for any extensions to continuous ranges or
for signed values.

3.5.6 Result Codes

It is not possible to extend the result codes for any standardized method in the API. An
implementation shall return one of the result codes listed in the method’s documentation.

3.5.7 Interface ID Allocation Scheme

A common interface ID allocation scheme shall be used for vendor-specific interface IDs, to
prevent collisions by different vendors.

The UUID mechanism provided freely in the Web-site below is highly recommended to be
used by all providers of extensions.

http://www.itu.int/ITU-T/asn1/uuid.html

The interface IDs do not have to be registered – it is assumed that the above mechanism
will never generate the same ID twice.

3.5.8 Avoiding Naming Collisions
It is recommended that vendors providing extended APIs qualify all the global identifiers
and macros they provide with some unique prefix, such as the vendor name. This prefix
will come after the API prefix, such as SLAcmeDistortionItf.

This is meant to reduce the risk of collisions between vendor-specific identifiers and other
versions of the specification of other vendors.

http://www.itu.int/ITU-T/asn1/uuid.html

OpenSL ES 1.0.1 Specification 27

The example on the next page demonstrates using extensible features of the specification.
The code will compile both on implementations which support the extended API as well as
those which do not.

void ShowExtensibility(SLEngineItf *eng)
{
 SLresult res;
 SLboolean supported;
 SLAudioPlayer player;
 SLAcmeDistortionItf distortionItf;
 SLPlayItf playbackItf;
 SLmillibel vol;

 /* create an audio player */
 res = eng->SLCreateAudioPlayer(eng, ..., (void *)&player);
 CheckErr(res);
 res = (*player)->GetInterface(player, &SL_IID_ACME_DISTORTION,
 (void *)&distortionItf);
 if (SL_RESULT_FEATURE_UNSUPPORTED == res)
 {
 supported = false;
 } else
 {
 CheckErr(res);
 supported = true;
 }

 /* continue using the player normally whether the extension
 is supported or not. */
 res = (*player)->GetInterface(player, &SL_IID_PLAYBACK,
 (void *)&playbackItf);
 CheckErr(res);

 ...
 ...
 ...

 /* whenever calling an extension‘s method,
 wrap it with a condition. */
 if (supported)
 {
 /* employ one of the interface’s methods */
 res = (*distortionItf)->SetDistortionGain(distortionItf, vol);
 CheckErr(res);
 }
}

28 OpenSL ES 1.0.1 Specification

4 Functional Overview

4.1 Object Overview
OpenSL ES represents entities in its architecture as objects, including:

 Engine Object
 Media Objects
 Metadata Extractor Objects
 Audio Output Mix Objects
 LED Array Objects
 Vibration Control Objects

The following sections provide an overview of each of these.

4.1.1 Engine Object

The engine object is the entry point to the OpenSL ES API. This object enables you to
create all the other objects used in OpenSL ES.

The engine object is special in the sense that it is created using a global function,
slCreateEngine() [see section 6.1]. The result of the creation process is the SLObjectItf
interface [see section 8.29] of the engine object [see section 7.4]. The implementation is
not required to support the creation of more than one engine at a given time.

The engine object can have two different modes of operation, thread-safe mode and non-
thread safe mode. The application specifies the mode of operation upon engine object
creation. See section 3.2 for details.

The engine object shall expose the SLThreadSyncItf interface [see section 8.39] to enable
synchronization between the API’s callback contexts and the application contexts.

After creation of the engine object, most of the work will be done with the SLEngineItf
interface [see section 8.17] exposed by this object.

An additional functionality of the engine object is querying implementation-specific
capabilities. This includes the encoder and decoder capabilities of the system. The
OpenSL ES API gives implementations some freedom regarding their capabilities, and
these capabilities may even change according to runtime conditions. For this reason,
during runtime the application may query the actual capabilities. However, this
specification defines a minimum set of capabilities, expressed as a set of use-cases that
shall be supported on every implementation, according to the profiles that are
implemented. These use-cases are described in detail in section 4.7.

OpenSL ES 1.0.1 Specification 29

4.1.1.1 Devices

The engine object represents the system’s various multimedia-related devices via unique
device IDs. It supports the enumeration of audio input, audio output, LED and vibrator
devices as well as mechanisms to query their capabilities. Applications can use information
regarding the devices’ capabilities to:

 Determine if they can even run on the system (for example, an application that can
render only 8 kHz 8-bit audio might not be able to run on a system that can handle
only sampling rates of 16 kHz and above at its outputs.)

 Configure the user interface accordingly so that the user is presented with the correct
device choices in the UI menus.

The audio I/O device capabilities interface is described in section 8.10. The LED and Vibra
IO device capabilities are described in section 8.18.

4.1.2 Media Objects

A media object implements a multimedia use case by performing some media processing
task given a prescribed set of inputs and outputs. Media objects include (but are not
limited to) objects that present and capture media streams, often referred to as players
and recorders, respectively. They operate on audio data.

The following characteristics define a media object:

 The operation it performs, denoted by the creation method used to instantiate the
media object.

 The inputs it draws data from, denoted as its data sources and specified at media
object creation.

 The outputs it sends data to, denoted as its data sinks and specified at media object
creation.

The media object creation methods are described in section 8.17. The audio player object
is documented in section 7.2, the MIDI player object is document in section 7.8 and the
audio recorder object is documented in section 7.3.

4.1.2.1 Data Source and Sink Structures

A data source is an input parameter to a media object specifying from where the media
object will receive a particular type of data (such as sampled audio or MIDI data). A data
sink is an input parameter to a media object specifying to where the media object will send
a particular type of data.

30 OpenSL ES 1.0.1 Specification

The number and types of data sources and sinks differ from one media object to another.
The following characteristics define a data source or sink:

 Its data locator which identifies where the data resides. Possible locators include:

 URIs (such as a filename)
 Memory addresses
 I/O devices
 Output Mixes
 Buffer queues

 Its data format which identifies the characteristics of the data stream. Possible formats
include:

 MIME-type based formats
 PCM formats

An application specifies a media object’s respective data source(s) and sink(s) upfront in
the creation method for the media object. Collectively, the media object together with its
associated source(s) and sinks(s) define the use case the application wants executed.

Data sources are documented in section 9.1.15 and data sinks are documented in section
9.1.14.

4.1.3 Metadata Extractor Object

Player objects support reading of the metadata of the media content. However, sometimes
it is useful just to be able to read metadata without having to be able to playback the
media. A Metadata Extractor object can be used for reading metadata without allocating
resources for media playback. Using this object is recommended particularly when the
application is interested only in presenting metadata without playing the content and when
wanting to present metadata of multiple files. The latter is particularly interesting for
generating playlists for presentation purposes because a player object would unnecessarily
allocate playback resources. Furthermore, players cannot change their data source
dynamically; therefore, for metadata extraction from multiple files, the application needs
to create and destroy player objects many times, which is both inefficient, and may result
in fragmentation of the heap. A Metadata Extractor object does not have a data sink, but it
has one data source that can be dynamically changed.

The metadata extractor object is documented in section 7.7 and the metadata extraction
interfaces are described in sections 8.22 and 8.23.

4.1.4 Audio Output Mix Object

The API allows for routing of audio to multiple audio outputs and includes an audio output
mix object that facilitates this functionality. The application retrieves an output mix object
from the engine and may specify that output mix as the sink for a media object. The audio

OpenSL ES 1.0.1 Specification 31

output mix object is specified as a sink for a media object using the
SL_DATALOCATOR_OUTPUTMIX data locator as described in section 9.2.9. The engine
populates the output mix with a set of default audio output devices. The application may
query for this list of devices or request changes to it via the SLOutputMixItf interface. .
The API does not provide a direct audio output IO-device as a sink for media objects.

The audio output mix object is defined in section 7.9 and the output mix interface is
described in section 8.30.

4.1.5 LED Array Control Object

Control of the device’s LEDs is handled via the LED array object. Querying the capabilities
of and creating a LED array object is an engine-level operation, while control over
individual LEDs is handled by the object.

The LED array object is documented in section 7.5 and the LED array interface is
documented in section 8.21.

4.1.6 Vibration Control Object

Control of the device’s vibration support is handled via the Vibra object. Querying the
capabilities of and creating a Vibra object is an engine-level operation, while control of the
actual vibration is handled by the object.

The vibra object is documented in section 7.10 and the vibra interface is documented in
section 8.40.

32 OpenSL ES 1.0.1 Specification

4.2 Sampled Audio
This section introduces OpenSL ES functionality for the playback and recording of sampled
audio content.

An audio player [see section 7.2] is used for sampled audio playback. OpenSL ES supports
both file-based and in-memory data sources, as well as buffer queues, for efficient
streaming of audio data from memory to the audio system. The API supports data encoded
in many formats, although the formats supported by a device are implementation-
dependent. An audio player can also be used in order to play back pre-created Java Tone
Sequences.

An audio recorder [see section 7.3] is used for capturing audio data. Audio capture is an
optional component of OpenSL ES, so some devices may fail creation of audio recording
objects. Note that buffer queues are not supported on the audio recorder.

4.2.1 Recommended Codec

An OpenSL ES implementation of the game profile should be capable of playing content
encoded with an MP3 codec (including MPEG-1 layer-3 [MPEG1], MPEG-2 layer-3 [MPEG2],
and MPEG-2.5 layer-3 variants). (For a definition of the word “should”, see section 1.5).
Please note that MPEG-2.5 layer-3 is not useful for 3D audio rendering since it only
supports sampling rates of 12 kHz and below.

4.3 Playback of MIDI
OpenSL ES supports MIDI playback using the standard player creation mechanism, the
creation method SLEngineItf::CreateMIDIPlayer() [see section 8.17]. This method
provides the ability to specify a MIDI data source and an audio output device, as well as an
optional data source for an instrument bank data source and data sinks for an LED array
output device and a Vibra output device. OpenSL ES supports MIDI data sources that refer
to files (SP-MIDI [SP-MIDI] and Mobile XMF [mXMF]) and MIDI buffer queues. Playback
properties are controlled via the standard OpenSL ES player interfaces, such as
SLVolumeItf [see section 8.43], SLPlayItf [see section 8.32], SLPlaybackRateItf [see
section 8.33], and SLSeekItf [see section 8.38]. MIDI players also support metadata
extraction via the SLMetadataExtractionItf [see section 8.22]. The MIDI player object is
documented in section 7.8.

4.3.1 Support of Mobile DLS

OpenSL ES supports Mobile DLS [mDLS] soundbanks as stand-alone files provided to a
MIDI player on creation or embedded within a Mobile XMF file. In addition, the MIDI player
supports the GM soundbanks [MIDI] by default.

In several cases, a MIDI player will not be able to handle two DLS banks at the same time
(for example, bank provided during MIDI player creation and bank embedded in the

OpenSL ES 1.0.1 Specification 33

content). In such a case, player creation may fail, and the application can retry the
creation without providing the additional bank.

When a program is selected for a MIDI channel (using bank select / program change
messages), the MIDI player will first look for the program in the embedded DLS bank, if
such exists. If it is not found, the MIDI player will look in the DLS bank that was provided
on creation, if applicable. If it is still not found, the MIDI player will try to load the program
from the built-in GM bank. If the program does not exist there either, the MIDI player shall
generate silence on the specified channel, but should still keep track of that channel’s state.

4.3.2 Programmatic Control of the MIDI Player

In addition to file playback, the application can generate MIDI data programmatically and
pass it to a MIDI player in one of two methods:

Real-time messages are passed through the SLMIDIMessageItf [see section 8.24]
interface. Such messages lack any timing information, and are executed by the MIDI
player as soon as they are sent. The play state does not affect passing real-time MIDI
messages; therefore, it is not necessary to even instantiate SLPlayItf if only real-time
messages are used to control the MIDI player (with or without a soundbank source).

Time-stamped messages are passed through buffer-queues. The application must create
the MIDI player with a buffer queue source, and then enqueue buffers containing time-
stamped MIDI messages. The format of the buffers is identical to the format of the content
of a MTrk chunk (not including any headers, just the raw time-message-time-message-...
data), as defined in the MIDI specification. When working in this manner, the application
must manually set the initial tempo and tick resolution if it does not want the defaults,
through the SLMIDITempoItf interface [see section 8.26].

4.4 3D Audio
Using two ears, a human can determine the direction of a sound source in
three-dimensional (3D) space. The acoustic waves that arrive at each ear cause movement
of the eardrums, which in turn can be represented as a stereo audio signal that
incorporates the 3D information.

OpenSL ES provides the ability to position and move sound sources in 3D space.
Implementations use this information so that when the sound sources are rendered, they
appear to the listener of the sounds to originate from their specified locations. The exact
algorithm used to synthesize the 3D position is implementation-dependent. However, a
number of techniques exist, with HRTF-based (Head-Related Transfer Function) synthesis
being a common technique.

Different sound sources have different 3D acoustic characteristics. To help model these,
OpenSL ES exposes a rich set of tunable 3D parameters. For example, applications can:

 modify a sound source’s distance model and its sound cones using the SL3DSourceItf
interface [see section 8.6];

34 OpenSL ES 1.0.1 Specification

 adjust the amount of Doppler heard when a sound source passes a listener using the
SL3DDopperItf interface [see section 8.2];

 set the size of a sound source using the macroscopicity interface SL3DMacroscopicItf
[see section 8.5].

OpenSL ES is an ideal companion to 3D graphic APIs such as OpenGL ES. The 3D graphics
engine will render the 3D graphics scene to a two-dimension display device, and the
OpenSL ES implementation will render the 3D audio scene to the audio output device.

4.4.1 3D Sources

4.4.1.1 3D Groups

OpenSL ES supports two methods for controlling the 3D properties of a player. The first
method involves directly exposing 3D interfaces on the player object, the 3D properties of
which are then controlled using these interfaces.

Sometimes developers will want to position several sound sources with the same 3D
properties at the same location. For example, a helicopter may have three sound sources:
the engine, main rotor blade, and tail rotor blade. These sound sources are positioned
sufficiently close to each other that at a certain distance from the listener all the sound
sources can be approximated to one location. The application could use three separate
players but this is likely to result in the use of three separate, potentially
CPU-intensive, Head-Related Transfer Functions (HRTFs). To solve this, OpenSL ES allows
an application to group two or more players that require exactly the same 3D properties
using a 3D group. This is the second method for controlling a player’s 3D properties.

It is not possible to use both of these methods at the same time: the 3D interfaces are
exposed either on the player or on its 3D group.

4.4.1.2 When is a Player Rendered in 3D?

By default, players are not rendered in 3D; the application can still position the player on a
one-dimensional line by setting its stereo position [see section 8.43], but no 3D effect
should be applied to the player.

For a player to be rendered in 3D, it is necessary to expose a specific 3D interface during
the player’s creation. The specific interface that needs to be exposed is dependent on
whether the player is to be in a 3D group.

In a standard case, when a player is not to be a member of a 3D group, the
SL3DLocationItf interface [see section 8.4] is exposed on the player to signify that the
player is to be rendered in 3D. As the presence of the SL3DLocationItf interface
determines whether the player is 3D, this interface must be exposed on the player if any of
the other 3D interfaces (SL3DSourceItf [see section 8.6], SL3DDopplerItf [see section
8.2], SL3DMacroscopicItf [see section 8.5]) are to be exposed on the player.

OpenSL ES 1.0.1 Specification 35

In the case when a player is to be a member of a 3D group, the SL3DGroupingItf
interface should be exposed on the player. The player is treated as 3D and all subsequent
3D interfaces must be exposed on the 3D group, not on the player.

The SL3DLocationItf and SL3DGroupingItf interfaces are mutually exclusive. They
cannot be exposed simultaneously by the same object. Any attempt to create an object
that exposes both interfaces will fail.

The decision on whether to render the player in 3D is made at creation time, so it is not
possible to add or remove either the SL3DLocationItf interface or SL3DGrouping
interfaces dynamically using the SLDynamicInterfaceManagementItf interface
[see section 8.14].

The term 3D source is used in this specification to refer to both 3D positioned players and
3D groups.

4.4.2 3D Parameters

4.4.2.1 Coordinate System

All 3D vectors are expressed in right-handed Cartesian coordinates of the form (x, y, z),
where x represents the x-axis position, y the y-axis position and z the z-axis position.

x

y

z

Figure 3: Coordinate system

4.4.2.2 Precision

Implementations of OpenSL ES are not required to support the full precision implied by the
range of the parameter of the 3D functions. That is, a developer should not assume that
minor changes in a parameter value will necessarily affect the output audio. By way of
illustration: if the SL3DLocationItf interface method SetLocation() [see section 8.4] is
used in order to change the 3D location of a 3D source by just 1 mm, it may actually
generate bit-exact audio to that which would be generated if the 3D source had not been
moved, as internally the implementation might support, say, 28 bits of precision rather
than the full 32 bits implied by the type of the vector.

Even when an implementation does not internally support full precision, the
implementation shall still return the last set value in a get query for the same parameter,
not a rounded value.

36 OpenSL ES 1.0.1 Specification

4.4.2.3 Interactivity

OpenSL ES is designed for interactive applications. For this reason, there should be no
discernable audio glitches when changing any of the 3D parameters.

4.4.3 Levels of 3D Sources

The perceived loudness of a 3D source within the minimum distance (specified using
SL3DSourceItf::SetRolloffDistances() [see section 8.6]) is equal to the perceived
loudness of a non-3D stereo source with gain of -3 dB. This applies when the same typical
program material is used as input for both sources such that the 3D source has mono
material as input and the stereo source has the same material duplicated in both its
channels, and no additional effects (such as orientation or reverb) are used for either
source.

4.4.4 3D Positioning Multi-Channel Players

In most cases, there is no benefit gained in 3D positioning multi-channel data (such as
stereo) over mono data. However, some implementations may take advantage of the
multi-channel data when rendering a player’s macroscopic behavior [see section 8.5].
Implementations shall support exposing the 3D interfaces on a player whose data source is
multiple-channel. The exact behavior is undefined, but all channels in the input data should
be represented in the 3D positioned sound source.

4.4.4.1 3D and MIDI Players

A MIDI player can be 3D positioned in the same way as a sampled audio player. In such
cases it is the output from the synthesizer that is 3D positioned.

4.4.5 Object Relationships

The relationship between the two 3D audio objects (listener [see section 7.6] and 3D
groups [see section 7.1]) and the engine and players is summarized in the UML diagram in
Figure 4.

OpenSL ES 1.0.1 Specification 37

*

1

* 1
1 Engine Listener

*

3D group

0..1

* Player

ct relationships

An engine creates multiple players, 3D groups and listeners. A player may be a member of

ts

e [see section 8.43] and 3D audio is controlled using its own set of

posing an effect interface on
different object types will result in the effect being applied to different points in the audio

 global
ce for the

 standardized auxiliary effect is reverb, are also exposed
ia int rfaces on an Output Mix object. For a player to contribute to the auxiliary effect, it

e

y per-player effects. However, where supported they
ctly on the player.

OpenSL ES supports bass boost via SLBassBoostItf [see section 8.11].

Figure 4: Obje

one 3D group at a time and many players may be members of the same 3D group.

4.5 Effec
OpenSL ES supports various audio effects, from pan control to advanced 3D audio and
environmental reverberation. Rudimentary effects such as panning are handled using the
SLVolumeItf interfac
interfaces [see section 4.4]. This section documents the remaining effects: bass boost,
equalization, reverberation and virtualization.

4.5.1 Effects Architecture

Effects are handled in the same way as the other controls in the API and as such an effect
is controlled using an interface exposed on an object. Ex

processing chain.

Global effects are exposed via interfaces on an Output Mix object and behave as
insert effects on the output mix. It is not necessary to use the effect send interfa
effect to be audible.

Auxiliary effects, of which the only
v e
is necessary to expose the effect send interface [see section 8.14] on the players for th
effect to be applied.

OpenSL ES 1.0 does not mandate an
should be exposed as interfaces dire

4.5.2 Bass Boost

Bass boost is an audio effect to boost or amplify low frequencies of the sound.

38 OpenSL ES 1.0.1 Specification

SLEqualizerItf

4.5.4 Virtualization

 functionality. Audio virtualization is a general name

 when this effect is

irtualizerItf

 travels in many directions. The listener first hears the
direct sound from the source itself. Later, he or she hears discrete echoes caused by sound

nd
cays over time.

ns
merse the

rting a more

music applications where the environment
penSL ES supports a preset reverb via the

SLPresetReverbItf 5].

d environmental interface is suited to game applications, where the
environment may change as a listener moves around. OpenSL ES supports an
environmental reverb via the SLEnvironmentalReverbItf interface [see section 8.19].

Reverb is an auxiliary effect, so only selected players have reverb applied. For a player to
include reverb, it is necessary to expose the SLEffectSendItf interface
[see section 8.14] and expose one of the reverb interfaces on the Output Mix.

4.5.3 Equalization

Equalizer is an audio filter to change the frequency envelope of the sound. OpenSL ES
supports equalizer via [see section 8.20].

OpenSL ES supports audio virtualizer
for an effect to virtualize audio channels. Typically this effect is used in order to
compensate the mismatch between the loudspeaker setup used when producing the audio
and the audio output device used when the audio is played back by the end-user. The
exact behavior of this effect is dependent on the number of audio input channels and the
type and number of audio output channels of the device. For example, in the case of a
stereo input and stereo headphone output, a stereo widening is used
turned on. An input with 5.1-channels similarly uses some virtual surround algorithm.

OpenSL ES supports virtualization via SLV [see section 8.41].

4.5.5 Reverberation

A sound generated within a room

bouncing off nearby walls, the ceiling and the floor. As sound waves arrive after
undergoing more and more reflections, individual reflections become indistinguishable a
the listener hears continuous reverberation that de

Reverb is vital for modeling a listener’s environment. It can be used in music applicatio
to simulate music being played back in various environments, or in games to im
listener within the game’s environment.

OpenSL ES supports one global reverb environment that can be controlled by two different
interfaces, one supporting a fixed set of simple presets and another suppo
advanced interactive interface.

The preset-based interface is most suited to
may be selected within the user interface. O

 interface [see section 8.3

The more advance

OpenSL ES 1.0.1 Specification 39

This section illustrates the use of OpenSL ES objects and interfaces in some typical audio
usage scenarios.

4.6.1 Sampled Audio Playback

4.6 Example Use Cases

Audio Player Output Mix

Engine

ObjectItf
EngineItf

creates creates

Default
Output
Device

URI OutputDeviceDataSource DataSink

PlayItf
ObjectItf

ObjectItf
OutputMixItfVolumeItf

SeekItf
EqualizerItfMetadataExtractionItf

VirtualizerItf

Figure 5: Sampled audio playback use case

An Audio Player object [see section 7.2] is used for sampled audio playback. An Audio
Player is created using the in

SLEngineItf terface of the engine object. Upon creation, we

associate the Audio Player with an Output Mix [see section 7.9] (which we create using the
SLEngineItf interface [see section 8.17]) for audio output. We also set the data source of
the Audio Player during creation. The data source could be, for example, a URI pointing to
an audio file in the local file system. The Output Mix is by default associated with the
system-dependent default output device.

40 OpenSL ES 1.0.1 Specification

4.6.2 MIDI Playback

MIDI Player Output Mix

Engine

ObjectItf
EngineItf

PlayItf

creates creates

ObjectItf

ObjectItf
OutputMixItf

VolumeItf

OutputDeviceDataSource
Default
Output
Device

DataSinkURI

SeekItf

EqualizerItf

MetadataExtractionItf

VirtualizerItfMIDITempoItf
MIDITimeItf

Figure 6: MIDI playback use case

MIDI playback is accomplished in a similar mannar to sampled audio playback, as
described in the previous section. The only difference is that an MIDI Player object [see
section 7.8] is used for playback instead of an Audio Player object.

OpenSL ES 1.0.1 Specification 41

4.6.3 3D Audio

Audio Player

Output Mix

Engine

ObjectItf
EngineItf

PlayItf

creates

ObjectItf

ObjectItf

OutputMixItf

VolumeItf

OutputDevice

DataSource

Default
Output
Device

DataSink

URI

EffectSendItf

Listener

creates

3DLocationItf

ObjectItf

3DDopplerItf

3DDopplerItf
3DLocationItf

SeekItf

3DSourceItf

EnvironmentalReverbItf

Audio Player

PlayItf
ObjectItf

VolumeItf

DataSourceURI

EffectSendItf

3DDopplerItf
3DLocationItf

SeekItf

3DSourceItf

DataSink

creates
creates

Figure 7: 3D audio use case

This use case illustrates positional 3D audio rendering and use of two sampled audio
players simultaneously. Both Audio Player objects [see section 7.2] are created using the
SLEngineItf interface [see section 8.17] of the engine object. Upon creation, we associate
both Audio Players with the same Output Mix [see section 7.9] (which we also create with
the SLEngineItf interface) for audio output.

Requesting SL3DLocationItf interfaces [see section 8.4] from the Audio Players upon
their creation causes them to be rendered as 3D sources. The virtual listener is controlled
with a Listener object [see section 7.6] which we also create using the SLEngineItf
interface of the engine object.

The reverberation of the virtual acoustical space is controlled by
SLEnvironmentalReverbItf interface [see section 8.19] of the Output Mix.
SLEffectSendItf interfaces [see section 8.16] are exposed on the Audio Players to feed
their audio signal to the reverberator of the Output Mix.

42 OpenSL ES 1.0.1 Specification

4.6.4 Recording Audio

Audio Recorder

Engine

ObjectItf
EngineItf

creates

ObjectItf
RecordItf

URI
DataSinkMicro-

phone DataSource

AudioIODeviceCapabilitiesItf
AudioEncoderCapabilitiesItf

AudioEncoderItf

Figure 8: Recording audio use case

An Audio Recording use case is handled by an Audio Recorder object [see section 7.3]. We
create the Audio Recorder object using SLEngineItf interface of the engine object. Upon
creation, we associate it with an audio data source, which can be, for example, a
microphone (an audio input device). The data sink of the Audio Recorder can be a URI
pointing to an audio file in the local file system to which the audio will be recorded.

OpenSL ES 1.0.1 Specification 43

4.6.5 Reading Metadata

Metadata Extractor

Engine

ObjectItf
EngineItf

creates

ObjectItf
DynamicSourceItf

DataSourceURI

MetadataTraversalItf
MetadataExtractionItf

Figure 9: Reading metadata use case

A Metadata Extractor object [see section 7.7] will read the metadata of an audio file
without allocating resources for audio playback. As in other use-cases, we create the
object using the SLEngineItf interface of the engine object and upon creation, we set the
data source of the Metadata Extractor. The data source is typically a URI pointing to an
audio file in the local file system. However, the Metadata Extractor supports the
SLDynamicSourceItf interface [see section 8.15] which we can use to change the data
source. Therefore we may extract metadata from multiple files (in series) without creating
a new Metadata Extractor object for every single file. The SLMetadataExtractionItf and
SLMetadataTraversalItf interfaces [see sections 8.22 and 8.23] are used for actually
reading and traversing the metadata from a file.

4.7 Minimum Requirements
Minimum requirements determine what functionality can be relied on between
implementations, which helps write more portable applications. Section 7 introduces the
concept of a mandated interface and for each profile defines the interfaces that shall be
supported for each object type. This gives the application developer a guarantee of what
interfaces are supported on each object but in practice resource limitations will limit the
number of concurrent objects that can be supported at a given time. In order to
strengthen the guarantee of what is supported in all implementations for each profile we
define a set of use-cases that must be supported.

The use-cases are defined using diagrams each of which specifies many possible use-
cases. Implementations must support all the different choices that are presented in the
diagram. These are highlighted using “OR” and “/”. For example, the use-case below
shows that a conformant implementation must support a use case with an audio player
with a “Buffer Source (Type 1)” data source and a separate use-case with an audio player

44 OpenSL ES 1.0.1 Specification

with a “Buffer Queue Source (Type 1)” data source. The diagram also shows that the
implementation must support use-cases where SL3DDopplerItf is exposed and use-cases
where SLRatePitchItf is exposed.

Figure 10: Example use case diagram

In addition to supporting the exact use-cases shown in each diagram, an implementation
must support all the use-cases that can be formed by removing any non-implicit interfaces
and objects, as long as no other changes are made. For example, from the use-case
diagram in Figure 10 it can be determined that the implementation must support a use-
case with an audio player with only the SLPlayItf interface exposed.

Unless specified otherwise, an implementation must support the whole range of
parameters for an interface exposed on an object. Where only a subset of parameters
needs to be supported, this is documented in the use-case or explicitly in the specification.
For example, the implementation need only support rates from 500 to 2000 ‰ in the use-
case specified in Figure 10.

OpenSL ES 1.0.1 Specification 45

4.7.1 Phone Profile

4.7.1.1 Use Case 1

Figure 11: Phone profile – use case 1

46 OpenSL ES 1.0.1 Specification

4.7.1.2 Use Case 2

Figure 12: Phone profile – use case 2

OpenSL ES 1.0.1 Specification 47

4.7.1.3 Use Case 3

Output Mix Default Output

File Source (Type 1 or 2)

SLPlayItf
SLVolumeItf

SLSeekItf
`

SLPrefetchStatusItf
Fill level
accuracy 10%

SLPlayItf
SLVolumeItf

Audio Player
For playback of a music file

x 1

Audio Player
For playback of sound effects

x2

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SLOutputMixItf
SLVolumeItf

Buffer Source (Type 4)

File Source (Type 6)

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

The output audio signal may be rendered at a
lower sampling rate than the stored audio
content, e.g. a raw PCM file with 48 kHz sampling
rate content may be rendered at 16 kHz.

OR

Figure 13: Phone profile – use case 3

48 OpenSL ES 1.0.1 Specification

4.7.2 Music Profile

4.7.2.1 Use Case 1

Output Mix

SLEqualizerItf
Num. bands 3

Default Output

File Source (Type 1 or 2)

Buffer Source (Type 1 or 2)

SLPlayItf
SLVolumeItf

`

SLPlayItf
SLVolumeItf

SLSeekItf
SLMetadataTraversalIt

SLMetadataExtractionItf

`SLPrefetchStatusItf
Fill level
accuracy 10%

Audio Player
For playback of a music file

x2

SLOutputMixItf
SLVolumeItf

SLObjectItf & SLDynamicInterfaceManagementItf are
required in every object but no included in the diagram.

All text in italics is informative only – applications may use the
objects for other purposes.

All Reverb presets defined by SL_REVERBPRESET macros
to be supported.

The Metadata Extractor object is not likely to be used at the
same time as the Audio Player object, but both would take
the same file sources as input. The most likely scenario
would be for the Metadata Extractor to be used while creating
the playlist (before any playback begins). But metadata
extraction can take place during audio playback as well.

Audio Player
For playback of PCM UI

sounds

x 1

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SLVirtualizer
Strength Optional

SLPresetReverbItf

SLEffectSendItf
Num. sends 1

SLEffectSendItf
Num. sends 1

Metadata Extractor

SLMetadataExtractionItf
SLMetadataTraversalItf

SLDynamicSourceItf

Figure 14: Music profile – use case 1

OpenSL ES 1.0.1 Specification 49

4.7.3 Game Profile

4.7.3.1 Use Case 1

Output Mix

SLEffectSendItf
Num. sends 1

Default Output

File Source (Type 1 or 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf

`

`

SLPlayItf
SLVolumeItf

SLSeekItf
SLMuteSoloItf

SLMetadataTraversalIt
SLMetadataExtractionItf

`SLPrefetchStatusItf
Fill level
accuracy 10%

Buffer Source (Type 2)
OR

Buffer Queue Source (Type 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf `

SLPlayItf
SLVolumeItf

SLBufferQueueItf†

SLMuteSoloItf

SLEffectSendItf
Num. sends 1

Audio Player
For playback of a music file

x 1

Audio Player
For playback of Doppler and/

or rate pitch affected 3D
sound effects

x 1

Audio Player
For playback of non-Doppler

3D sound effects

x 3

Audio Player
For playback of ambient

sound effects

x 1 Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SL3DCommitItf

SLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLEnvironmentReverbItf
SLOutputMixItf

SLVolumeItf

SLRatePitchItf
Rate 500->2000SL3DDopplerItf

Listener

SL3DLocationItf
SL3DDoppler

SLEqualizerItf
Min. num.

bands 3

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

All text in italics is informative only – applications
may use the objects for other purposes.

* Only where data source is not a buffer queue
† Only where data source is a buffer queue

OR

Figure 15: Game profile – use case 1

50 OpenSL ES 1.0.1 Specification

4.7.3.2 Use Case 2

SLVirtualizerItf
Strength Optional

Output Mix Default Output

File Source (Type 1 or 2)

0

`

SLPlayItf
SLVolumeItf

SLSeekItf
SLMuteSoloItf

SLMetadataTraversalIt
SLMetadataExtractionItf

`SLPrefetchStatusItf
Fill level
accuracy 10%

Buffer Source (Type 2)
OR

Buffer Queue Source (Type 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf `

SLPlayItf
SLVolumeItf

SLBufferQueueItf†

SLMuteSoloItf

SLEffectSendItf
Num. sends 1

Listener

SL3DLocationItf

Audio Player
For playback of a music file

x 1

Audio Player
For playback of non-Doppler

3D sound effects

x 4

Audio Player
For playback of ambient

sound effects

x 1

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SL3DCommitItf

SLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLEnvironmentReverbItf
SLOutputMixItf

SLVolumeItf

SLEqualizerItf
Min. num.

bands 3

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

All text in italics is informative only – applications
may use the objects for other purposes.

* Only where data source is not a buffer queue
† Only where data source is a buffer queue

Figure 16: Game profile – use case 2

OpenSL ES 1.0.1 Specification 51

4.7.3.3 Use Case 3

Figure 17: Game profile – use case 3

52 OpenSL ES 1.0.1 Specification

4.7.3.4 Use Case 4

SLPlayItf
SLVolumeItf

SLMetadataTraversalIt
SLMetadataExtractionItf

SLMIDITempoItf
SLMIDIMessageItf
SLMIDIMuteSoloItf

SLMIDITimeItf

`

SLPrefetchStatusItf
Fill level
accuracy 10%

MIDI Player
For playback of MIDI sound

effects

x 1
File Source (Type 4)

Bank file

SLEffectSendItf
Num. sends 1

16MIDI
Polyphony

Output Mix Default Output

File Source (Type 1 or 2)

0

`

SLPlayItf
SLVolumeItf

SLSeekItf
SLMuteSoloItf

SLMetadataTraversalIt
SLMetadataExtractionItf

`SLPrefetchStatusItf
Fill level
accuracy 10%

Buffer Source (Type 2)
OR

Buffer Queue Source (Type 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf `

SLPlayItf
SLVolumeItf

SLBufferQueueItf†

SLMuteSoloItf

SLEffectSendItf
Num. sends 1

Listener

SL3DLocationItf

Audio Player
For playback of a music file

x 1

Audio Player
For playback of non-Doppler

3D sound effects

x 3

Audio Player
For playback of ambient

sound effects

x 1

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SL3DCommitItf

SLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLEnvironmentReverbItf
SLOutputMixItf

SLVolumeItf

SLPlayItf
SLVolumeItf

SLSeekItf

`

Audio Player
For playback of Java Tone

Sequences

x 1
Buffer Source (Type 3)

Java Tone Sequence

SLEffectSendItf
Num. sends 1

SLEqualizerItf
Min. num.

bands 3

OR

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

All text in italics is informative only – applications
may use the objects for other purposes.

* Only where data source is not a buffer queue
† Only where data source is a buffer queue

Figure 18: Game profile – use case 4

OpenSL ES 1.0.1 Specification 53

4.7.3.5 Use Case 5

SLPlayItf
SLVolumeItf

SLMetadataTraversalIt
SLMetadataExtractionItf

SLMIDITempoItf
SLMIDIMessageItf
SLMIDIMuteSoloItf

SLMIDITimeItf
SL3DLocationItf
SL3DSourceItf

`

SLPrefetchStatusItf
Fill level
accuracy 10%

MIDI Player
For playback of MIDI sound

effects in 3D

x 1
File Source (Type 4)

Bank file

SLEffectSendItf
Num. sends 1

16MIDI
Polyphony

Output Mix

SLEffectSendItf
Num. sends 1

Default Output

File Source (Type 1 or 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf

`

SLPlayItf
SLVolumeItf

SLSeekItf
SLMuteSoloItf

SLMetadataTraversalIt
SLMetadataExtractionItf

`SLPrefetchStatusItf
Fill level
accuracy 10%

Buffer Source (Type 2)
OR

Buffer Queue Source (Type 2)

SLPlayItf
SLVolumeItf

SLBufferQueueItf†

SLMuteSoloItf

SLEffectSendItf
Num. sends 1

Audio Player
For playback of a music file

x 1

Audio Player
For playback of Doppler and/

or rate pitch affected 3D
sound effects

x 2

Audio Player
For playback of ambient

sound effects

x 1

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SL3DCommitItf

SLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLEnvironmentReverbItf
SLOutputMixItf

SLVolumeItf

SLRatePitchItf
Rate 500->2000SL3DDopplerItf

Listener

SL3DLocationItf
SL3DDoppler

SLEqualizerItf
Min. num.

bands 3

OR

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

All text in italics is informative only – applications
may use the objects for other purposes.

* Only where data source is not a buffer queue
† Only where data source is a buffer queue

Figure 19: Game profile – use case 5

54 OpenSL ES 1.0.1 Specification

4.7.3.6 Use Case 6

Figure 20: Game profile – use case 6

OpenSL ES 1.0.1 Specification 55

4.7.3.7 Use Case 7

SLEffectSendItf
Num. sends 1

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DGroupingItf `

Player
For playback of 3D sound

effects in a 3D group

x 2

SLBufferQueueItf†

Buffer min.
length 20ms

3D Group

SL3DLocationItf
SL3DSourceItf

File Source (Type 3)
OR

MIDI Buffer Queue (Type 1)
MIDI data

`

SLPlayItf
SLVolumeItf
SLSeekItf*

SLMetadataTraversalIt
SLMetadataExtractionItf

SLMIDITempoItf
SLMIDIMessageItf
SLMIDIMuteSoloItf

SLMIDITimeItf
SLBufferQueueItf†

`

SLPrefetchStatusItf*
Fill level
accuracy 10%

MIDI Player
For playback of a music file /

MIDI sound effects

x 1

File Source (Type 4)
Bank file

File Source (Type 5)
XMF file

File Source (Type 3)
OR

MIDI Buffer Queue (Type 1)
MIDI data

16MIDI
Polyphony

Output Mix Default Output

`

Buffer Source (Type 2)
OR

Buffer Queue Source (Type 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf `

SLPlayItf
SLVolumeItf

SLBufferQueueItf†

SLMuteSoloItf

SLEffectSendItf
Num. sends 1

Audio Player
For playback of non-Doppler

3D sound effects

x 2

Audio Player
For playback of ambient

sound effects

x 1

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SL3DCommitItf

SLBufferQueueItf†

Buffer min.
length 20ms

SLEnvironmentReverbItf
SLOutputMixItf

SLVolumeItf

`

SL3DDopplerItf

Listener

SL3DLocationItf
SL3DDoppler

SLPlayItf
SLVolumeItf

SLSeekItf

`

Audio Player
For playback of Java Tone

Sequences

x 1
Buffer Source (Type 3)

Java Tone Sequence

SLEffectSendItf
Num. sends 1

SLEqualizerItf
Min. num.

bands 3

OR

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

All text in italics is informative only – applications
may use the objects for other purposes.

* Only where data source is not a buffer queue
† Only where data source is a buffer queue

OR

OR

Figure 21: Game profile – use case 7

56 OpenSL ES 1.0.1 Specification

4.7.3.8 Use Case 8

Output Mix

SLEqualizerItf
Min. num.

bands 3

SLEffectSendItf
Num. sends 1

Default Output

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf

`

`

`

Buffer Source (Type 2)
OR

Buffer Queue Source (Type 2)

Buffer Source (Type 1)
OR

Buffer Queue Source (Type 1)

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf*

SL3DLocationItf
SL3DSourceItf `

SLPlayItf
SLVolumeItf

SLBufferQueueItf†

SLMuteSoloItf

SLEffectSendItf
Num. sends 1

Listener

SL3DLocationItf
SL3DDoppler

Audio Player
For playback of Doppler and/

or rate pitch affected 3D
sound effects

x 2

Audio Player
For playback of non-Doppler

3D sound effects

x 3

Audio Player
For playback of ambient

sound effects

x 1

Engine

SLEngineItf
SLEngineCapabilitiesItf

SLThreadSyncItf
SLAudioIODeviceCapabilitiesItf

SL3DCommitItfSLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLBufferQueueItf†

Buffer min.
length 20ms

SLEnvironmentReverbItf
SLOutputMixItf

SLVolumeItf

SLRatePitchItf
Rate 500->2000SL3DDopplerItf OR

SLObjectItf & SLDynamicInterfaceManagementItf
are required in every object but not included in
the diagram.

All text in italics is informative only – applications
may use the objects for other purposes.

* Only where data source is not a buffer queue
† Only where data source is a buffer queue

Figure 22: Game profile – use case 8

OpenSL ES 1.0.1 Specification 57

4.7.4 Data Sources

Figure 23: Data sources

58 OpenSL ES 1.0.1 Specification

PART 2: API RERERENCE

OpenSL ES 1.0.1 Specification 59

5 Base Types and Units
OpenSL ES defines a set of cross-platform fixed width types that are used within the API.
The definition of these are system-dependent and the platform provider must specify these
types. OpenSL ES also defines a set of types for different units required by the API, such
as distance and volume. To aide programmability, most of these units are based on the
thousandth unit of a SI unit [ISO1000].

5.1 Standard Units
The table below shows the standard types for units used in OpenSL ES.

Table 8: OpenSL ES Units Types

Unit Measurement C type

Volume level millibel (mB) SLmillibel

Time millisecond (ms) SLmillisecond

Frequency milliHertz (mHz) SLmilliHertz

Distance millimeter (mm) SLmillimeter

Angle millidegree (mdeg) SLmillidegree

Scale/Factor permille (‰) SLpermille

5.2 Base Types
typedef <system dependent> SLint8;
typedef <system dependent> SLuint8;
typedef <system dependent> SLint16;
typedef <system dependent> SLuint16;
typedef <system dependent> SLint32;
typedef <system dependent> SLuint32;
typedef SLuint32 SLboolean;
typedef SLuint8 SLchar;
typedef SLint16 SLmillibel;
typedef SLuint32 SLmillisecond;
typedef SLuint32 SLmilliHertz;
typedef SLint32 SLmillimeter;
typedef SLint32 SLmillidegree;
typedef SLint16 SLpermille;
typedef SLuint32 SLmicrosecond;
typedef SLuint32 SLresult;

60 OpenSL ES 1.0.1 Specification

Table 9: Base Types

Type Description

SLint8 An 8-bit signed type. The definition of this type is system-
dependent.

SLuint8 An 8-bit unsigned type. The definition of this type is system-
dependent.

SLint16 A 16-bit signed type. The definition of this type is system-
dependent.

SLuint16 A 16-bit unsigned type. The definition of this type is system-
dependent.

SLint32 A 32-bit signed type. The definition of this type is system-
dependent.

SLuint32 A 32-bit unsigned type. The definition of this type is system-
dependent.

SLboolean A Boolean type, where zero is false and all remaining values are
true.

SLchar A character type. All strings within the API, except where explicitly
defined otherwise, are UTF-8, null-terminated, SLchar arrays.

SLmillibel A type for representing volume in millibels (mB), one thousandth of
a Bel, one hundredth of a decibel.

SLmillisecond A type for representing time in milliseconds (ms), one thousandth
of a second).

SLmilliHertz A type for representing frequency in milliHertz (mHz), one
thousandth of a Hertz.

SLmillimeter A type for representing distance in millimetres (mm), one
thousandth of a meter.

SLmillidegree A type for representing an angle in millidegrees (mdeg), one
thousandth of a degree.

SLpermille A type for representing a scale or factor in permille. One permille
(1‰) is equal to a factor of 0.001. One thousand permille
(1000‰) is equal to a factor of one.

SLmicrosecond A type for representing time in microseconds, one millionth of a
second).

SLresult A type for standard OpenSL ES errors that all functions defined in
the API return.

OpenSL ES 1.0.1 Specification 61

6 Functions
6.1 slCreateEngine Function
slCreateEngine

SLresult SLAPIENTRY slCreateEngine(
 SLObjectItf *pEngine,
 SLuint32 numOptions
 const SLEngineOption *pEngineOptions,
 SLuint32 numInterfaces,
 const SLInterfaceID *pInterfaceIds,
 const SLboolean * pInterfaceRequired
)
Description Initializes the engine object and gives the user a handle.

Pre-conditions None

pEngine [out] Pointer to the resulting engine object.

numOptions [in] The number of elements in the options
array. This parameter value is ignored if
pEngineOptions is NULL. Similarly, a 0
value initializes the engine without the
optional features being enabled.

pEngineOptions [in] Array of optional configuration data. A
NULL value initializes the engine without
the optional features being enabled.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] An array of numInterfaces interface IDs,
which the object should support. This
parameter is ignored if numInterfaces is
zero.

Parameters

pInterfaceRequired [in] An array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail the
creation of the object if it cannot be
accommodated and the error code
SL_RESULT_FEATURE_UNSUPPORTED will be
then returned.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:

62 OpenSL ES 1.0.1 Specification

slCreateEngine
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED
SL_RESULT_RESOURCE_ERROR

Comments The options supported by an individual implementation are
implementation-dependent. Standardized options are documented in
section 9.2.15. The engine is destroyed via the destroy method in the
SLObjectItf interface [see section 8.29].

See Also Engine object [see section 7.4].

6.2 slQueryNumSupportedEngineInterfaces
Function

slQueryNumSupportedEngineInterfaces
SLresult SLAPIENTRY slQueryNumSupportedEngineInterfaces(
 SLuint32 * pNumSupportedInterfaces
);

Description Queries the number of supported interfaces available on engine object.

Parameters pNumSupportedInterfaces [out] Identifies the number of supported
interfaces available. Must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The number of supported interfaces will include both mandated and optional
interfaces available for the engine object.

See also slQuerySupportedEngineInterfaces(),
SLEngineItf::QueryNumSupportedInterfaces [see section 8.17].

OpenSL ES 1.0.1 Specification 63

6.3 slQuerySupportedEngineInterfaces Function
slQuerySupportedEngineInterfaces

SLresult SLAPIENTRY slQuerySupportedEngineInterfaces(
 SLuint32 index,
 SLInterfaceID * pInterfaceId
);

Description Queries the supported interfaces on engine object.

Pre-conditions None

index [in] Incrementing index used to enumerate available
interfaces. Supported index range is 0 to N-1,
where N is the number of supported interfaces.

Parameters

pInterfaceId [out] Identifies the supported interface corresponding to
the given index. Must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The number of supported interfaces will include both mandated and
optional interfaces available for the engine object.

See also slQueryNumSupportedEngineInterfaces(),
SLEngineItf::QueryNumSupportedInterfaces [see section 8.17].

64 OpenSL ES 1.0.1 Specification

7 Object Definitions
This section documents all the object types supported by the API. Some object types are
mandated to be supported only in a selection of the profiles. Where this is the case, the
object’s description will include a profile note stating this. If the object does not include a
profile note, the object is mandated to be supported in all profiles.

Each object type has a list of Mandated Interfaces that must be supported for that
object type. For each mandated object type in a given profile, an implementation must
support the creation of at least one object with every mandated interface exposed on that
object. Even if the object type itself is not mandated, if the implementation allows creation
of objects of that type, it must still support all the mandated interfaces for the object type.
The list of mandated interfaces may vary according to profile, as documented in the
profiles notes. The mandated interface sections also document whether an interface is
implicit or must be supported dynamically.

Besides of the mandated interfaces, an object is free to support any interfaces defined in
this specification (and any vendor-specific interfaces). However, some interfaces specified
in this specification make much more sense with a specific object type than some other
interfaces. Therefore, for information only, each object type has also a list of Applicable
Optional interfaces. The implementer is not limited to support only these listed
interfaces, but these lists provide the application developer a hint concerning which
optional interfaces might be supported.

OpenSL ES 1.0.1 Specification 65

7.1 3D Group

Description

In the majority of cases, 3D sound sources will be independently controlled and positioned
and in these cases the application exposes the 3D interfaces on the player itself. However,
there are circumstances where several sound sources may have the same 3D properties,
including position. The 3D group object provides a convenient mechanism for grouping
several sound sources with the same 3D properties. This is primarily used in order to
conserve 3D resources but can also provide convenience to the application developer.

Typically, 3D resources can only be conserved when all players in the 3D group have the
same data sink.

See section C.4 for an example using this object.

PROFILE NOTES
Creation of objects of this type is mandated only in the Game profile.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

SL3DLocationItf [see section 8.4]

This interface exposes controls for positioning and orienting the 3D group.

This interface is an implicit interface on this object.

SL3DDopplerItf [see section 8.2]

This interface exposes controls for the Doppler and velocity of the 3D group. This
interface is a dynamic interface on this object. See section 3.1.6 for details about
dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

66 OpenSL ES 1.0.1 Specification

SL3DSourceItf [see section 8.6]

This interface exposes 3D source-oriented controls of the 3D group.

PROFILE NOTES
This interface is mandated only in the Game profile.

Applicable Optional Interfaces

SL3DMacroscopicItf [see section 8.5]

This interface exposes controls for setting the size (physical dimensions) of the 3D
group.

OpenSL ES 1.0.1 Specification 67

7.2 Audio Player

Description

The audio player media object plays the piece of content specified by the data source
performing any implicit decoding, applying any specified processing, and rendering it to
the destination specified by the data sink.

See Appendix B: and Appendix C: for examples using this object.

Java Tone Sequence Playback

It is also possible to play back pre-created Java Tone Sequences using an Audio Player
Object. To do this, the application needs to do the following:

1. Set the Address Data Locator Structure (SLDataLocator_Address) in the Audio Player’s
SLDataSource to contain a pointer to and the length of the byte array (array of
SLuint8) containing the desired Java Tone Sequence.

2. Set the MIME Data Format Structure (SLDataFormat_MIME) in the SLDataSource to say
that the format is “audio/x-tone-seq”.

Please see JSR-135 [JSR135] ToneControl for details on the Java Tone Sequence bytecode
format.

PROFILE NOTES
Java Tone Sequence playback is mandated only in the Phone and Game profiles. PCM
sampled audio playback is mandated in all profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used to add dynamic interfaces [see section 3.1.6] to the object.

This interface is an implicit interface on this object.

SLPlayItf [see section 8.32]

This interface controls the playback state of the audio player.

This interface is an implicit interface on this object.

68 OpenSL ES 1.0.1 Specification

SL3DDopplerItf [see section 8.2]

This interface exposes Doppler and velocity controls. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DGroupingItf [see section 8.3]

This interface exposes controls for adding and removing a player to and from a 3D
group.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DLocationItf [see section 8.4]

This interface exposes controls for changing a player’s location in 3D space.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DSourceItf [see section 8.6]

This interface exposes player-specific 3D controls.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLBufferQueueItf [see section 8.12]

This interface enables feeding data to the player using buffers. Note that an
attempt to instantate an SLBufferQueueItf on a player whose data source is not of
type SL_DATALOCATOR_BUFFERQUEUE will fail.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLEffectSendItf [see section 8.14]

This interface controls a player’s direct path and effect send levels.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

OpenSL ES 1.0.1 Specification 69

SLMuteSoloItf [see section 8.28]

This interface exposes controls for selecting which of the player’s channels are
heard and silenced.

PROFILE NOTES
This interface is mandated only in the Game profile and only where the data source is
not a Java Tone Sequence.

SLMetaDataExtractionItf [see section 8.22]

This interface exposes controls for metadata extraction. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

SLMetaDataTraversalItf [see section 8.23]

This interface exposes controls for metadata traversal. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

SLPrefetchStatusItf [see section 8.34]

This interface controls the prefetch state of the audio player.

SLRatePitchItf [see section 8.36]

The interface controls the rate and pitch in the audio player. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile and only where the data source is
not a Java Tone Sequence.

SLSeekItf [see section 8.38]

This interface controls the position of the playback head and any looping of
playback. Note that an attempt to instantiate SLSeekItf on an Audio Player whose
data source is a buffer queue will fail.

PROFILE NOTES
The SetLoop is mandated for end-to-end looping in the phone profile and mandated for
looping over an arbitary loop region in the Music and Game profiles.

70 OpenSL ES 1.0.1 Specification

SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.

PROFILE NOTES
The EnableStereoPosition(), IsEnabledStereoPosition(), SetStereoPosition() and
GetStereoPosition() methods are mandated only in the Music and Game profiles.

Applicable Optional Interfaces

SL3DMacroscopicItf [see section 8.5]

This interface exposes controls for setting the size (physical dimensions) of the
player (3D sound source).

SLBassBoostItf [see section 8.11]

This interface controls a player-specific bass boost effect. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLDynamicSourceItf [see section 8.15]

This interface enables changing the data source of the player post-creation.

SLEnvironmentalReverbItf [see section 8.19]

This interface controls a player-specific reverb effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLEqualizerItf [see section 8.20]

This interface controls a player-specific equalizer effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPitchItf [see section 8.31]

This interface controls the pitch shifting without changing the playback rate. This
interface is a dynamic interface on this object. See section 3.1.6 for details on
dynamic interfaces.

SLPresetReverbItf [see section 8.35]

This interface controls a player-specific reverb effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPlaybackRateItf [see section 8.33]

This interface exposes playback rate related controls. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

OpenSL ES 1.0.1 Specification 71

SLVirtualizerItf [see section 8.41]

This interface exposes controls over a player-specific virtualization effect. This
interface is a dynamic interface on this object. See section 3.1.6 for details on
dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.

72 OpenSL ES 1.0.1 Specification

7.3 Audio Recorder

Description

The audio recorder media object records the piece of content to the destination specified
by the data sink capturing it from the input specified by the data source and performing
any specified encoding or processing.

See section B.1.2 for an example using this object.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces [see section 3.1.6] to the
object.

This interface is an implicit interface on this object.

SLRecordItf [see section 8.37]

This interface controls the recording state of the audio player.

This interface is an implicit interface on this object.

SLAudioEncoderItf [see section 8.8]

This interface exposes audio encoder functionality.

Applicable Optional Interfaces

SLBassBoostItf [see section 8.11]

This interface controls the bass boost effect of the recorder. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLDynamicSourceItf [see section 8.15]

This interface enables changing the data source of the recorder post-creation.

OpenSL ES 1.0.1 Specification 73

SLEqualizerItf [see section 8.20]

This interface controls the equalizer effect of the recorder. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.

SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.

74 OpenSL ES 1.0.1 Specification

7.4 Engine Object

Description

This object type is the entry point of the API. An implementation shall enable creation of at
least one such object, but attempting to create more instances (either by a single
application or by several different applications) may fail.

The engine object supports creation of all the API’s objects via its SLEngineItf interface,
and querying of the implementation’s capabilities via its SLEngineCapabilitiesItf
interface.

See Appendix B: and Appendix C: for examples using this object.

Creation

An engine object is created using the global function slCreateEngine()
[see section 6.1].

Mandated Interfaces
SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

SLEngineItf [see section 8.17]

This interface exposes methods for creation of all the API’s objects.

This interface is an implicit interface on this object.

SLEngineCapabilitiesItf [see section 8.18]

This interface enables querying current implementation capabilities.

This interface is an implicit interface on this object.

SLThreadSyncItf [see section 8.39]

This interface enables synchronization of API callback and client application
contexts.

This interface is an implicit interface on this object.

OpenSL ES 1.0.1 Specification 75

SLAudioIODeviceCapabilitiesItf [see section 8.7]

This interface exposes methods for querying available audio device capabilities.

This interface is an implicit interface on this object.

SLAudioDecoderCapabitiesItf [see section 8.7]

This interface exposes methods for querying audio decoder capabilities.

SLAudioEncoderCapabitiesItf [see section 8.9]

This interface exposes methods for querying audio encoder capabilities.

SL3DCommitItf [see section 8.1]

This interface exposes the global 3D commit control for all 3D parameters within an
engine.

PROFILE NOTES
This interface is mandated only in the Game profile.

Applicable Optional Interfaces

SLDeviceVolumeItf [see section 8.13]

This interface controls audio input and output device-specific volumes.

76 OpenSL ES 1.0.1 Specification

7.5 LED Array I/O Device

Description

The LED array I/O device object encapsulates and controls a set of LEDs. Its functionality
covers setting LED color, activating and deactivating LEDs.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces
SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLLEDArrayItf [see section 8.21]

This interface exposes all LED capabilities for a LED array IODevice.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

OpenSL ES 1.0.1 Specification 77

7.6 Listener Object

Description

The listener object is an abstract object that represents a listener to any sound sources
positioned in 3D space. The listener does not have a data source or data sink and
subsequently has no content associated directly with it.

An application can optionally create one or more listener objects. Non-3D sound sources
are heard independent of the existence or non-existence of any listener. For 3D sound
sources to be heard, the application must create at least one listener.

The listener typically has the same position and orientation as a camera in a 3D graphics
scene.

Some implementations may support the creation of multiple listeners. The behavior in such
cases is undefined.

See section B.5 and C.4 for examples using this object.

PROFILE NOTES
Creation of objects of this type is mandated only in the Game profile.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

SL3DDopplerItf [see section 8.2]

This interface exposes controls for the Doppler and velocity of the listener. This
interface is a dynamic interface on this object. See section 3.1.6 for details on
dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

78 OpenSL ES 1.0.1 Specification

SL3DLocationItf [see section 8.4]

This interface exposes controls for positioning and orienting the listener.

PROFILE NOTES
This interface is mandated only in the Game profile.

OpenSL ES 1.0.1 Specification 79

7.7 Metadata Extractor Object

Description

This object can be used for reading metadata without allocating resources for media
playback. Using this object is recommended particularly when the application is interested
only in presenting metadata without playing the content and when it wants to present
metadata of multiple files. The latter is particularly interesting for generation of playlists
for presentation purposes because an audio player would unnecessarily allocate playback
resources. Furthermore, players cannot change their data source dynamically; therefore,
for metadata extraction from multiple files, the application needs to create and destroy
player objects many times, which is both inefficient, and may result in fragmentation of
the heap.

PROFILE NOTES
Creation of objects of this type is mandated in Music and Game profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

SLDynamicSourceItf [see section 8.15]

This interface exposes controls for changing the data source during the lifetime of
the object, to be able to read metadata from multiple files without creating a new
object for every single file.

This interface is an implicit interface on this object.

SLMetaDataExtractionItf [see section 8.22]

This interface exposes controls for metadata extraction.

This interface is an implicit interface on this object.

SLMetaDataTraversalItf [see section 8.23]

This interface exposes controls for metadata traversal.

This interface is an implicit interface on this object.

80 OpenSL ES 1.0.1 Specification

7.8 MIDI Player Object

Description

The MIDI Player media object is used for all rendering of MIDI data. This includes both
MIDI-based content files and MIDI-based wavetable instrument files. Further, individual
MIDI messages not encapsulated within content files may be sent to a MIDI Player object
via the optional MIDI Messages interface. Like the Audio Player media object, data sources
for a MIDI Player generally include files and buffer queues, and the primary data sinks are
audio output devices. In addition, an optional data source (a Mobile DLS instrument bank
file) and two additional optional data sinks (LED array and vibra I/O device) are also
available.

See sections B.3, C.3 and C.4 for examples using this object.

PROFILE NOTES
Creation of objects of this type is mandated only in the Phone and Game profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

SLPlayItf [see section 8.32]

This interface controls the playback state of the MIDI player. However, the play
state does not affect controlling the MIDI Player with real-time MIDI messages via
SLMIDIMessageItf; therefore, it is not necessary to use SLPlayItf if only real-time
messages are used to control the MIDI player (with or without a soundbank source).

This interface is an implicit interface on this object.

SL3DDopplerItf [see section 8.2]

This interface exposes Doppler and velocity controls. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

OpenSL ES 1.0.1 Specification 81

SL3DGroupingItf [see section 8.3]

This interface exposes controls for adding and removing a player to and from a 3D
group.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DLocationItf [see section 8.4]

This interface exposes controls for changing a player’s location in 3D space.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DSourceItf [see section 8.6]

This interface exposes player-specific 3D controls.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLBufferQueueItf [see section 8.12]

This interface enables feeding data to the player using buffers. Note that an
attempt to instantate an SLBufferQueueItf on a player whose data source is not of
type SL_DATALOCATOR_MIDIBUFFERQUEUE will fail.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLEffectSendItf [see section 8.14]

This interface controls a player’s direct path and effect send levels.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLMuteSoloItf [see section 8.28]

This interface exposes controls for selecting which of the player’s channels are
heard and silenced.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLMetaDataExtractionItf [see section 8.22]

This interface exposes controls for metadata extraction. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

82 OpenSL ES 1.0.1 Specification

SLMetaDataTraversalItf [see section 8.23]

This interface exposes controls for metadata traversal. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLMIDIMessageItf [see section 8.24]

The SLMIDIMessageItf interface exposes methods to send messages to a MIDI-
based player and establish callbacks to get MIDI information in runtime.

PROFILE NOTES
This interface is mandated only in the Phone and Game profiles.

SLMIDITimeItf [see section 8.27]

The SLMIDITimeItf interface exposes methods to determine duration, to set and
get position, and to set and get loop points in MIDI ticks.

PROFILE NOTES
This interface is mandated only in the Phone and Game profiles.

The SetLoopPoints() and GetLoopPoints() methods are mandated only in the Game
profile.

SLMIDITempoItf [see section 8.26]

The SLMIDITempoItf interface exposes methods to set and get information about a
MIDI-based player’s tempo.

PROFILE NOTES
This interface is mandated only in the Phone and Game profiles.

SLMIDIMuteSoloItf [see section 8.25]

The SLMIDIMuteSoloItf interface exposes methods to mute and solo MIDI
channels and tracks, and to get the number of tracks.

PROFILE NOTES
This interface is mandated only in the Game profiles.

SLPrefetchStatusItf [see section 8.34]

This interface controls the prefetch state of the MIDI player. Note that an attempt
to instantiate SLPrefetchStatusItf on an MIDI player whose data source is a
buffer queue will fail.

PROFILE NOTES
This interface is mandated only in the Phone and Game profiles.

OpenSL ES 1.0.1 Specification 83

SLSeekItf [see section 8.38]

This interface controls the position of the playback head and any looping of
playback. Note that an attempt to instantiate an SLSeekItf on an Audio Player
whose data source is a buffer queue will fail.

PROFILE NOTES
The SetLoop is mandated for end-to-end looping in the phone profile and mandated for
looping over an arbitary loop region in the Music and Game profiles.

SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.

PROFILE NOTES
The EnableStereoPosition(), IsEnabledStereoPosition(), SetStereoPosition() and
GetStereoPosition() methods are mandated only in the Music and Game profile.

Applicable Optional Interfaces

SL3DMacroscopicItf [see section 8.5]

This interface exposes controls for setting the size (physical dimensions) of the
player (3D sound source).

SLBassBoostItf [see section 8.11]

This interface controls a player-specific bass boost effect. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLDynamicSourceItf [see section 8.15]

This interface enables changing the data source of the player post-creation.

SLEnvironmentalReverbItf [see section 8.19]

This interface controls a player-specific reverb effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLEqualizerItf [see section 8.20]

This interface controls a player-specific equalizer effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPitchItf [see section 8.31]

This interface control the pitch shifting without changing the playback rate. This
interface is a dynamic interface on this object. See section 3.1.6 for details on
dynamic interfaces.

84 OpenSL ES 1.0.1 Specification

SLPresetReverbItf [see section 8.35]

This interface controls a player-specific reverb effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPlaybackRateItf [see section 8.33]

This interface exposes playback rate related controls. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVirtualizerItf [see section 8.41]

This interface exposes controls over a player-specific virtualization effect. This
interface is a dynamic interface on this object. See section 3.1.6 for details on
dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.

OpenSL ES 1.0.1 Specification 85

7.9 Output Mix

Description

The output mix object represents a set of audio output devices to which one audio output
stream is sent. The application retrieves an output mix object from the engine and may
specify that output mix as the sink for a media object. The engine must support at least
one output mix, though it may support more. The API does not provide a direct audio
output IO-device as a sink for media objects.

An output mix is a logical object; it does not (necessarily) represent a physical mix. Thus
the actual implementation of the mixing defined logically by the mix objects and their
association with media objects is an implementation detail. The output mix does not
represent the system’s main mix. Furthermore, a mix object represents the application’s
contribution to the output; the implementation may mix this contribution with output from
other sources.

The engine populates the output mix with the default set of audio output devices. The
application may request rerouting of that mix via calls to add and remove devices, but
whether those requests are fulfilled is entirely the prerogative of the implementation.
Furthermore, the implementation may perform its own rerouting of the output mix. In this
case, the implementation makes the application aware of changes to the output mix via a
notification.

Manipulation of the output mixes leverages the use of device IDs to specify the device(s)
operated on. The engine includes a special ID, called the default device ID, which
represents a set of one or more devices to which the implementation deems audio output
should go by default. Although the application may use the default device ID when
manipulating an output mix, only the implementation may alter the physical devices this
ID represents. Furthermore, the implementation may change the mapping to physical
devices dynamically.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

86 OpenSL ES 1.0.1 Specification

SLOutputMixItf [see section 8.30]

This interface exposes controls for querying the associated destination output
devices.

This interface is an implicit interface on this object.

SLEnvironmentalReverbItf [see section 8.19]

This interface exposes controls for an environmental reverb. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLEqualizerItf [see section 8.20]

This interface exposes controls over an equalizer effect. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

SLPresetReverbItf [see section 8.35]

This interface exposes preset controllable reverb. This interface is a dynamic
interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music profile.

SLVirtualizerItf [see section 8.41]

This interface exposes controls over a virtualization effect. This interface is a
dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.

PROFILE NOTES
The EnableStereoPosition(), IsEnabledStereoPosition(), SetStereoPosition() and
GetStereoPosition() methods are mandated only in the Game and Music profiles.

OpenSL ES 1.0.1 Specification 87

Applicable Optional Interfaces

SLBassBoostItf [see section 8.11]

This interface controls the bass boost effect. This interface is a dynamic interface on
this object. See section 3.1.6 for details on dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.

88 OpenSL ES 1.0.1 Specification

7.10 Vibra I/O Device

Description

The Vibra I/O device object controls device vibration. Its functionality is limited to activate
/ deactivate the vibration function of the device, as well as setting its frequency and
intensity, if supported.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces
SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the
object.

This interface is an implicit interface on this object.

SLVibraItf [see section 8.40]

This interface exposes all vibration functionality for a Vibra I/O Device.

This interface is an implicit interface on this object.

OpenSL ES 1.0.1 Specification 89

8 Interface Definitions
This section documents all the interfaces and methods in the API.

Almost all methods generate result codes, whether synchronously or asynchronously. Such
methods must return either one of the explicit result codes listed in the method’s
documentation or one of the following result codes:

• SL_RESULT_RESOURCE_ERROR

• SL_RESULT_RESOURCE_LOST

• SL_RESULT_INTERNAL_ERROR

• SL_RESULT_UNKNOWN_ERROR

• SL_RESULT_OPERATION_ABORTED

For a full definition of these result codes see section 9.2.42.

90 OpenSL ES 1.0.1 Specification

8.1 SL3DCommitItf

Description

By default, all interfaces commit their settings to the signal processing layer immediately.
This can result in unnecessary recalculations of 3D parameters and does not allow the
developer to set up the 3D scene in one atomic operation. This interface exposes commit
controls for controlling when changes to 3D interfaces are sent to the signal-processing
layer.

This interface controls when changes to the following interfaces are sent to the signal
processing system:

 SL3DLocationItf

 SL3DDopplerItf

 SL3DSourceItf

 SL3DMacroscopicItf

This affects all objects that can expose these interfaces, namely: listeners, players and 3D
groups. All other interfaces, including the SL3DGroupingItf interface, are committed to
the signal processing system immediately, regardless of this interface’s settings.

Applications are advised to defer 3D settings when possible, as this will reduce the amount
of unnecessary internal parameter calculations.

When in deferred mode, all “get” methods for the 3D interfaces will return the latest “set”
values, even if they have not yet been committed.

This interface is supported on the engine object [see section 7.4].

See section B.5.2 for an example using this interface.

Prototype
extern const SLInterfaceID SL_IID_3DCOMMIT;

struct SL3DCommitItf_;
typedef const struct SL3DCommitItf_* const * SL3DCommitItf;

struct SL3DCommitItf_ {
 SLresult (*Commit) (
 SL3DCommitItf self
);

OpenSL ES 1.0.1 Specification 91

 SLresult (*SetDeferred) (
 SL3DCommitItf self,
 SLboolean deferred
);
};

Interface ID

3564ad80-dd0f-11db-9e19-0002a5d5c51b

Defaults

Commit mode: Immediate (not deferred).

Methods

Commit
SLresult (*Commit) (
 SL3DCommitItf self
);

Description Commits all changes to all 3D interfaces, except 3DGrouping.

Pre-conditions None

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments It is legal to call this method when the commit mode is immediate (that
is, not deferred); it will have no effect.

92 OpenSL ES 1.0.1 Specification

SetDeferred
SLresult (*SetDeferred) (
 SL3DCommitItf self,
 SLboolean deferred
);

Description Enables or disables deferred committing of 3D parameters.

Pre-conditions None

self [in] Interface self-reference. Parameters

deferred [in] If true, all 3D parameter changes will be deferred
until Commit() is called. If false, all parameter
deferring is disabled.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments Parameters are not automatically committed when transferring from
deferred to immediate mode. Developers should call Commit()
before returning to immediate mode to ensure no parameter
changes are lost.

OpenSL ES 1.0.1 Specification 93

8.2 SL3DDopplerItf

Description

This interface controls the Doppler of a listener, player, or 3D group. If this interface is
exposed on a 3D group, the methods control the 3D characteristics of all the players in the
3D group.

The following restrictions must be adhered to when exposing this interface on a player
object:

 This interface can be exposed on a player only if the SL3DLocationItf interface is
exposed on the same player. This interface can be exposed on a player at creation as
long as the SL3DLocationItf is also exposed at creation.

Parameter changes made using this interface may be deferred using the SL3DCommitItf
interface [see section 8.1].

If the Doppler interface is exposed on a player or 3D Group (3D source), the players
involved will have the Doppler effect applied (unless the Doppler factor is zero), regardless
of whether the listener has exposed the Doppler interface. If the Doppler interface is not
exposed on a 3D source, the 3D source will not have the Doppler effect applied to it,
regardless of whether the listener has exposed the Doppler interface.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section
7.8], 3D Group [see section 7.8] and Listener [see section 7.6] objects.

See sections B.5.2 and C.4 for examples using this interface.

Doppler

When a 3D source is moving at a speed relative to the listener, its perceived pitch changes.
This change is called Doppler shift and is most noticeable if a 3D source moves quickly
close to the listener. To calculate the amount of pitch shift in a real world situation, it is
only necessary to know relative velocities of the source and listener, in addition to
knowledge of the physical medium through which the sound waves travel, which is usually
air. These parameters can in turn be calculated from knowledge of the spatial positions of
the sound source and listener as they vary with time.

However, OpenSL ES does not calculate Doppler shifts from the 3D source and listener
locations because it is usually more convenient for the developer to directly specify the
velocities of the 3D source and listener. This allows the developer more flexibility, as these
velocities can be decoupled from the actual physical velocities of the 3D source and
listener. If desired, the developer can easily calculate the 3D source and listener velocities
that correspond directly to their physical movement, thus linking the two again.

94 OpenSL ES 1.0.1 Specification

It is good practice to use Doppler only on selected 3D sources on which the effect is going
to be most effective or noticeable, since Doppler processing can use additional memory
and processing power. For example, Doppler works well for speeding bullets but not for
walking characters. Developers can conserve resources by exposing this interface only on
3D source’s that require the Doppler effect.

Doppler can be simulated as a change in pitch. The following is the recommended
algorithm for calculating a pitch multiplier for a given Doppler:

()

()

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×+
×+

=

=

×
=

⋅=
⋅=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

−
=

otherwise,,0max

0 if,1
10

otherwise

relative head isplayer if

6

p

l

pl

pp

ll

lp

lp

p

p

sDc
sDc

D
p

DD
D

ds
ds

d

v
v

ll

ll

l

l

where:

p is the pitch multiplier due to Doppler.

BA ⋅ is the dot product of the vectors and A B .

lv is the listener’s velocity vector.

pv is the 3D source’s velocity vector.

ll is the listener’s location vector.

pl is the 3D source’s location vector.

lD is the listener’s Doppler factor.

pD is the 3D source’s Doppler factor.

c is the speed of sound (about 340000 mm/s).

OpenSL ES 1.0.1 Specification 95

The listener’s velocity and Doppler factor are used for calculating the 3D source’s Doppler.
If the SL3DDopplerItf interface is not exposed on the listener, the default listener velocity
and Doppler factor values are used in the calculations.

Prototype
extern const SLInterfaceID SL_IID_3DDOPPLER;

struct SL3DDopplerItf_;
typedef const struct SL3DDopplerItf_ * const * SL3DDopplerItf;

struct SL3DDopplerItf_ {
 SLresult (*SetVelocityCartesian) (
 SL3DDopplerItf self,
 const SLVec3D *pVelocity
);
 SLresult (*SetVelocitySpherical) (
 SL3DDopplerItf self,
 SLmillidegree azimuth,
 SLmillidegree elevation,
 SLmillimeter speed
);
 SLresult (*GetVelocityCartesian) (
 SL3DDopplerItf self,
 SLVec3D *pVelocity
);
 SLresult (*SetDopplerFactor) (
 SL3DDopplerItf self,
 SLpermille dopplerFactor
);
 SLresult (*GetDopplerFactor) (
 SL3DDopplerItf self,
 SLpermille *pDopplerFactor
);
};

Interface ID

b45c9a80-ddd2-11db-b028-0002a5d5c51b

Defaults

Velocity (x, y, z): (0 mm/s, 0 mm/s, 0 mm/s)

Doppler factor: 1000 ‰

96 OpenSL ES 1.0.1 Specification

Methods

SetVelocityCartesian
SLresult (*SetVelocityCartesian) (
 SL3DDopplerItf self,
 const SLVec3D *pVelocity
);

Description Sets the object’s velocity.

Pre-conditions None

self [in] Interface self-reference. Parameters

pVelocity [in] Pointer to a vector containing the velocity in
right-handed Cartesian coordinates. The
velocities are expressed in millimeters per
second.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The velocity is only used in the Doppler calculations. It does not
effect the object’s location.

OpenSL ES 1.0.1 Specification 97

SetVelocitySpherical
SLresult (*SetVelocitySpherical) (
 SL3DDopplerItf self,
 SLmillidegree azimuth,
 SLmillidegree elevation,
 SLmillimeter speed
);

Description Sets the object’s velocity using spherical coordinates.

Pre-conditions None

self [in] Interface self-reference.

azimuth [in] The azimuth angle in millidegrees. The valid
range is [-360000, 360000].

elevation [in] The elevation angle in millidegrees. The valid
range is [-90000, 90000].

Parameters

speed [in] The speed in millimeters per second. The valid
range is [0, SL_MILLIMETER_MAX].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The velocity is only used in the Doppler calculations. It does not
effect the object’s location.

See the Location section in documentation for SL3DLocationItf [see
section 8.4] for a definition of azimuth and elevation.

98 OpenSL ES 1.0.1 Specification

GetVelocityCartesian
SLresult (*GetVelocityCartesian) (
 SL3DDopplerItf self,
 SLVec3D *pVelocity
);

Description Gets the object’s velocity.

Pre-conditions None

self [in] Interface self-reference. Parameters

pVelocity [out] Pointer to a vector to receive the velocity in
right-handed Cartesian coordinates. This must
be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The accuracy of the output velocity is limited: one or more of the
components (x, y or z) can differ by (a) up to 4% of the largest
(absolute) vector component, or (b) 1 mm from the accurate value,
which ever is greater.

OpenSL ES 1.0.1 Specification 99

SetDopplerFactor
SLresult (*SetDopplerFactor) (
 SL3DDopplerItf self,
 SLpermille dopplerFactor
);

Description Sets the object’s Doppler factor.

Pre-conditions None

self [in] Interface self-reference. Parameters

dopplerFactor [in] Doppler factor in permille. A value of zero
disables the Doppler effect. The valid range is
[0, 10000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments A 3D source’s Doppler factor is multiplied by the listener’s Doppler
factor to determine the final Doppler factor applied to the sound
source. Consequently, if the listener’s Doppler factor is zero, all
Doppler effects are disabled. If the SL3DDopplerItf interface is not
exposed on the listener, the listener’s default Doppler factor
(1000 ‰) is used in this calculation.

If a Doppler effect is never required on the 3D source, the developer
is advised not to expose this interface, as this will save resources.

GetDopplerFactor
SLresult (*GetDopplerFactor) (
 SL3DDopplerItf self,
 SLpermille *pDopplerFactor
);

Description Gets the object’s Doppler factor.

Pre-conditions None

self [in] Interface self-reference. Parameters

pDopplerFactor [out] Pointer to a location to receive the current
Doppler factor. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

100 OpenSL ES 1.0.1 Specification

8.3 SL3DGroupingItf

Description

This interface sets the player’s 3D group. A player can be added to a 3D group, removed
from one, and moved between 3D groups. When this interface is exposed on a player, it
must be added to a 3D group (using Set3DGroup()) in order for the player to be heard.

The following restrictions must be adhered to when exposing this interface on a player:

 This interface can only be exposed when creating a player object. It cannot be
dynamically added using the SLDynamicInterfaceManagementItf interface
[see section 8.14].

 This interface is mutually exclusive with the SL3DLocationItf interface; it is not
possible to expose this interface at the same time as the SL3DLocationItf interface.

Exposing this interface on a player renders the player in 3D.

This interface is supported on the Audio Player [see section 7.2] and MIDI Player
[see section 7.8] objects.

See section C.4 for an example using this interface.

Prototype
extern const SLInterfaceID SL_IID_3DGROUPING;

struct SL3DGroupingItf ;
typedef const struct SL3DGroupingItf _ * const * SL3DGroupingItf;

struct SL3DGroupingItf_ {
 SLresult (*Set3DGroup) (
 SL3DGroupingItf self,
 SLObjectItf group
);
 SLresult (*Get3DGroup) (
 SL3DGroupingItf self,
 SLObjectItf *pGroup
);
};

Interface ID

ebe844e0-ddd2-11db-b510-0002a5d5c51b

OpenSL ES 1.0.1 Specification 101

Defaults

3D group: NULL (that is, no 3D group)

Methods

Set3DGroup
SLresult (*Set3DGroup) (
 SL3DGroupingItf self,
 SLObjectItf group
);

Description Sets the 3D group for the player, removing the player from any
previous 3D group.

Pre-conditions The 3D group being set must be in the realized state.

self [in] Interface self-reference. Parameters

group [in] The 3D group to add the player to. If group is
equal to NULL, the player is no longer in any 3D
group. The 3D group must be in the realized
state.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE

Comments When a player is no longer a member of a 3D group, it has no 3D
information, and so is not heard until the player is added back to 3D
group.

102 OpenSL ES 1.0.1 Specification

Get3DGroup
SLresult (*Get3DGroup) (
 SL3DGroupingItf self,
 SLObjectItf *pGroup
);

Description Gets the 3D group for the player.

Pre-conditions None

self [in] Interface self-reference. Parameters

pGroup [out] Pointer to location to receive the 3D group of
which the player is a member. If the player is
not a member of 3D group, this will return
NULL. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 103

8.4 SL3DLocationItf

Description

This interface controls the location and orientation in 3D space of a listener, player, or 3D
group. If this interface is exposed on a 3D group, the methods control the 3D
characteristics of all the players in the 3D group.

The following restrictions must be adhered to when exposing this interface on a player
object:

 This interface can be exposed only when creating a player object. It cannot be
dynamically added using the SLDynamicInterfaceManagementItf interface
[see section 8.14].

 This interface is mutually exclusive with the SL3DGroupingItf interface; it is not
possible to expose this interface at the same time as the SL3DGroupingItf interface.

Exposing this interface on a player object causes the player to be rendered in 3D.

Parameter changes made using this interface may be deferred using the SL3DCommitItf
interface [see section 8.1].

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section
7.8], 3D Group [see section 7.8] and Listener [see section 7.6] objects.

See section B.5 and C.4 for examples using this interface.

Location

The location of an object can be specified using either Cartesian or spherical coordinates.
All coordinates are specified using either world coordinates or listener-relative coordinates
(if the 3D source is in head relative mode [see section 8.6]).

A location is specified in Cartesian coordinates using a vector that specifies the distance x,
y, and z-axis position, as shown in the following left diagram. A location is specified using
spherical coordinates by specifying the distance from the reference point, and the azimuth
and elevation angles, as shown in the following right diagram.

104 OpenSL ES 1.0.1 Specification

a

d

e

y

y1

z1

x1

x

y

(x1, y1, z1)

d = distance
a = azimuth
e = elevation

z

x

z

Figure 24: Specifying object location

The conversion from spherical coordinates to Cartesian coordinates is defined by the
following equations:

)cos()cos(
)sin(

)sin()cos(

azimuthelevationdistancez
elevationdistancey

azimuthelevationdistancex

−××=
×=

××=

In addition to the above mentioned mechanisms, which are setter methods for specifying
the location relative to the origin (or to the listener when in the head relative mode, see
SetHeadRelative() method in section 8.6), there is a third mechanism, namely the Move
method, to specify the location relative to the previous location using Cartesian
coordinates.

Orientation
Many sound sources are omni-directional, that is, they radiate sound equally in all
directions, so that the energy they emit is the same regardless of their orientation.
However, other sound sources radiate more energy in one direction than others.
OpenSL ES allows the application to model this effect by specifying the orientation of the
3D sources and listener, as described here, and a 3D source’s sound cone
[see section 8.6].

The orientation of an object can be specified using three alternative methods:

 SetOrientationAngles(), for setting it using three rotation angles relative to the
default orientation.

 SetOrientationVectors(), for setting it using orientation vectors relative to the
default orientation.

OpenSL ES 1.0.1 Specification 105

 Rotate(), for setting it using a rotation axis and a rotation angle relative to the
current orientation.

Orientation Angles

An orientation is expressed using rotation angles by specifying the heading, pitch and roll
rotations about the coordinate axes of the object. The new orientation is specified relative
to the initial orientation. Positive rotation directions around the coordinate axes are
counterclockwise when looking towards the origin from a positive coordinate position on
each axis. The initial orientation is facing out towards the negative z-axis of the world, up-
direction being towards the positive y-axis of the world. The heading specifies the rotation
about the object’s y-axis, the pitch specifies the heading about the object’s x-axis, and the
roll specifies the rotation about the object’s z-axis. The rotation is applied in the order:
heading, pitch, roll. Since the rotation angles are defined to be about the axes of the
object, not of the world, the consequence is that the heading rotation affects both the
pitch and roll, and the pitch rotation affects the roll.

roll

pitch

x

y

z

heading

Figure 25: Orientation angles

In the case of the listener, orientation angles map nicely to the physical movements of the
head: heading => turning around, pitch => nodding, and roll => tilting the head left and
right.

106 OpenSL ES 1.0.1 Specification

pi
tc

h

Figure 26: Orientation angles(2)

The conversion (without scaling) from heading, pitch and roll to Front and Up vectors is
defined by the following equations:

)sin()cos()cos()sin()sin(
)cos()cos(

)sin()sin()cos()cos()sin(
)cos()cos(z

)sin(
)cos()sin(

UP

UP

UP

FRONT

FRONT

pitchheadingrollheadingrollz
rollpitchy

headingpitchrollheadingrollx
pitchheading

pitchy
pitchheadingxFRONT

××+×=
×=

××+×−=
×−=

=
×−=

Orientation Vectors

When specifying the orientation, we consider the following vectors:

 Front: this vector specifies the frontal direction of the object.
 Up: this vector specifies the upward direction of the object. The Up vector is

perpendicular to the Front vector.

 Above: this vector specifies a direction above the object, on the plane defined by
the Front and Up vectors.

These vectors are shown for the listener’s orientation in the diagram below.

OpenSL ES 1.0.1 Specification 107

Above

Up

y

x

z Front

Figure 27: Orientation vectors

The Right and Up vectors of the object are calculated by first calculating the Right vector
as the cross product of the Front vector and the Above vector, and then the Up vector as a
cross product of the Right and Front vectors.

The method SetOrientation() vector has Front and Above vectors as parameters, but
GetOrientation() returns the Up vector. The benefit of using the Above vector instead of
the Up vector in the setter is that the application does not need to calculate the Up vector.
The difference between the Above and Up vectors is that the Up vector must have a 90
degree angle to the Front vector, but the Above vector does not need (but is allowed) to
have it. For example, if the application never wants to roll the listener’s head and the
listener is just turning around and maybe nodding a little, the application can use a
constant Above vector (0, 1000, 0) and just calculate the Front vector.

108 OpenSL ES 1.0.1 Specification

Rotate Method

The Rotate method can be used in order to turn the object from its current orientation by
defining the rotation axis and the amount of rotation using a theta angle. This rotation
follows the right-hand rule, so if the rotation axis points toward the user, the rotation will
be counterclockwise. The following diagram illustrates altering the existing orientation
using the Rotate method.

Figure 28: Rotate method

OpenSL ES 1.0.1 Specification 109

Prototype
extern const SLInterfaceID SL_IID_3DLOCATION;

struct SL3DLocationItf_;
typedef const struct SL3DLocationItf_ * const * SL3DLocationItf;

struct SL3DLocationItf_ {
 SLresult (*SetLocationCartesian) (
 SL3DLocationItf self,
 const SLVec3D *pLocation
);
 SLresult (*SetLocationSpherical) (
 SL3DLocationItf self,
 SLmillidegree azimuth,
 SLmillidegree elevation,
 SLmillimeter distance
);
 SLresult (*Move) (
 SL3DLocationItf self,
 const SLVec3D *pMovement
);
 SLresult (*GetLocationCartesian) (
 SL3DLocationItf self,
 SLVec3D *pLocation
);
 SLresult (*SetOrientationVectors) (
 SL3DLocationItf self,
 const SLVec3D *pFront,
 const SLVec3D *pAbove
);
 SLresult (*SetOrientationAngles) (
 SL3DLocationItf self,
 SLmillidegree heading,
 SLmillidegree pitch,
 SLmillidegree roll
);
 SLresult (*Rotate) (
 SL3DLocationItf self,
 SLmillidegree theta,
 const SLVec3D *pAxis
);
 SLresult (*GetOrientationVectors) (
 SL3DLocationItf self,
 SLVec3D *pFront,
 SLVec3D *pUp
);
};

110 OpenSL ES 1.0.1 Specification

Interface ID

2b878020-ddd3-11db-8a01-0002a5d5c51b

Defaults

Location (x, y, z): (0 mm, 0 mm, 0 mm)

Front orientation (x, y, z): (0, 0, -1000)

Up orientation (x, y, z): (0, 1000, 0)

That is, the initial position is the origin and the initial orientation is towards the negative Z-
axis, the up-direction being towards the positive Y-axis. In rotation angles this equals:
heading = 0 degrees; pitch = 0 degrees and roll = 0 degrees.

Methods

SetLocationCartesian
SLresult (*SetLocationCartesian) (
 SL3DLocationItf self,
 const SLVec3D *pLocation
);

Description Sets the object’s 3D location using Cartesian coordinates.

Pre-conditions None

self [in] Interface self-reference. Parameters

pLocation [in] Pointer to a vector containing the 3D location in
right-handed Cartesian coordinates.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 111

SetLocationSpherical
SLresult (*SetLocationSpherical) (
 SL3DLocationItf self,
 SLmillidegree azimuth,
 SLmillidegree elevation,
 SLmillimeter distance
);

Description Sets the object’s 3D location using spherical coordinates.

Pre-conditions None

self [in] Interface self-reference.

azimuth [in] The azimuth angle in millidegrees. The valid
range is [-360000, 360000].

elevation [in] The elevation angle in millidegrees. The valid
range is [-90000, 90000].

Parameters

distance [in] The distance in millimeters from the origin. The
valid range is [0, SL_MILLIMETER_MAX].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

Move
SLresult (*Move) (
 SL3DLocationItf self,
 const SLVec3D *pMovement
);

Description Moves the object pMovement amount relative to the current location.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMovement [in] Pointer to a vector containing the transform in
right-handed Cartesian coordinates.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments If the move would cause the object to be located outside of the
SLint32 space the behavior of this method is undefined.

112 OpenSL ES 1.0.1 Specification

GetLocationCartesian
SLresult (*GetLocationCartesian) (
 SL3DLocationItf self,
 SLVec3D *pLocation
);

Description Gets the object’s 3D location expressed in Cartesian coordinates.

Pre-conditions None

self [in] Interface self-reference. Parameters

pLocation [out] Pointer to a vector to receive the 3D location in
right-handed Cartesian coordinates. This must
be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The accuracy of the output location is limited: one or more of the
components (x, y or z) can differ by (a) up to 4% of the largest
(absolute) vector component, or (b) 1 mm from the accurate value,
which ever is greater.

OpenSL ES 1.0.1 Specification 113

SetOrientationVectors
SLresult (*SetOrientationVectors) (
 SL3DLocationItf self,
 const SLVec3D *pFront,
 const SLVec3D *pAbove
);

Description Sets the object’s 3D orientation using vectors.

Pre-conditions None

self [in] Interface self-reference.

pFront [in] Pointer to a vector specifying the Front vector of
the object in the world coordinate system.

Parameters

pAbove [in] Pointer to a vector specifying the Above vector
mentioned above.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The specified vectors need not be unit vectors (for example,
normalized): they can have any non-zero magnitude.

Please note that there are three alternative methods for setting the
orientation: SetOrientationAngles for setting it using angles
relative to the default orientation, SetOrientationVectors for
setting it using orientation vectors relative to the default orientation
and Rotate for setting it using the given rotation axis and angle
relative to the current orientation.

If any argument is close to the zero vector; or if the specified vectors
are close to parallel the SL_RESULT_PARAMETER_INVALID error code
will be returned and the orientation of the object will remain
unchanged.

114 OpenSL ES 1.0.1 Specification

SetOrientationAngles
SLresult (*SetOrientationAngles) (
 SL3DLocationItf self,
 SLmillidegree heading,
 SLmillidegree pitch,
 SLmillidegree roll
);

Description Sets the object’s 3D orientation using angles.

Pre-conditions None

self [in] Interface self-reference.

heading [in] The angle of rotation around the y-axis in
millidegrees. The valid range is [-360000,
360000].

pitch [in] The angle of rotation around the x-axis in
millidegrees. The valid range is [-90000,
90000].

Parameters

roll [in] The angle of rotation around the z-axis in
millidegrees. The valid range is [-360000,
360000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 115

Rotate
SLresult (*Rotate) (
 SL3DLocationItf self,
 SLmillidegree theta,
 const SLVec3D *pAxis
);

Description Rotates the object’s orientation. The rotation is theta millidegrees
relative to the current orientation. This rotation follows the right-
hand rule, so if the rotation axis (pAxis) points toward the user, the
rotation will be counterclockwise.

Pre-conditions None

self [in] Interface self-reference.

theta [in] The amount of rotation in millidegrees.

Parameters

pAxis [in] The rotation axis. This must not be a zero
vector, but the length does not matter.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

116 OpenSL ES 1.0.1 Specification

GetOrientationVectors
SLresult (*GetOrientationVectors) (
 SL3DLocationItf self,
 SLVec3D *pFront,
 SLVec3D *pUp
);

Description Gets the object’s 3D orientation as vectors.

Pre-conditions None

self [in] Interface self-reference.

pFront [out] Pointer to a vector to receive the current front
orientation. This must be non-NULL. The vector
will have a normalized length of approximately
1000 mm.

Parameters

pUp [out] Pointer to a vector to receive the current up
orientation. This must be non-NULL. The vector
will have a normalized length of approximately
1000 mm.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The accuracy of the output orientations is limited: one or more of the
components (x, y or z) can differ by (a) up to 4% of the largest
(absolute) vector component, or (b) 1 mm from the accurate value,
which ever is greater.

OpenSL ES 1.0.1 Specification 117

8.5 SL3DMacroscopicItf

Description
This interface is for controlling the size of a 3D sound source. By default, a sound source
has a size of zero – that is, it is a point. This interface allows the dimensions (width, height,
and depth) of a sound source to be specified so that it no longer behaves as a point source.
This is useful for relatively big sound sources like waterfalls. The orientation of the
macroscopic volume also can be specified. See the Orientation section in 8.4 for detailed
explanation of different methods for setting the orientation.

The following diagram illustrates how the dimensions map to the orientation vectors of the
3D source.

Figure 29: Dimensions-orientation vectors

It is good practice to use the macroscopic effect only on selected, relatively big 3D sources,
on which the effect will be most effective or noticeable, since macroscopic effect
processing can use additional memory and processing power. Developers can conserve
resources by exposing this interface only on 3D sources that require the macroscopic effect.

Please note that you can use the SL3DLocationItf interface to locate the 3D sound
source; the location defined by 3DLocationItf is the location of the center of the
macroscopic sound source.

Please note that you can use the SL3DSourceItf interface to specify the distance
attenuation model of the 3D sound source. The exact distance used for distance
attenuation calculation in the case of a macroscopic source is implementation-dependent
and the implementation can take into account the macroscopicity near the sound source.
The application should specify the distance attenuation as it would in the case where the

118 OpenSL ES 1.0.1 Specification

source is a point source. Relatively far from the macroscopic sound source, the distance
attenuation behaves similarly to non-macroscopic sources.

Please note that you can use the SL3DSourceItf interface to specify the directivity model
of the 3D sound source. Relatively far from the macroscopic sound source, the directivity-
based attenuation behaves similarly to non-macroscopic sources. The exact directivity-
based attenuation near the macroscopic sound source is implementation-dependent and
the implementation can take into account the macroscopicity when the sound source is
near the listener. The application should specify the directivity as it would in cases where
the source is a point source.

This interface can be exposed on the 3DGroup object, if macroscopicity is supported.

The following restriction must be adhered to when exposing this interface on a player:

 This interface can be exposed on a player only if the SL3DLocationItf interface is
exposed on the same player. This interface can be exposed on a player at creation as
long as the SL3DLocationItf is also exposed at creation.

Parameter changes made using this interface may be deferred using the SL3DCommitItf
interface [see section 8.1].

Prototype
extern const SLInterfaceID SL_IID_3DMACROSCOPIC;

struct SL3DMacroscopicItf_;
typedef const struct SL3DMacroscopicItf_ * const * SL3DMacroscopicItf;

struct SL3DMacroscopicItf_ {
 SLresult (*SetSize) (
 SL3DMacroscopicItf self,
 SLmillimeter width,
 SLmillimeter height,
 SLmillimeter depth
);
 SLresult (*GetSize) (
 SL3DMacroscopicItf self,
 SLmillimeter *pWidth,
 SLmillimeter *pHeight,
 SLmillimeter *pDepth
);
 SLresult (*SetOrientationAngles) (
 SL3DMacroscopicItf self,
 SLmillidegree heading,
 SLmillidegree pitch,
 SLmillidegree roll
);

OpenSL ES 1.0.1 Specification 119

 SLresult (*SetOrientationVectors) (
 SL3DMacroscopicItf self,
 const SLVec3D *pFront,
 const SLVec3D *pAbove
);

SLresult (*Rotate) (
 SL3DMacroscopicItf self,
 SLmillidegree theta,
 const SLVec3D *pAxis

);
 SLresult (*GetOrientationVectors) (
 SL3DMacroscopicItf self,
 SLVec3D *pFront,
 SLVec3D *pUp
);
};

Interface ID

5089aec0-ddd3-11db-9ad3-0002a5d5c51b

Defaults

Size (width, height, depth): (0 mm, 0 mm, 0 mm) – a point

Front orientation (x, y, z): (0, 0, -1000) – looking forward

Up orientation (x, y, z): (0, 1000, 0) - looking up

That is, the initial position is the origin and the initial orientation is towards the negative Z-
axis, up-direction being towards the positive Y-axis. In rotation angles, this equals:
heading = 0 degrees; pitch = 0 degrees and roll = 0 degrees.

120 OpenSL ES 1.0.1 Specification

Methods

SetSize
SLresult (*SetSize)(
 SL3DMacroscopicItf self,
 SLmillimeter width,
 SLmillimeter height,
 SLmillimeter depth
);

Description Sets the size of the 3D sound source.

Pre-conditions None

self [in] Interface self-reference.

width [in] The “width” of the sound source in its
transformed X (or “right”) dimension, in
millimeters. The valid range in [0,
SL_MILLIMETER_MAX].

height [in] The “height” of the sound source in its
transformed Y (or “up”) dimension, in
millimeters. The valid range in [0,
SL_MILLIMETER_MAX].

Parameters

depth [in] The “thickness” or “depth” of the sound source in
its transformed Z (or “front”) dimension, in
millimeters. The valid range in [0,
SL_MILLIMETER_MAX].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 121

GetSize
SLresult (*GetSize)(
 SL3DMacroscopicItf self,
 SLmillimeter *pWidth,
 SLmillimeter *pHeight,
 SLmillimeter *pDepth
);

Description Gets the size of the 3D sound source.

Pre-conditions None

self [in] Interface self-reference. Parameters

pWidth [out] The “width” of the sound source in its
transformed X (or “right”) dimension, in
millimeters. This parameter must be non-NULL.

 pHeight [out] The “height” of the sound source in its
transformed Y (or up) dimension, in millimeters.
This parameter must be non-NULL.

 pDepth [out] The “thickness” or “depth” of the sound source
in its transformed Z (or front) dimension, in
millimeters. This parameter must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

122 OpenSL ES 1.0.1 Specification

SetOrientationAngles
SLresult (*SetOrientationAngles)(
 SL3DMacroscopicItf self,
 SLmillidegree heading,
 SLmillidegree pitch,
 SLmillidegree roll
);

Description Sets the 3D orientation of the macroscopic volume using angles.

Pre-conditions None

self [in] Interface self-reference.

heading [in] The rotation around the Y-axis of the object, in
millidegrees. The valid range is [-360000,
360000].

Parameters

pitch [in] The rotation around the X-axis of the object, in
millidegrees. The valid range is [-90000,
90000].

 roll [in] The rotation around the Z-axis of the object, in
millidegrees. The valid range is [-360000,
360000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Please note that there are three alternative methods for setting the
orientation: setOrientationAngles for setting it using angles
relative to the default orientation, setOrientationVectors for
setting it using orientation vectors relative to the default orientation,
and Rotate for setting it using the given rotation axis and angle
relative to the current orientation.

OpenSL ES 1.0.1 Specification 123

SetOrientationVectors
SLresult (*SetOrientationVectors)(
 SL3DMacroscopicItf self,
 const SLVec3D *pFront,
 const SLVec3D *pAbove
);

Description Sets the 3D orientation of the macroscopic volume using vectors.

The specified vectors need not be unit vectors (that is, normalized):
they can have any non-zero magnitude.

Pre-conditions None

self [in] Interface self-reference.

pFront [in] Pointer to a vector specifying the front vector of
the object in the world coordinate system.

Parameters

pAbove [in] Pointer to a vector specifying the “above”
vector mentioned above.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Please note that there are three alternative methods for setting the
orientation: SetOrientationAngles for setting it using angles
relative to the default orientation, SetOrientationVectors for
setting it using orientation vectors relative to the default orientation
and Rotate for setting it using the given rotation axis and angle
relative to the current orientation.

If any argument is close to the zero vector; or if the specified vectors
are close to parallel the SL_RESULT_PARAMETER_INVALID error code
will be returned and the orientation of the object will remain
unchanged.

124 OpenSL ES 1.0.1 Specification

Rotate
SLresult (*Rotate) (
 SL3DMacroscopicItf self,
 SLmillidegree theta,
 const SLVec3D *pAxis
);

Description Rotates the macroscopic volume’s orientation. The rotation is theta
millidegrees relative to the current orientation. This rotation follows
the right-hand rule, so if the rotation axis (pAxis) points toward the
user, the rotation will be counterclockwise.

Pre-conditions None

self [in] Interface self-reference.

theta [in] The amount of rotation in millidegrees.

Parameters

pAxis [in] The rotation axis. This must not be a zero
vector, but the length does not matter.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Please note that there are three alternative methods for setting the
orientation: setOrientationAngles for setting it using angles
relative to the default orientation, setOrientationVectors for
setting it using orientation vectors relative to the default orientation
and Rotate for setting it using the given rotation axis and angle
relative to the current orientation.

OpenSL ES 1.0.1 Specification 125

GetOrientationVectors
SLresult (*GetOrientationVectors)(
 struct SL3DMacroscopicItf self,
 SLVec3D *pFront,
 SLVec3D *pUp
);

Description Gets the 3D orientation of the macroscopic volume.

Pre-conditions None

self [in] Interface self-reference.

pFront [out] Pointer to a vector to receive the current front
orientation. The vector will have a normalized
length of approximately 1000 mm. This must
be non-NULL.

Parameters

pUp [out] Pointer to a vector to receive the current up
orientation. The vector will have a normalized
length of approximately 1000 mm. This must
be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The accuracy of the output orientations is limited: one or more of the
components (x, y or z) can differ by (a) up to 4% of the largest
(absolute) vector component, or (b) 1 mm from the accurate value,
which ever is greater.

126 OpenSL ES 1.0.1 Specification

8.6 SL3DSourceItf

Description

This interface controls 3D parameters that are unique to 3D sources. If this interface is
exposed on a 3D group, the methods control the 3D characteristics of all the players in the
3D group.

The following restriction must be adhered to when exposing this interface on a player
object:

 This interface can be exposed on a player only if the SL3DLocationItf interface is
exposed on the same player. This interface can be exposed on a player at creation as
long as the SL3DLocationItf is also exposed at creation.

Parameter changes made using this interface may be deferred using the SL3DCommitItf
interface [see section 8.1].

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section
7.8] and 3D Group [see section 7.8] objects.

See section B.5.2 for an example using this interface.

Head Relative

In most cases, the listeners and 3D sources move independently of each other. However,
in some cases a sound source may track the listener’s position. Consider, for example, a
first person game where the listener and camera view are identical. As the listener moves,
any footsteps the listener makes are likely to track the listener at a fixed position.

OpenSL ES provides support for this behavior by allowing the developer to register a 3D
source as head relative. When a 3D source is in head relative mode, its location, velocity,
and orientation are specified relative to the listener’s location, velocity, and orientation.
The consequence of this is that as the listener moves, the 3D source will stay at a constant
distance from the listener when the 3D source’s location is not changed.

Distance Rolloff

The level of sound source heard by a listener decreases as a sound source moves further
away. This is called distance rolloff. OpenSL ES provides several methods to control a 3D
source’s rolloff characteristics.

The starting point for the OpenSL ES distance rolloff model is a minimum distance that
must be specified for each 3D source (or left at the default of one meter). This is the

OpenSL ES 1.0.1 Specification 127

distance at which the gain due to rolloff is constant at unity (that is, the 3D source is
neither attenuated nor amplified). The minimum distance is used for representing the size
(in audio-centric terms) of the sound source the 3D source represents. The minimum
distance is required because it is standard practice of sound designers to normalize the
audio data. Without any adjustment of overall 3D source’s minimum distance, a sound
sample of an insect would sound as loud as that of a train engine at a given distance.

A developer can also control the maximum distance of a 3D source. This is the distance at
which the 3D source’s distance rolloff gain is clamped or muted altogether, depending on
the mute at maximum distance setting.

The minimum and maximum distances control the distances at which attenuation is
applied, but they do not control the rate of attenuation. For this the developer can set the
distance rolloff model and its rolloff factor.

OpenSL ES supports two different distance rolloff models: an exponential rolloff model, in
which the level of sound decays at an exponential rate due to distance, and a linear rolloff
model, in which the sound decays at a linear rate due to distance.

The exponential distance rolloff model is defined as follows:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

=≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=≥
<

=

otherwise

 and if

 and if0
 if1

min

max
max

min

max

min

torrolloffFac

torrolloffFac

d

d
d

falseteDistanceMurolloffMax dd
d
d

trueteDistanceMurolloffMax dd
 dd

G

where:

 dG is the linear gain due to distance rolloff at distance d .

 d is the distance between the 3D source and the listener. This is calculated as the
length of the vector that is formed by subtracting the listener’s location vector from
the 3D source’s location vector (or when in head relative mode, simply the length of
the 3D source’s location vector). If the SL3DLocationItf interface is not exposed
on the listener, the default listener location is used in this calculation.

 mind is the minimum distance in millimeters; the distance from the listener within
which the 3D source gain is constant. This distance is set in
SetRolloffDistances().

 maxd is the maximum distance in millimeters; the distance from the listener at

which the 3D source gain is no longer attenuated due to distance. This distance is
set in SetRolloffDistances().

128 OpenSL ES 1.0.1 Specification

 tor is the rate at which the gain attenuates due to distance. This is set

using a permille scale in SetRolloffFactor(). 1000 ‰ is equal to a rolloff factor
of one.

rolloffFac

 te controls whether the 3D source is muted when its distance
from the listener is beyond the maximum distance. This is set using
SetRolloffMaxDistanceMute().

DistanceMurolloffMax

The exponential distance model closely matches the distance effect in the real world. The
rolloff factor controls the rate of decay. The graph below shows the effect of the rolloff
factor at 0.5 (500 ‰), one (1000 ‰), the default rolloff factor, and two (2000 ‰). In
this example, the minimum distance is 1000 mm, the maximum distance is 12000 mm and
the 3D source is configured to mute at the maximum distance.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Distance (meters)

G
ai

n
fa

ct
or

Rolloff 0.5 (500 ‰)

Rolloff 1.0 (1000 ‰)

Rolloff 2.0 (2000 ‰)

Figure 30: Rolloff factor effect

OpenSL ES 1.0.1 Specification 129

OpenSL ES also supports a linear distance model. This does not accurately model real-
world distance rolloff, but can be useful for some games. The linear distance rolloff model
is defined as follows:

()

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
×−

=
≥

−

=
≥
<

=

otherwise1 ,0max

and if

1 ,0max

 and if

0

 if1

minmax

min

max

max

min

dd
ddtorrolloffFac

falseteDistanceMurolloffMax
 dd

torrolloffFac

trueteDistanceMurolloffMax
 dd
 dd

Gd

where:

 dG is the linear gain due to distance rolloff at distance d .

 d is the distance between the 3D source and the listener. This is calculated as the
length of the vector that is formed by subtracting the listener’s location vector from
the 3D source’s location vector (or when in head relative mode, simply the length of
the 3D source’s location vector). If the SL3DLocationItf interface is not exposed
on the listener, the default listener location is used in this calculation.

 mind is the minimum distance in millimeters; the distance from the listener within
which the 3D source gain is constant. This distance is set in
SetRolloffDistances().

 maxd is the maximum distance in millimeters; the distance from the listener at

which the 3D source gain is no longer attenuated due to distance. This distance is
set in SetRolloffDistances().

 tor is the rate at which the gain attenuates due to distance. This is set

using a permille scale in SetRolloffFactor(). 1000 ‰ is equal to a rolloff factor
of one.

rolloffFac

 te controls whether the 3D source is muted when its distance
from the listener is beyond the maximum distance. This is set using
SetRolloffMaxDistanceMute().

DistanceMurolloffMax

130 OpenSL ES 1.0.1 Specification

The graph below shows the effect of different rolloff factors when using the linear rolloff
model. In this example, the minimum distance is 1000 mm, the maximum distance is
12000 mm and the 3D source is configured to mute at the maximum distance.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Distance (meters)

G
ai

n
fa

ct
or

Rolloff 0.5 (500 ‰)

Rolloff 1.0 (1000 ‰)

Rolloff 2.0 (2000 ‰)

Figure 31: Linear rolloff

Room Rolloff

The equations above show how to calculate a 3D source’s direct path distance rolloff.
These same equations are also used for calculating a 3D source’s reverb path distance
rolloff, but using the room rolloff factor (set using SetRoomRolloffFactor()) instead of
the standard rolloff factor. This allows an application to control the rolloff rate for a sound
source’s contribution to a reverb environment separately from its direct path contribution.

OpenSL ES 1.0.1 Specification 131

The minimum and maximum rolloff distances are the same for both the direct path and
reverb path.

Sound Cones
Many sound sources are omnidirectional, that is, they radiate sound equally in all
directions so that they sound exactly the same no matter what their orientation. An
example would be an exploding bomb. Other sound sources are more accurately
represented by a 3D source that radiates more sound in one direction than in others(as,
for example, a human voice), which projects more forwards than in other directions.

Real life radiation patterns for directional sources are complex, but a good effect can be
created using the concept of the “sound cone”, the axis of which defines the direction of
strongest radiation, as shown in the diagram below.

Cone outer angle
Cone inner angle

Orientation
vector

directional
sound source

Level = 0 mB

Gain transition
area

Level = Cone outer level

Figure 32: Sound cone

The cone inner and cone outer angles define the inner and outer sound cones, respectively.
Within the inner cone, the sound source’s level is constant, with no attenuation applied.
Outside the outer cone, the sound source’s level has an attenuation equal to the cone
outer level. Between the inner and outer cones, perceived sound decreases linearly as the
angle of the listener from the axis of orientation of the sound source increases. If
SL3DLocationItf is not exposed on the listener, the default listener orientation is
assumed for the listener.

If the cone outer angle is not much larger than the cone inner angle, there will be a
relatively sudden change in volume as the listener moves through these angles. This would
be appropriate for some kind of weapon that emits a narrow beam, for example. A useful

132 OpenSL ES 1.0.1 Specification

optical analogy is a lighthouse, which emits a beam of light. The wider the beam, the
larger the cone inner angle should be. The sharper the focus of the edge of the beam, the
closer the cone outer angle should be to the cone inner angle.

One way to think about cone outer level is to think of the directional and omnidirectional
components of the sound source. If a cone outer level close to 0 mB is specified, most of
the 3D source’s power will be omnidirectional. Conversely, if a value close to silence is
specified, most of the power will be directional.

Prototype
extern const SLInterfaceID SL_IID_3DSOURCE;

struct SL3DSourceItf_;
typedef const struct SL3DSourceItf_ * const * SL3DSourceItf;

struct SL3DSourceItf_ {
 SLresult (*SetHeadRelative) (
 SL3DSourceItf self,
 SLboolean headRelative
);
 SLresult (*GetHeadRelative) (
 SL3DSourceItf self,
 SLboolean *pHeadRelative
);
 SLresult (*SetRolloffDistances) (
 SL3DSourceItf self,
 SLmillimeter minDistance,
 SLmillimeter maxDistance
);
 SLresult (*GetRolloffDistances) (
 SL3DSourceItf self,
 SLmillimeter *pMinDistance,
 SLmillimeter *pMaxDistance
);
 SLresult (*SetRolloffMaxDistanceMute) (
 SL3DSourceItf self,
 SLboolean mute
);
 SLresult (*GetRolloffMaxDistanceMute) (
 SL3DSourceItf self,
 SLboolean *pMute
);
 SLresult (*SetRolloffFactor) (
 SL3DSourceItf self,
 SLpermille rolloffFactor
);
 SLresult (*GetRolloffFactor) (
 SL3DSourceItf self,
 SLpermille *pRolloffFactor
);

OpenSL ES 1.0.1 Specification 133

 SLresult (*SetRoomRolloffFactor) (
 SL3DSourceItf self,
 SLpermille roomRolloffFactor
);
 SLresult (*GetRoomRolloffFactor) (
 SL3DSourceItf self,
 SLpermille *pRoomRolloffFactor
);
 SLresult (*SetRolloffModel) (
 SL3DSourceItf self,
 SLuint8 model
);
 SLresult (*GetRolloffModel) (
 SL3DSourceItf self,
 SLuint8 *pModel
);
 SLresult (*SetCone) (
 SL3DSourceItf self,
 SLmillidegree innerAngle,
 SLmillidegree outerAngle,
 SLmillibel outerLevel
);
 SLresult (*GetCone) (
 SL3DSourceItf self,
 SLmillidegree *pInnerAngle,
 SLmillidegree *pOuterAngle,
 SLmillibel *pOuterLevel
);
};

Interface ID

70bc7b00-ddd3-11db-a873-0002a5d5c51b

Defaults

Head Relative: SL_BOOLEAN_FALSE

Max Distance Mute: SL_BOOLEAN_FALSE

Max Distance: SL_MILLIMETER_MAX

Min Distance: 1000 mm

Cone Angles (inner, outer): (360000 mdeg, 360000 mdeg)

Cone Outer Level: 0 mB

Rolloff Factor: 1000 ‰

134 OpenSL ES 1.0.1 Specification

Room rolloff factor: 0 ‰

Distance Model: SL_ROLLOFFMODEL_EXPONENTIAL

Methods

SetHeadRelative
SLresult (*SetHeadRelative) (
 SL3DSourceItf self,
 SLboolean headRelative
);

Description Sets whether the 3D source should be treated as head relative.

Pre-conditions None

self [in] Interface self-reference. Parameters

headRelative [in] If true, the 3D source is considered head
relative: the properties of the 3D source’s
location, velocity, and orientation are treated
as relative to the listener rather than the
origin. If false, these properties of the 3D
source are treated as relative to the origin.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments When headRelative is equal to true, sound sources track the
listener’s position (such as footsteps).

OpenSL ES 1.0.1 Specification 135

GetHeadRelative
SLresult (*GetHeadRelative) (
 struct SL3DSourceItf self,
 SLboolean *pHeadRelative
);

Description Gets the 3D source’s head relative state.

Pre-conditions None

self [in] Interface self-reference. Parameters

pHeadRelative [out] Pointer to a location to receive a Boolean
signifying whether or not the 3D source is in
head relative mode. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

136 OpenSL ES 1.0.1 Specification

SetRolloffDistances
SLresult (*SetRolloffDistances) (
 SL3DSourceItf self,
 SLmillimeter minDistance,
 SLmillimeter maxDistance
);

Description Sets the minimum and maximum distances of the 3D source.

The minimum distance is the distance from the listener within
which the 3D source gain is constant.

The maximum distance is the distance from the listener at which
the 3D source gain is no longer attenuated due to distance.

Pre-conditions minDistance must be <= maxDistance.

self [in] Interface self-reference.

minDistance [in] The minimum distance of the 3D source. The
valid range is (0, SL_MILLIMETER_MAX].

Parameters

maxDistance [in] The distance in millimeters at which the 3D
source’s gain is no longer attenuated due to
distance. The value SL_MILLIMETER_MAX is
used where the 3D source continues to
attenuate, whatever the distance. The valid
range is [minDistance,
SL_MILLIMETER_MAX].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 137

GetRolloffDistances
SLresult (*GetRolloffDistances) (
 struct SL3DSourceItf self,
 SLmillimeter *pMinDistance,
 SLmillimeter *pMaxDistance
);

Description Gets the 3D source’s minimum and maximum distances.

Pre-conditions None

self [in] Interface self-reference.

pMinDistance [out] Pointer to a location to receive the minimum
distance for the 3D source. This must be non-
NULL.

Parameters

pMaxDistance [out] Pointer to a location to receive the maximum
distance for the 3D source. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

SetRolloffMaxDistanceMute
SLresult (*SetRolloffMaxDistanceMute) (
 SL3DSourceItf self,
 SLboolean mute
);

Description Sets whether the 3D source is muted when beyond the maximum
rolloff distance.

Pre-conditions None

self [in] Interface self-reference. Parameters

mute [in] If true, the 3D source is muted when it is
more than the maximum distance away from
the listener; otherwise, it is not muted.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments None

138 OpenSL ES 1.0.1 Specification

GetRolloffMaxDistanceMute
SLresult (*GetRolloffMaxDistanceMute) (
 struct SL3DSourceItf self,
 SLboolean *pMute
);

Description Gets whether 3D source is muted when beyond the maximum
rolloff distance.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMute

[out] Pointer to a location to receive a Boolean
signifying whether the 3D source is muted
beyond the maximum distance. This must be
non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

SetRolloffFactor
SLresult (*SetRolloffFactor) (
 SL3DSourceItf self,
 SLpermille rolloffFactor
);

Description Sets the distance rolloff factor for the 3D source.

Pre-conditions None

self [in] Interface self-reference. Parameters

rolloffFactor [in] The rolloff factor in permille. The valid
range is [0, 10000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 139

GetRolloffFactor
SLresult (*GetRolloffFactor) (
 struct SL3DSourceItf self,
 SLpermille *pRolloffFactor
);

Description Gets the distance rolloff factor for the 3D source.

Pre-conditions None

self [in] Interface self-reference. Parameters

pRolloffFactor [out] Pointer to a location to receive the rolloff
factor. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

SetRoomRolloffFactor
SLresult (*SetRoomRolloffFactor) (
 SL3DSourceItf self,
 SLpermille roomRolloffFactor
);

Description Sets the room rolloff factor for the 3D source.

Pre-conditions None

self [in] Interface self-reference. Parameters

roomRolloffFactor [in] The room rolloff factor in permille. The
valid range is [0, 10000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

140 OpenSL ES 1.0.1 Specification

GetRoomRolloffFactor
SLresult (*GetRoomRolloffFactor) (
 struct SL3DSourceItf self,
 SLpermille *pRoomRolloffFactor
);

Description Gets the distance room rolloff factor for the 3D source.

Pre-conditions None

self [in] Interface self-reference. Parameters

pRoomRolloffFactor [out] Pointer to a location to receive the
room rolloff factor. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

SetRolloffModel
SLresult (*SetRolloffModel) (
 SL3DSourceItf self,
 SLuint8 model
);

Description Sets the distance rolloff model used for calculating decay due to
distance for the 3D source.

Pre-conditions None

self [in] Interface self-reference. Parameters

model [in] The distance models. The standard distance
models supported by all implementations
are: SL_ROLLOFFMODEL_LINEAR,
SL_ROLLOFFMODEL_EXPONENTIAL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 141

GetRolloffModel
SLresult (*GetRolloffModel) (
 struct SL3DSourceItf self,
 SLuint8 *pModel
);

Description Gets the distance rolloff model for the 3D source.

Pre-conditions None

self [in] Interface self-reference. Parameters

pModel [out] Pointer to location to receive the distance
model. The standard distance models
supported by all implementations are:
SL_ROLLOFFMODEL_LINEAR,
SL_ROLLOFFMODEL_EXPONENTIAL. This must
be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

142 OpenSL ES 1.0.1 Specification

SetCone
SLresult (*SetCone) (
 SL3DSourceItf self,
 SLmillidegree innerAngle,
 SLmillidegree outerAngle,
 SLmillibel outerLevel
);

Description Sets the sound cones for the 3D source.

Pre-conditions innerAngle must be <= outerAngle.

self [in] Interface self-reference.

innerAngle [in] Inner cone angle in millidegrees. Its value
should be in the range [0, 360000].

outerAngle [in] Outer cone angle in millidegrees. Its value
should be in the range [0, 360000].

Parameters

outerLevel [in] Outer cone volume in millibels. Its value
should be in the range [SL_MILLIBEL_MIN,
0]. The special value SL_MILLBEL_MIN
indicates that the cone outer volume should
be silent.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 143

GetCone
SLresult (*GetCone) (
 struct SL3DSourceItf self,
 SLmillidegree *pInnerAngle,
 SLmillidegree *pOuterAngle,
 SLmillibel *pOuterLevel
);

Description Gets the sound cones for the 3D source.

Pre-conditions None

self [in] Interface self-reference.

pInnerAngle [out] Pointer to location to receive the inner cone
angle. This must be non-NULL.

pOuterAngle [out] Pointer to location to receive the outer cone
angle. This must be non-NULL.

Parameters

pOuterLevel [out] Pointer to a location to receive the cone
outer level in millibels. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

144 OpenSL ES 1.0.1 Specification

8.7 SLAudioDecoderCapabilitiesItf

Description

This interface provides methods for querying the audio decoding capabilities of the audio
engine.

This interface provides a means of enumerating all audio decoders available on an engine
where a decoderId represents each decoder. It also provides a means to query the
capabilities of each decoder. A given decoder may support several profile/mode pairs each
with their own capabilities (such as maximum sample rate or bit rate) appropriate to that
profile and mode pair. Therefore, this interface represents the capabilities of a particular
decoder as a list of capability entries queriable by decoderID and capability entry index.

The set of audio decoders supported by the engine does not change during the lifetime of
the engine though dynamic resource constraints may limit actual availability when an
audio decoder is requested.

This interface is supported on engine objects [see section 7.4].

Prototype
extern const SLInterfaceID SL_IID_AUDIODECODERCAPABILITIES;

struct SLAudioDecoderCapabilitiesItf_;
typedef const struct SLAudioDecoderCapabilitiesItf_
 * const * SLAudioDecoderCapabilitiesItf;

struct SLAudioDecoderCapabilitiesItf_ {
 SLresult (*GetAudioDecoders) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 * pNumDecoders ,
 SLuint32 *pDecoderIds
);
 SLresult (*GetAudioDecoderCapabilities) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 decoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pDescriptor
);
};

Interface ID

3fe5a3a0-fcc6-11db-94ac-0002a5d5c51b

OpenSL ES 1.0.1 Specification 145

Defaults

Not applicable.

Methods

GetAudioDecoders
SLresult (*GetAudioDecoders) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 *pNumDecoders,
 SLuint32 *pDecoderIds
);

Description Retrieves the available audio decoders.

Pre-conditions None

Post-conditions None

self [in] Interface self-reference.

pNumDecoders [in/out] If pDecoderIds is NULL, pNumDecoders
returns the number of decoders available.
Returns 0 if there are no decoders.

If pDecodersIds is non-NULL, as an input
pNumDecoders specifies the size of the
pDecoderIds array and as an output it
specifies the number of decoder IDs
available within the pDecoderIds array.

Parameters

pDecoderIds [out] Array of audio decoders provided by the
engine. Refer to SL_AUDIOCODEC defines
[see section 9.2.1].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also GetAudioDecoderCapabilities()

146 OpenSL ES 1.0.1 Specification

GetAudioDecoderCapabilities
SLresult (*GetAudioDecoderCapabilities) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 decoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pDescriptor
);

Description Queries for the audio decoder capabilities.

Pre-conditions None

Post-conditions None

self [in] Interface self-reference.

decoderId [in] Identifies the supported audio decoder.
Refer to SL_AUDIOCODEC defines [see
section 9.2.1].

pIndex [in/out] If pDescriptor is NULL, pIndex returns
the number of capabilities structures
(one per profile/mode pair of the
decoder). Returns 0 if there are no
capabilities.

If pDescriptor is non-NULL, pIndex is
an incrementing value used for
enumerating capabilities structures.
Supported index range is 0 to N-1,
where N is the number of capabilities
structures, one for each profile/mode
pair of the decoder.

Parameters

pDescriptor [out] Pointer to structure defining the
capabilities of the audio

decoder. There is one structure per
profile/mode pair of the decoder.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This method outputs a structure that contains one or more pointers
to arrays. The memory for these arrays shall be allocated by the
implementation and shall not be deallocated by the application. The
implementation shall keep the data contained within the arrays valid
for the lifetime of this interface’s host object. (The memory for the
structure itself is allocated by the application and therefore shall be
freed by the application.)

See also GetAudioDecoders()

OpenSL ES 1.0.1 Specification 147

8.8 SLAudioEncoderItf

Description

This interface is used for setting the parameters to be used by an audio encoder. It is
realized on a media object with audio encoding capabilities, such as an audio recorder.
Once the supported codecs have been enumerated using
SLAudioEncoderCapabilitiesItf on the engine [see section 8.9], the encoding settings
can be set using this interface.

This interface is supported on Audio Recorder objects [see section 7.3].

Prototype
extern const SLInterfaceID SL_IID_AUDIOENCODER;

struct SLAudioEncoderItf_;
typedef const struct SLAudioEncoderItf_ * const * SLAudioEncoderItf;

struct SLAudioEncoderItf_ {
 SLresult (*SetEncoderSettings) (
 SLAudioEncoderItf self,
 SLAudioEncoderSettings *pSettings
);
 SLresult (*GetEncoderSettings) (
 SLAudioEncoderItf self,
 SLAudioEncoderSettings *pSettings
);
};

Interface ID

d0897d20-f774-11db-b80d-0002a5d5c51b

Defaults

No default settings are mandated.

148 OpenSL ES 1.0.1 Specification

Methods

SetEncoderSettings
SLresult (*SetEncoderSettings) (
 SLAudioEncoderItf self,
 SLAudioEncoderSettings *pSettings
);

Description Set audio encoder settings.

Pre-conditions None

self [in] Interface self-reference. Parameters

pSettings [in] Specifies the audio encoder settings to be
applied [see section 9.1.2].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also GetEncoderSettings()

GetEncoderSettings
SLresult (*GetEncoderSettings) (
 SLAudioEncoderItf self,
 SLAudioEncoderSettings *pSettings
);

Description Get audio encoder settings.

Pre-conditions None

self [in] Interface self-reference. Parameters

pSettings [out] Specifies a pointer to the structure that
will return the audio encoder settings [see
section 9.1.2].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also SetEncoderSettings()

OpenSL ES 1.0.1 Specification 149

8.9 SLAudioEncoderCapabilitiesItf

Description

This interface provides methods for querying the audio encoding capabilities of the audio
engine.

This interface provides a means of enumerating all audio encoders available on an engine
where an encoderId represents each encoder. It also provides a means to query the
capabilities of each encoder. A given encoder may support several profile/mode pairs, each
with their own capabilities (such as maximum sample rate or bit rate) appropriate to that
profile and mode pair. Therefore, this interface represents the capabilities of a particular
encoder as a list of capability entries queriable by encoderID and capability entry index.

The set of audio encoders supported by the engine does not change during the lifetime of
the engine though dynamic resource constraints may limit actual availability when an
audio encoder is requested.

This interface is supported on engine objects [see section 7.4].

Prototype
extern const SLInterfaceID SL_IID_AUDIOENCODERCAPABILITIES;

struct SLAudioEncoderCapabilitiesItf_;
typedef const struct SLAudioEncoderCapabilitiesItf_
 * const * SLAudioEncoderCapabilitiesItf;

struct SLAudioEncoderCapabilitiesItf_ {
 SLresult (*GetAudioEncoders) (
 SLAudioEncoderCapabilitiesItf self,
 SLuint32 *pNumEncoders,
 SLuint32 *pEncoderIds
);
 SLresult (*GetAudioEncoderCapabilities) (
 SLAudioEncoderCapabilitiesItf self,
 SLuint32 encoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pDescriptor
);
};

Interface ID

0f52a340-fcd1-11db-a993-0002a5d5c51b

150 OpenSL ES 1.0.1 Specification

Defaults

Not applicable.

Methods

GetAudioEncoders
SLresult (*GetAudioEncoders) (
 SLAudioEncoderCapabilitiesItf self,
 SLuint32 * pNumEncoders,
 SLuint32 *pEncoderIds
);

Description Queries the supported audio encoders.

Pre-conditions None

Post-conditions None

self [in] Interface self-reference.

pNumEncoders [in/out]
If pEncoderIds is NULL, pNumEncoders
returns the number of encoders available.
Returns 0 if there are no encoders.

If pEncodersIds is non-NULL, as an input
pNumEncoders specifies the size of the
pEncoderIds array and as an output it
specifies the number of encoder IDs
available within the pEncoderIds array.

Parameters

pEncoderIds [out] Array of audio encoders provided by the
engine. Refer to SL_AUDIOCODEC defines
[see section 9.2.1].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also GetAudioEncoderCapabilities ()

OpenSL ES 1.0.1 Specification 151

GetAudioEncoderCapabilities
SLresult (*GetAudioEncoderCapabilities) (
 SLAudioEncoderCapabilitiesItf self,
 SLuint32 encoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pDescriptor
);

Description Queries for the audio encoder’s capabilities.

Pre-conditions None

Post-conditions None

self [in] Interface self-reference.

encoderId [in] Identifies the supported audio encoder.
Refer to SL_AUDIOCODEC defines [see
section 9.2.1].

pIndex [in/out] If pCapabilities is NULL, pIndex returns
the number of capabilities. Returns 0 if
there are no capabilities.

If pCapabilities is non-NULL, pIndex is
an incrementing value used for
enumerating profiles. Supported index
range is 0 to N-1, where N is the
number of capabilities of the encoder.

Parameters

pDescriptor [out] Pointer to structure containing the
capabilities of the audio encoder [see
section 9.1.1].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This method outputs a structure that contains one or more pointers
to arrays. The memory for these arrays shall be allocated by the
implementation and shall not be deallocated by the application. The
implementation shall keep the data contained within the arrays valid
for the lifetime of this interface’s host object. (The memory for the
structure itself is allocated by the application and therefore shall be
freed by the application.)

See also GetAudioDecoders()

152 OpenSL ES 1.0.1 Specification

8.10 SLAudioIODeviceCapabilitiesItf

Description

This interface is for enumerating the audio I/O devices on the platform and for querying
the capabilities and characteristics of each available audio I/O device.

This interface is supported on the engine object [see section 7.4].

See Appendix C: for examples using this interface.

Prototype
extern const SLInterfaceID SL_IID_AUDIOIODEVICECAPABILITIES;

struct SLAudioIODeviceCapabilitiesItf_;
typedef const struct SLAudioIODeviceCapabilitiesItf_
 * const * SLAudioIODeviceCapabilitiesItf;

struct SLAudioIODeviceCapabilitiesItf_ {
 SLresult (*GetAvailableAudioInputs)(
 SLAudioIODeviceCapabilitiesItf self,
 SLint32 *pNumInputs,
 SLuint32 *pInputDeviceIDs
);
 SLresult (*QueryAudioInputCapabilities)(
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLAudioInputDescriptor *pDescriptor
);

 SLresult (*RegisterAvailableAudioInputsChangedCallback) (
 SLAudioIODeviceCapabilitiesItf self,
 slAvailableAudioInputsChangedCallback callback,
 void *pContext
);

 SLresult (*GetAvailableAudioOutputs)(
 SLAudioIODeviceCapabilitiesItf self,
 SLint32 *pNumOutputs,
 SLuint32 *pOutputDeviceIDs
);
 SLresult (*QueryAudioOutputCapabilities)(
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLAudioOutputDescriptor *pDescriptor
);

OpenSL ES 1.0.1 Specification 153

SLresult (*RegisterAvailableAudioOutputsChangedCallback) (
 SLAudioIODeviceCapabilitiesItf self,
 slAvailableAudioOutputsChangedCallback callback,
 void *pContext
);

SLresult (*RegisterDefaultDeviceIDMapChangedCallback) (
 SLAudioIODeviceCapabilitiesItf self,
 slDefaultDeviceIDMapChangedCallback callback,
 void *pContext

);
SLresult (*GetAssociatedAudioInputs) (

 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLint32 *pNumAudioInputs,
 SLuint32 *pAudioInputDeviceIDs
);

SLresult (*GetAssociatedAudioOutputs) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLint32 *pNumAudioOutputs,
 SLuint32 *pAudioOutputDeviceIDs
);
 SLresult (*GetDefaultAudioDevices) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 defaultDeviceID,
 SLint32 *pNumAudioDevices,
 SLuint32 *pAudioDeviceIDs
);

 SLresult (*QuerySampleFormatsSupported)(
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLmilliHertz samplingRate;,
 SLint32 *pSampleFormats,
 SLint32 *pNumOfSampleFormats
);
};

Interface ID

b2564dc0-ddd3-11db-bd62-0002a5d5c51b

Defaults

I/O device capabilities vary widely from system to system. Defaults are not applicable.

154 OpenSL ES 1.0.1 Specification

Callbacks

slAvailableAudioInputsChangedCallback
typedef void (SLAPIENTRY *slAvailableAudioInputsChangedCallback) (
 SLAudioIODeviceCapabilitiesItf caller,
 void *pContext,
 SLuint32 deviceID,
 SLint32 numInputs,
 SLboolean isNew
);

Description This callback executes when the set of available audio input devices changes (as
when a new Bluetooth headset is connected or a wired microphone is
disconnected).

caller [in] The interface instantiation on which the callback
was registered.

pContext [in] User context data that is supplied when the
callback method is registered.

deviceID [in] ID of the audio input device that has changed
(that is, was either removed or added).

numInputs [in] Updated number of available audio input devices.

Parameters

isNew [in] Set to SL_BOOLEAN_TRUE if the change was an
addition of a newly available audio input device;
SL_BOOLEAN_FALSE if an existing audio input
device is no longer available.

Comments The callback does not provide additional detail about the audio input device that
has changed. In the case of an addition, it is up to the application to use
QueryAudioInputCapabilities() to determine the full characteristics of the
newly available audio input device.

See Also QueryAudioInputCapabilities()

OpenSL ES 1.0.1 Specification 155

slAvailableAudioOutputsChangedCallback
typedef void (SLAPIENTRY *slAvailableAudioOutputsChangedCallback) (
 SLAudioIODeviceCapabilitiesItf caller,
 void *pContext,
 SLuint32 deviceID,
 SLint32 numOutputs,
 SLboolean isNew
);

Description This callback executes when the set of available audio output devices
changes (as when a new Bluetooth headset is connected or a wired
headset is disconnected).

caller [in] The interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the callback
method is registered.

deviceID [in] ID of the audio output device that has changed (that
is, was either removed or added).

numOutputs [in] Updated number of available audio output devices.

Parameters

isNew [in] Set to SL_BOOLEAN_TRUE if the change was an
addition of a newly available audio output device;
SL_BOOLEAN_FALSE if an existing audio output
device is no longer available.

Comments The callback does not provide additional details about the audio output
device that has changed. In the case of an addition, it is up to the
application to use QueryAudioOutputCapabilities() to determine the
full characteristics of the newly-available audio output device.

See Also QueryAudioOutputCapabilities()

156 OpenSL ES 1.0.1 Specification

slDefaultDeviceIDMapChangedCallback
typedef void (SLAPIENTRY *slDefaultDeviceIDMapChangedCallback) (
 SLAudioIODeviceCapabilitiesItf caller,
 void *pContext,
 SLboolean isOutput,
 SLint32 numDevices
);

Description This callback executes when the set of audio output devices mapped to
SL_DEFAULTDEVICEID_AUDIOINPUT or
SL_DEFAULTDEVICEID_AUDIOOUTPUT changes

caller [in] The interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the callback
method is registered.

isOutput [in] If true, then devices mapped to
SL_DEFAULTDEVICEID_AUDIOOUTPUT have changed,
otherwise the devices mapped to
SL_DEFAULTDEVICEID_AUDIOINPUT have changed.

Parameters

numDevices [in] New number of physical audio output devices to
which SL_DEFAULTDEVICEID_AUDIOOUTPUT or
SL_DEFAULTDEVICEID_AUDIOINPUT is now mapped
(depending on value of isOutput). Is always greater
than or equal to 1.

Comments The callback does not provide additional details about the audio devices
now mapped to the default device ID. It is up to the application to
retrieve the device IDs and to use the device IDs to query the capabilities
of each device.

numDevices is included in the callback for the benefit of those
applications who may not wish to send/receive their audio stream
to/from more than one device. Such applications can examine
numDevices and opt to stop operation immediately if it is greater than 1,
without needing to invoke other methods to get the new number of
devices mapped to SL_DEFAULTDEVICEID_AUDIOOUTPUT or
SL_DEFAULTDEVICEID_AUDIOINPUT.

See Also QueryAudioOutputCapabilities()

OpenSL ES 1.0.1 Specification 157

Methods

GetAvailableAudioInputs
SLresult (*GetAvailableAudioInputs)(
 SLAudioIODeviceCapabilitiesItf self,
 SLint32 *pNumInputs,
 SLuint32 *pInputDeviceIDs
);
Description Gets the number and IDs of audio input devices currently available.

Pre-conditions None

self [in] Interface self-reference.

pNumInputs [in/out] As an input, specifies the length of the
pInputDeviceIDs array (ignored if
pInputDeviceIDs is NULL). As an output,
specifies the number of audio input device
IDs available in the system. Returns 0 if
no audio input devices are available in the
system.

Parameters

pInputDeviceIDs [out] Array of audio input device IDs currently
available in the system. This parameter is
populated by the call with the array of
input device IDs (provided that
pNumInputs is equal to or greater than
the number of actual input device IDs). If
pNumInputs is less than the number of
actual input device IDs, the error code
SL_RESULT_BUFFER_INSUFFICIENT is
returned.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_PARAMETER_INVALID

Comments Note that “available” implies those audio input devices that are active
(that is, can accept input audio) and this number may be less than or
equal to the total number of audio input devices in the system. For
example, if a system has both an integrated microphone and a line-in
jack, but the line-in jack is not connected to anything, the number of
available audio inputs is only 1.

Device IDs should not be expected to be contiguous.

Device IDs are unique: the same device ID must not be used for
different device types.

See Also GetAvailableAudioOutputs()

158 OpenSL ES 1.0.1 Specification

QueryAudioInputCapabilities
SLresult (*QueryAudioInputCapabilities)(
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLAudioInputDescriptor *pDescriptor
);

Description Gets the capabilities of the specified audio input device.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] ID of the audio input device.

Parameters

pDescriptor [out] Structure defining the capabilities of the audio
input device [see section 9.1.3].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_IO_ERROR

Comments This method outputs a structure that contains one or more pointers to
arrays. The memory for these arrays shall be allocated by the
implementation and shall not be deallocated by the application. The
implementation shall keep the data contained within the arrays valid for
the lifetime of this interface’s host object. (The memory for the
structure itself is allocated by the application and therefore shall be
freed by the application.)

See Also QueryAudioOutputCapabilities(), QuerySampleFormatsSupported()

OpenSL ES 1.0.1 Specification 159

RegisterAvailableAudioInputsChangedCallback
SLresult (*RegisterAvailableAudioInputsChangedCallback)(
 SLAudioIODeviceCapabilitiesItf self,
 slAvailableAudioInputsChangedCallback callback,
 void *pContext
);
Description Sets or clears slAvailableAudioInputsChangedCallback().

Pre-conditions None

self [in] Interface self-reference.

callback [in] Address of the callback.

Parameters

pContext [in] User context data that is to be returned as part of the
callback method.

Return value The return value can be one of the following:

SL_RESULT_SUCCESS.
SL_RESULT_PARAMETER_INVALID

Comments None

See Also slAvailableAudioInputsChangedCallback()

160 OpenSL ES 1.0.1 Specification

GetAvailableAudioOutputs
SLresult (*GetAvailableAudioOutputs)(
 SLAudioIODeviceCapabilitiesItf self,
 SLint32 *pNumOutputs,
 SLuint32 *pOutputDeviceIDs
);
Description Gets the number and IDs of audio output devices currently available.

Pre-conditions None

self [in] Interface self-reference.

pNumOutputs [in/out] As an input, specifies the size of the
pOutputDeviceIDs array (ignored if
pOutputDeviceIDs is NULL). As an
output, specifies the number of audio
output devices currently available in the
system. Returns 0 if no audio output
devices are active in the system.

Parameters

pOutputDeviceIDs [out] Array of audio output device IDs that
are currently available in the system.
This parameter is populated by the call
with the array of output device IDs
(provided that pNumOutputs is equal to
or greater than the number of actual
device IDs).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_PARAMETER_INVALID

Comments Note that “available” implies those audio output devices that are active
(that is, can render audio) and this number may be less than or equal to
the total number of audio output devices on the system. For example, if
a system has both an integrated loudspeaker and a 3.5mm headphone
jack, but if the headphone jack is not connected to anything, the
number of available audio outputs is only 1.

Device IDs should not be expected to be contiguous.

Device IDs are unique: the same device ID must not be used for
different device types.

See Also GetAvailableAudioInputs()

OpenSL ES 1.0.1 Specification 161

QueryAudioOutputCapabilities
SLresult (*QueryAudioOutputCapabilities)(
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLAudioOutputDescriptor *pDescriptor
);
Description Gets the capabilities of the specified audio output device.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] ID of the audio output device.

Parameters

pDescriptor [out] Structure defining the characteristics of
the audio output device [see section
9.1.4].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_IO_ERROR

Comments This method outputs a structure that contains one or more pointers to
arrays. The memory for these arrays shall be allocated by the
implementation and shall not be deallocated by the application. The
implementation shall keep the data contained within the arrays valid for
the lifetime of this interface’s host object. (The memory for the
structure itself is allocated by the application and therefore shall be
freed by the application.)

See Also QueryAudioInputCapabilities(), QuerySampleFormatsSupported()

162 OpenSL ES 1.0.1 Specification

RegisterAvailableAudioOutputsChangedCallback
SLresult (*RegisterAvailableAudioOutputsChangedCallback)(
 SLAudioIODeviceCapabilitiesItf self,
 slAvailableAudioOutputsChangedCallback callback,
 void *pContext
);

Description Sets or clears slAvailableAudioOutputsChangedCallback().

Pre-conditions None

self [in] Interface self-reference.

callback [in] Address of the callback.

Parameters

pContext [in] User context data that is to be returned as part of
the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See Also slAvailableAudioOutputsChangedCallback()

RegisterDefaultDeviceIDMapChangedCallback
SLresult (*RegisterDefaultDeviceIDMapChangedCallback)(
 SLAudioIODeviceCapabilitiesItf self,
 slDefaultDeviceIDMapChangedCallback callback,
 void *pContext
);

Description Sets or clears slDefaultDeviceIDMapChangedCallback().

Pre-conditions None

self [in] Interface self-reference.

callback [in] Address of the callback.

Parameters

pContext [in] User context data that is to be returned as part of
the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See Also slDefaultDeviceIDMapChangedCallback()

OpenSL ES 1.0.1 Specification 163

GetAssociatedAudioInputs
SLresult (*GetAssociatedAudioInputs) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLint32 *pNumAudioInputs,
 SLuint32 *pAudioInputDeviceIDs
);

Description This method returns an array of audio input devices physically
associated with this audio I/O device.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] ID of the input or output device.

pNumAudioInputs [in/out] As an input, specifies the length of
the pAudioInputDeviceIDs array
(ignored if pAudioInputDeviceIDs is
NULL). As an output, specifies the
number of audio input device IDs
associated with deviceID. Returns
zero if there is no such association.

Parameters

pAudioInputDeviceIDs [out] Array of audio input device IDs.
Should be ignored if
pNumAudioInputs is zero – that is, if
there are no associated audio inputs.
This parameter is populated by the
call with the array of input device
IDs (provided that pNumInputs is
equal to or greater than the number
of actual input device IDs).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_IO_ERROR

164 OpenSL ES 1.0.1 Specification

GetAssociatedAudioInputs
Comments This method can be called on both audio input and audio output devices.

It is useful for determining coupling of audio inputs and outputs on
certain types of accessories. For example, it is helpful to know that
microphone 01 is actually part of the same Bluetooth headset as
speaker 03. Also, many car kits have multiple speakers and multiple
microphones. Hence the need for an array of associated input devices.
For applications that both accept and render audio, this method helps to
determine whether an audio input and an audio output belong to the
same physical accessory.

An audio device cannot be associated with itself. So, in the example
above, if this method were to be called with microphone 01 as the
deviceID parameter, it would return an empty array, since there are no
other inputs associated with microphone 01 on that Bluetooth headset.

See also GetDefaultAudioDevices()

OpenSL ES 1.0.1 Specification 165

GetAssociatedAudioOutputs
SLresult (*GetAssociatedAudioOutputs) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLint32 *pNumAudioOutputs,
 SLuint32 *pAudioOutputDeviceIDs
);
Description This method returns an array of audio output devices physically associated

with this audio I/O device.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] ID of the input or output device.

pNumAudioOutputs [in/out] As an input, specifies the length of the
pAudioOutputDeviceIDs array
(ignored if pAudioOutputDeviceIDs is
NULL). As an output, specifies the
number of audio output device IDs
associated with deviceID. Returns
zero if there is no such association.

Parameters

pAudioOutputDeviceIDs [out] Array of audio output device IDs.
Should be ignored if
pNumAudioOutputs is zero (that is,
there are no associated audio
outputs). This parameter is populated
by the call with the array of output
device IDs (provided that
pNumAudioOutputs is equal to or
greater than the number of actual
device IDs).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_IO_ERROR

166 OpenSL ES 1.0.1 Specification

GetAssociatedAudioOutputs
Comments This method can be called on both audio input and audio output devices. It

is useful for determining coupling of audio inputs and outputs on certain
types of accessories. For example, it is helpful to know that microphone 01
is actually part of the same Bluetooth headset as speaker 03. Also, many
car kits have multiple speakers and multiple microphones. Hence the need
for an array of associated output devices. For applications that both accept
and render audio, this method helps to determine whether an audio input
and an audio output belong to the same physical accessory.

An audio device cannot be associated with itself. So, in the example above,
if this method were to be called with speaker 03 as the deviceID
parameter, it would return an empty array, since there are no other
outputs associated with speaker 03 on that Bluetooth headset.

See also GetDefaultAudioDevices()

OpenSL ES 1.0.1 Specification 167

GetDefaultAudioDevices
SLresult (*GetDefaultAudioDevices) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 defaultDeviceID,
 SLint32 *pNumAudioDevices,
 SLuint32 *pAudioDeviceIDs
);

Description Gets the number of audio devices currently mapped to the given default
device ID.

Pre-conditions None

self [in] Interface self-reference.

defaultDeviceID [in] ID of the default device (currently defined
as SL_DEFAULTDEVICEID_AUDIOOUTPUT
and SL_DEFAULTDEVICEID_AUDIOINPUT
[see section 9.2.10]).

pNumAudioDevices [in/out] As an input, specifies the length of the
pAudioDeviceIDs array (ignored if
pAudioDeviceIDs is NULL). As an output,
specifies the number of audio device IDs
mapped to the given defaultDeviceID.

Parameters

pAudioDeviceIDs [out] Array of audio device IDs that are
currently mapped to the given
defaultDeviceID. This parameter is
populated by the call with the array of
device IDs (provided that
pNumAudioDevices is equal to or greater
than the number of actual device IDs). If
pNumAudioDevices is less than the
number of actual mapped device IDs, the
error code
SL_RESULT_BUFFER_INSUFFICIENT is
returned.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_IO_ERROR
SL_RESULT_PARAMETER_INVALID

Comments The mapping of defaultDeviceID to the physical audio devices
(represented by the device IDs) is implementation-dependent.

The application can choose to be notified of the implementation-induced
changes to this mapping by registering for the
slDefaultDeviceIDMapChangedCallback().

168 OpenSL ES 1.0.1 Specification

GetDefaultAudioDevices
See Also RegisterDefaultDeviceIDMapChangedCallback(),

GetAssociatedAudioInputs(), GetAssociatedAudioOutputs()

OpenSL ES 1.0.1 Specification 169

QuerySampleFormatsSupported
SLresult (*QuerySampleFormatsSupported) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLmilliHertz samplingRate,
 SLint32 *pSampleFormats,
 SLint32 *pNumOfSampleFormats,
);

Description Gets an array of sample formats supported by the audio I/O device for
the given sampling rate. The rationale here is that an audio I/O device
might not support all sample formats at all sampling rates. Therefore, it
is necessary to query the sample formats supported for each sampling
rate of interest.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] ID of the audio I/O device

samplingRate [in] Sampling rate for which the
sampling formats are to be
determined.

pSampleFormats [out] Array of sample formats supported,
as defined in the
SL_PCMSAMPLEFORMAT macros. This
parameter is populated by the call
with the array of supported sample
formats (provided that
pNumOfSampleFormats is equal to or
greater than the number of actual
sample formats).

Parameters

pNumOfSampleFormats [in/out] As an input, specifies the length of
the pSampleFormats array (ignored
if pSampleFormats is NULL). As an
output, specifies the number of
sample formats supported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_IO_ERROR

Comments None

See Also QueryAudioInputCapabilities(), QueryAudioOutputCapabilities()

170 OpenSL ES 1.0.1 Specification

8.11 SLBassBoostItf

Description

This interface is for controlling bass boost functionality.

This interface affects different parts of the audio processing chain, depending on which
object the interface is exposed. If this interface is exposed on an Output Mix object, the
effect is applied to the output mix. If this interface is exposed on a Player object, it is
applied to the Player’s output only. For more information, see section 4.5.1.

Prototype
extern const SLInterfaceID SL_IID_BASSBOOST;

struct SLBassBoostItf_;
typedef const struct SLBassBoostItf_ * const * SLBassBoostItf;

struct SLBassBoostItf_ {
 SLresult (*SetEnabled)(
 SLBassBoostItf self,
 SLboolean enabled
);
 SLresult (*IsEnabled)(
 SLBassBoostItf self,
 SLboolean *pEnabled
);
 SLresult (*SetStrength)(
 SLBassBoostItf self,
 SLpermille strength
);
 SLresult (*GetRoundedStrength)(
 SLBassBoostItf self,
 SLpermille *pStrength
);
 SLresult (*IsStrengthSupported)(
 SLBassBoostItf self,
 SLboolean *pSupported
);
};

Interface ID

0634f220-ddd4-11db-a0fc-0002a5d5c51b

OpenSL ES 1.0.1 Specification 171

Defaults

Enabled: false (disabled)

Strength: implementation-dependent

Methods

SetEnabled
SLresult (*SetEnabled)(
 SLBassBoostItf self,
 SLboolean enabled
);

Description Enables the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

enabled [in] True to turn on the effect, false to switch it off.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

IsEnabled
SLresult (*IsEnabled)(
 SLBassBoostItf self,
 SLboolean *pEnabled
);

Description Gets the enabled status of the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

pEnabled [out] True if the effect is on, false otherwise.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

172 OpenSL ES 1.0.1 Specification

SetStrength
SLresult (*SetStrength)(
 SLBassBoostItf self,
 SLpermille strength
);

Description Sets the strength of the bass boost effect. If the implementation does
not support per mille accuracy for setting the strength, it is allowed to
round the given strength to the nearest supported value. You can use
the GetRoundedStrength() method to query the (possibly rounded)
value that was actually set.

Pre-conditions None

self [in] Interface self-reference. Parameters

strength [in] Strength of the effect. The valid range for
strength is [0, 1000], where 0 per mille
designates the mildest effect and 1000 per
mille designates the strongest.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments Please note that the strength does not affect the output if the effect is
not enabled. This set method will in any event store the setting, even
when the effect is not enabled currently.

Please note also that the strength can also change if the output
device is changed (as, for example, from loudspeakers to
headphones) and those output devices use different algorithms with
different accuracies. You can use device changed callbacks
[see section 8.10] to monitor device changes and then query the
possibly changed strength using GetRoundedStrength() if you want,
for example, the graphical user interface to follow the current
strength accurately.

OpenSL ES 1.0.1 Specification 173

GetRoundedStrength
SLresult (*GetRoundedStrength)(
 SLBassBoostItf self,
 SLpermille *pStrength
);

Description Gets the current strength of the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

pStrength [out] The strength of the effect. The valid range for
strength is [0, 1000], where 0 per mille
designates the mildest effect and 1000 per mille
the strongest,

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Please note that the strength does not affect the output if the effect
is not enabled.

Please note also that in some cases the exact mapping of the
strength to the underlying algorithms might not maintain the full
accuracy exposed by the API.

IsStrengthSupported
SLresult (*IsStrengthSupported)(
 SLBassBoostItf self,
 SLboolean *pSupported
);

Description Indicates whether setting strength is supported. If this method
returns false, only one strength is supported and the SetStrength
method always rounds to that value.

Pre-conditions None

self [in] Interface self-reference. Parameters

pSupported [out] True if setting of the strength is supported,
false if only one strength is supported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

174 OpenSL ES 1.0.1 Specification

8.12 SLBufferQueueItf

Description

This interface is used for streaming audio data. It provides a method for queuing up
buffers on a player object for playback by the device. It also provides for a callback
function called whenever a buffer in the queue is completed. The buffers are played in the
order in which they are queued. The state of the buffer queue can be queried to provide
information on the playback status of the buffer queue. This interface implements a simple
streaming mechanism.

 An attempt to instantiate an SLBufferQueueItf on a media object whose data source
is not of type SL_DATALOCATOR_BUFFERQUEUE or SL_DATALOCATOR_MIDIBUFFERQUEUE
is invalid and will fail.

 When the player is in the SL_PLAYSTATE_PLAYING state, which is controlled by the
SLPlayItf interface [see section 8.32], adding buffers will implicitly start playback. In
the case of starvation due to insufficient buffers in the queue, the playing of audio data
stops. The player remains in the SL_PLAYSTATE_PLAYING state. Upon queuing of
additional buffers, the playing of audio data resumes. Note that starvation of queued
buffers causes audible gaps in the audio data stream. In the case where the player is
not in the playing state, addition of buffers does not start audio playback.

 The buffers that are queued are used in place and are not required to be copied by the
device, although this may be implementation-dependent. The application developer
should be aware that modifying the content of a buffer after it has been queued is
undefined and can cause audio corruption.

 Once an enqueued buffer has finished playing, as notified by the callback notification, it
is safe to delete the buffer or fill the buffer with new data and once again enqueue the
buffer for playback.

 On transition to the SL_PLAYSTATE_STOPPED state the play cursor is returned to the
beginning of the currently playing buffer.

 On transition to the SL_PLAYSTATE_PAUSED state the play cursor remains at the current
position in the buffer.

 For a player whose data source is a buffer queue, it is not possible to seek within the
buffer. An attempt to instantiate the SLSeekItf interface [see section 8.38] on a media
object with a buffer queue as a data source will fail.

This interface is supported on the Audio Player [see section 7.2] object.

See sections B.1.1 and C.4.2 for examples using this interface.

Prototype
extern const SLInterfaceID SL_IID_BUFFERQUEUE;

OpenSL ES 1.0.1 Specification 175

struct SLBufferQueueItf_;
typedef const struct SLBufferQueueItf_ * const * SLBufferQueueItf;

struct SLBufferQueueItf_ {
 SLresult (*Enqueue) (
 SLBufferQueueItf self,
 const void *pBuffer,
 SLuint32 size
);
 SLresult (*Clear) (
 SLBufferQueueItf self
);
 SLresult (*GetState) (
 SLBufferQueueItf self,
 SLBufferQueueState *pState
);
 SLresult (*RegisterCallback) (
 SLBufferQueueItf self,
 slBufferQueueCallback callback,
 void* pContext
);
};

Interface ID
2bc99cc0-ddd4-11db-8d99-0002a5d5c51b

Defaults
 No buffers are queued.
 No callback method is registered.

Callbacks

slBufferQueueCallback
typedef void (SLAPIENTRY *slBufferQueueCallback) (
 SLBufferQueueItf caller,
 void *pContext
);

Description Callback function called on completion of playing a buffer in the
buffer queue.

caller [in] Interface instantiation on which the callback was
registered.

Parameters

pContext [in] User context data that is supplied when the
callback method is registered.

Comments This is not a method of the interface but is the callback description
and prototype.

See Also RegisterCallback()

176 OpenSL ES 1.0.1 Specification

Methods

Enqueue
SLresult (*Enqueue) (
 SLBufferQueueItf self,
 const void *pBuffer,
 SLuint32 size
);

Description Adds a buffer to the queue. The method takes a pointer to the data
to queue and the size in bytes of the buffer as arguments. The
buffers are played in the order in which they are queued using this
method.

Pre-
conditions

None

self [in] Interface self-reference.

pBuffer [in] Pointer to the buffer data to enqueue. Must be
non-NULL.

Parameters

size [in] Size of data in bytes. Must be greater than zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT

Comments When the media object is in the SL_PLAYSTATE_PLAYING state, which
is controlled by the SLPlayItf interface [see section 8.32], adding
buffers will implicitly start playback. In the case of starvation due to
insufficient buffers in the queue the playing of audio data stops. The
media object remains in the SL_PLAYSTATE_PLAYING state. Upon
queuing of additional buffers, the playing of audio data resumes.
Note that starvation of queued buffers causes audible gaps in the
audio data stream. If the maximum number of buffers specified in
the SLDataLocator_BufferQueue structure used as the data source
when creating the media object using the CreateAudioPlayer or
CreateMidiPlayer method has been reached, the buffer is not added
to the buffer queue and SL_RESULT_BUFFER_INSUFFICIENT is
returned. At this point the client should wait until it receives a
callback notification for a buffer completion at which time it can
enqueue the buffer.

OpenSL ES 1.0.1 Specification 177

Clear
SLresult (*Clear)(
 SLBufferQueueItf self
);

Description Releases all buffers currently queued in the buffer queue. The
callback function for the released buffers is not called. The
SLBufferQueueState is reset to the initial state.

Pre-conditions None

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments This method resets the cumulative position information used in the
SLPlayItf interfaces for GetPosition().

GetState
SLresult (*GetState)(
 SLBufferQueueItf self,
 SLBufferQueueState *pState
);

Description Returns the current state of the buffer queue.

Pre-conditions None

self [in] Interface self-reference. Parameters

pState [out] Pointer to a location ready to receive the buffer
queue state. The SLBufferQueueState structure
contains information on the current number of
queued buffers and the index of the currently
playing buffer.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

178 OpenSL ES 1.0.1 Specification

RegisterCallback
SLresult (*RegisterCallback)(
 SLBufferQueueItf self,
 slBufferQueueCallback callback,
 void *pContext
);

Description Sets the callback function to be called on buffer completion.

Pre-
conditions

The RegisterCallback() method can only be called while the media
object is in the SL_PLAYSTATE_STOPPED state.

self [in] Interface self-reference.

callback [in] Pointer to callback function to call on buffer
completion. The callback is called on the
completion of each buffer in the queue. If NULL,
the callback is disabled.

Parameters

pContext [in] User context data that is to be returned as part of
the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED

Comments The RegisterCallback() method can only be called while the media
object is in the SL_PLAYSTATE_STOPPED state, to avoid race
conditions between removal of the callback function and callbacks
that may be in process. The callback function may be changed by
calling the RegisterCallback() method multiple times, but only while
the media object is in the stopped state.
SL_RESULT_PRECONDITIONS_VIOLATED is returned if the media object
is not in the SL_PLAYSTATE_STOPPED state when the method is
called.

OpenSL ES 1.0.1 Specification 179

8.13 SLDeviceVolumeItf

Description

This interface exposes controls for manipulating the volume of specific audio input and
audio output devices. The units used for setting and getting the volume can be in millibels
or as arbitrary volume steps; the units supported by the device can be queried with
GetVolumeScale method.

Support for this interface is optional, but, where supported, this interface should be
exposed on the engine object.

Prototype
extern const SLInterfaceID SL_IID_DEVICEVOLUME;

struct SLDeviceVolumeItf_;
typedef const struct SLDeviceVolumeItf_ * const * SLDeviceVolumeItf;

struct SLDeviceVolumeItf_ {
 SLresult (*GetVolumeScale) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pMinValue,
 SLint32 *pMaxValue,
 SLboolean *pIsMillibelScale
);
 SLresult (*SetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 volume
);
 SLresult (*GetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pVolume
);
};

Interface ID

e1634760-f3e2-11db-9ca9-0002a5d5c51b

Defaults

The default volume setting of each device should be audible.

180 OpenSL ES 1.0.1 Specification

Methods

GetVolumeScale
SLresult (*GetVolumeScale) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pMinValue,
 SLint32 *pMaxValue,
 SLboolean *pIsMillibelScale
);
Description Gets the properties of the volume scale supported by the given device.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] Audio input or output device’s identifier.

pMinValue [out] The smallest supported volume value of the
device.

pMaxValue [out] The greatest supported volume value of the
device.

Parameters

pIsMillibelScale [out] If true, the volume values used by GetVolume,
SetVolume and this method are in millibel
units; if false, the volume values are in
arbitrary volume steps.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED
SL_RESULT_CONTROL_LOST

Comments This method may return SL_RESULT_FEATURE_UNSUPPORTED if the specified
device does not support changes to its volume.

The scale is always continuous and device-specific. It could be, for
example, [0, 15] if arbitrary volume steps are used or [-32768, 0] if
millibels are used.

See also SLAudioIODeviceCapabilitiesItf(), SLOutputMixItf()

OpenSL ES 1.0.1 Specification 181

SetVolume
SLresult (*SetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 volume
);
Description Sets the device’s volume level.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] Device’s identifier.

Parameters

volume [in] The new volume setting. The valid range is continuous
and its boundaries can be queried from GetVolumeScale
method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED
SL_RESULT_CONTROL_LOST

Comments The minimum and maximum supported volumes are device-dependent.

This method may fail if the specified device does not support changes to its
volume or the volume is outside the range supported by the device.

See also SLAudioIODeviceCapabilitiesItf(), SLOutputMixItf()

182 OpenSL ES 1.0.1 Specification

GetVolume
SLresult (*GetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pVolume
);

Description Gets the device’s volume.

Pre-conditions None

self [in] Interface self-reference.

deviceID [in] Device’s identifier.

Parameters

pVolume [out] Pointer to a location to receive the object’s volume
setting. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments SL_RESULT_FEATURE_UNSUPPORTED is returned if the specified device
does not support changes to its volume.

OpenSL ES 1.0.1 Specification 183

8.14 SLDynamicInterfaceManagementItf

Description

The SLDynamicInterfaceManagementItf interface provides methods for handling interface
exposure on an object after the creation and realization of the object. The primary method
for exposing interfaces on an object is by listing them in the engine object’s creation
methods [see section 8.17].

SLDynamicInterfaceManagementItf is an implicit interface of all object types. Please refer
to section 3.1.6 for details about how dynamically exposed interfaces work with the object
states and other exposed interfaces.

This interface is supported on all objects [see section 7].

See sections B.2 and C.2 for examples using this interface.

Defaults

No dynamic interfaces are exposed.

No callback is registered.

184 OpenSL ES 1.0.1 Specification

Prototype
extern const SLInterfaceID SL_IID_DYNAMICINTERFACEMANAGEMENT;

struct SLDynamicInterfaceManagementItf_;
typedef const struct SLDynamicInterfaceManagementItf_
 * const * SLDynamicInterfaceManagementItf;

struct SLDynamicInterfaceManagementItf_ {
 SLresult (*AddInterface) (
 SLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid,
 SLboolean async
);
 SLresult (*RemoveInterface) (
 SLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid

);
 SLresult (*ResumeInterface) (
 SLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid,
 SLboolean async
);
 SLresult (*RegisterCallback) (
 SLDynamicInterfaceManagementItf self,
 slDynamicInterfaceManagementCallback callback,
 void * pContext
);
};

Interface ID

63936540-f775-11db-9cc4-0002a5d5c51b

OpenSL ES 1.0.1 Specification 185

Callbacks

slDynamicInterfaceManagementCallback
typedef void (SLAPIENTRY *slDynamicInterfaceManagementCallback) (
 SLDynamicInterfaceManagementItf caller,
 void * pContext,
 SLuint32 event,
 SLresult result,
 const SLInterfaceID iid
);
Description A callback function, notifying of a runtime error, termination of an

asynchronous call or change in a dynamic interface’s resources.

caller [in] Interface that invoked the callback.

pContext [in] User context data that is supplied when the
callback method is registered.

event [in] One of the Dynamic Interface Management
Event macros.

result
[in]

Contains either the error code, if the event is
SL_DYNAMIC_ITF_EVENT_RUNTIME_ERROR, or
the asynchronous function return code, if the
event is
SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION.
The result may be:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED

Parameters

iid [in] Interface type ID that the event affects.

Comments Please note the restrictions applying to operations performed from
within callback context in section 3.3.

See also RegisterCallback()

186 OpenSL ES 1.0.1 Specification

Methods

AddInterface
SLresult (*AddInterface) (
 SLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid,
 SLboolean async
);
Description Optionally asynchronous method for exposing an interface on an

object. In asynchronous mode the success or failure of exposing
the interface will be sent to the registered callback function.

Pre-conditions Interface has not been exposed.

self [in] Interface self-reference.

iid [in] Valid interface type ID.

Parameters

async [in] If SL_BOOLEAN_FALSE, the method will
block until termination. Otherwise, the
method will return SL_RESULT_SUCCESS,
and will be executed asynchronously.
However, if the implementation is unable
to initiate the asynchronous call
SL_RESULT_RESOURCE_ERROR will be
returned.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED
SL_RESULT_PRECONDITIONS_VIOLATED

Comments When successful, the interface is exposed on the object and the
interface pointer can be obtained by
SLObjectItf::GetInterface().

Adding the interface to the object acquires the resources required
for its functionality. The operation may fail if insufficient resources
are available. In such a case, the application may wait until
resources become available
(SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE event is sent [see
section 9.2.14]), and then resume the interface. Additionally, the
application may increase the object’s priority, thus increasing the
likelihood that the object will steal another object’s resources.

Adding an interface that is already exposed will result in a return
value of SL_RESULT_PRECONDITIONS_VIOLATED.

See also SLObjectItf::GetInterface()

OpenSL ES 1.0.1 Specification 187

RemoveInterface
SLresult (*RemoveInterface) (
 SLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid
);
Description Synchronous method for removing a dynamically exposed interface

on the object. This method is supported in all object states.

Pre-conditions Interface has been exposed.

self [in] Interface self-reference. Parameters

iid [in] Valid interface type ID that has been
exposed on this object by use of the
AddInterface() method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED

Comments An object that is suspended or unrealized waits also for resources
for dynamically managed interfaces before sending a
SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE event [see section
9.2.14]. By removing a dynamic interface in an Unrealized or
Suspended state, the object does not wait for resources for that
dynamic interface.

Removing an interface that is not exposed will result in a return
value of SL_RESULT_PRECONDITIONS_VIOLATED.

See also None

188 OpenSL ES 1.0.1 Specification

ResumeInterface
SLresult (*ResumeInterface) (
 SLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid,
 SLboolean async
);
Description Optionally asynchronous method for resuming a dynamically

exposed interface on the object.

Pre-conditions None

self [in] Interface self-reference.

iid [in] Valid interface type ID that has been
exposed on this object by use of the
AddInterface() method.

Parameters

async [in] If SL_BOOLEAN_FALSE, the method will
block until termination. Otherwise, the
method will return SL_RESULT_SUCCESS,
and will be executed asynchronously.
However, if the implementation is unable
to initiate the asynchronous call
SL_RESULT_RESOURCE_ERROR will be
returned.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments When successful, the interface is exposed on the object and the
interface pointer can be obtained by
SLObjectItf::GetInterface().

This method can be used on a suspended dynamic interface after
reception of a SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE
event [see section 9.2.14].

See also None

OpenSL ES 1.0.1 Specification 189

RegisterCallback
SLresult (*RegisterCallback) (
 SLDynamicInterfaceManagementItf self,
 slDynamicInterfaceManagementCallback callback,
 void * pContext
);
Description Registers a callback on the object that executes when a runtime

error, termination of an asynchronous call or change in a dynamic
interface’s resources occurs.

self [in] Interface self-reference.

callback [in] Address of the result callback. If NULL,
the callback is disabled.

Parameters

pContext [in] User context data that is to be returned
as part of the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments None

See also slDynamicInterfaceManagementCallback()

190 OpenSL ES 1.0.1 Specification

8.15 SLDynamicSourceItf

Description
This interface exposes a control for changing the data source of the object during the life-
time of the object.

Prototype
extern const SLInterfaceID SL_IID_DYNAMICSOURCE;

struct SLDynamicSourceItf_;
typedef const struct SLDynamicSourceItf_ * const * SLDynamicSourceItf;

struct SLDynamicSourceItf_ {
 SLresult (*SetSource) (
 SLDynamicSourceItf self,
 SLDataSource *pDataSource
);
};

Interface ID
c55cc100-038b-11dc-bb45-0002a5d5c51b

Defaults

The data source set by application during object creation.

OpenSL ES 1.0.1 Specification 191

Methods

SetSource
SLresult (*SetSource) (
 SLDynamicSourceItf self,
 SLDataSource *pDataSource
);

Description Sets the data source for the object.

Pre-conditions None

self [in] Interface self-reference Parameters

pDataSource [in] Pointer to the structure specifying the media
data source (such as a container file). Must
be non-NULL. In the case of a Metadata
Extractor object, only local data sources are
mandated to be supported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_CONTENT_CORRUPTED
SL_RESULT_CONTENT_UNSUPPORTED
SL_RESULT_CONTENT_NOT_FOUND
SL_RESULT_PERMISSION_DENIED

Comments Setting a source for a Metadata Extractor object will reset its
SLMetadataExtractionItf and SLMetadataTraversalItf
interfaces [see section 8.22 and 8.23] to point to the new source
and reset those interfaces to their initial values.

Setting of the new source shall be accepted in any player object
state. The playback of the new source shall start from the
beginning of the content.

The player object shall maintain the same player object state
upon accepting the new source. For example, if the player object
is currently in SL_PLAYSTATE_PLAYING state, it shall maintain the
SL_PLAYSTATE_PLAYING state.

See also None

192 OpenSL ES 1.0.1 Specification

8.16 SLEffectSendItf

Description

This interface allows an application developer to control a sound’s contribution to auxiliary
effects. An auxiliary effect is identified by its interface pointer. The only auxiliary effect
standardized in the specification is a single reverb. Some implementations may expose
other auxiliary effects.

The auxiliary effect will need to be enabled for this interface to have any audible effect. For
the reverb effect, this requires exposing either PresetReverb [see section 8.35] or
EnvironmentalReverb [see Section 8.19] on the Output Mix object.

This interface is supported on the Audio Player [see section 7.2] and MIDI Player [see
section 7.8] objects.

See sections B.6.1, C.2 and C.4 for examples using this interface.

Prototype
extern const SLInterfaceID SL_IID_EFFECTSEND;

struct SLEffectSendItf_;
typedef const struct SLEffectSendItf_ * const * SLEffectSendItf;

struct SLEffectSendItf_ {
 SLresult (*EnableEffectSend) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLboolean enable,
 SLmillibel initialLevel
);
 SLresult (*IsEnabled) (
 SLEffectSendItf self,
 const void * pAuxEffect,
 SLboolean *pEnable
);
 SLresult (*SetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel directLevel
);
 SLresult (*GetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel *pDirectLevel
);

OpenSL ES 1.0.1 Specification 193

 SLresult (*SetSendLevel) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel sendLevel
);
 SLresult (*GetSendLevel)(
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel *pSendLevel
);
};

Interface ID

56e7d200-ddd4-11db-aefb-0002a5d5c51b

Defaults

Direct level: 0 mB (no level change)

No effect sends enabled.

194 OpenSL ES 1.0.1 Specification

Methods

EnableEffectSend
SLresult (*EnableEffectSend) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLboolean enable,
 SLmillibel initialLevel
);

Description Enables or disables the player’s contribution to an auxiliary effect.

Pre-conditions None

self [in] Interface self-reference.

pAuxEffect [in] Pointer to the auxiliary effect’s interface.

enable [in] If true, the path to the auxiliary effect is
enabled. If false, the path to the auxiliary
effect is disabled.

Parameters

initialLevel [in] Player’s send path level for the specified
effect. The valid range is [SL_MILLIBEL_MIN,
0].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED

Comments This method may fail with the return value
SL_RESULT_RESOURCE_ERROR, if the implementation is unable to feed
the player’s output to the specified effect.

The implementation shall return SL_RESULT_PARAMETER_INVALID if
pAuxEffect is not a valid effect interface for use with the effect
send interface.

OpenSL ES 1.0.1 Specification 195

IsEnabled
SLresult (*IsEnabled) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLboolean *pEnable
);

Description Returns whether a player’s output is fed into an auxiliary effect.

Pre-conditions None

self [in] Interface self-reference.

pAuxEffect [in] Pointer to the auxiliary effect’s interface.

Parameters

pEnable [out] Pointer to a location for the enabled status.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The implementation shall return SL_RESULT_PARAMETER_INVALID if
pAuxEffect is not a valid effect interface for use with the effect send
interface.

SetDirectLevel
SLresult (*SetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel directLevel
);

Description Sets the dry (direct) path level for a sound.

Pre-conditions None

self [in] Interface self-reference. Parameters

directLevel [in] Direct path level in millibels. The valid range is
[SL_MILLIBEL_MIN, 0].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

196 OpenSL ES 1.0.1 Specification

GetDirectLevel
SLresult (*GetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel *pDirectLevel
);

Description Gets the player’s direct path level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pDirectLevel [out] Pointer to a location for receiving the direct
path level in millibels.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

SetSendLevel
SLresult (*SetSendLevel) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel sendLevel
);

Description Sets the player’s send path level for a specified auxiliary effect.

Pre-conditions Effect send is enabled (using EnableEffectSend()).

self [in] Interface self-reference.

pAuxEffect [in] Pointer to the auxiliary effect’s interface.

Parameters

sendLevel [in] Send level in millibels. The valid range is
[SL_MILLIBEL_MIN, 0].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED

Comments None.

OpenSL ES 1.0.1 Specification 197

GetSendLevel
SLresult (*GetSendLevel) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel *pSendLevel
);

Description Gets the player’s send path level for a specified auxiliary effect.

Pre-conditions Effect send is enabled (using EnableEffectSend()).

self [in] Interface self-reference.

pAuxEffect [in] Pointer to the auxiliary effect’s interface.

Parameters

pSendLevel [out] Pointer to location for receiving the send level
in millibels.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED

Comments None.

198 OpenSL ES 1.0.1 Specification

8.17 SLEngineItf

Description

This interface exposes creation methods of all the OpenSL ES object types.

This interface is supported on the engine [see section 7.4] object.

See Appendix B: and Appendix C: for examples using this interface.

Prototype
extern const SLInterfaceID SL_IID_ENGINE;

struct SLEngineItf_;
typedef const struct SLEngineItf_ * const * SLEngineItf;

struct SLEngineItf_ {
 SLresult (*CreateLEDDevice) (
 SLEngineItf self,
 SLObjectItf * pDevice,
 SLuint32 deviceID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
 SLresult (*CreateVibraDevice) (
 SLEngineItf self,
 SLObjectItf * pDevice,
 SLuint32 deviceID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
 SLresult (*CreateAudioPlayer) (
 SLEngineItf self,
 SLObjectItf * pPlayer,

SLDataSource *pAudioSrc,
SLDataSink *pAudioSnk,

 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

OpenSL ES 1.0.1 Specification 199

 SLresult (*CreateAudioRecorder) (
 SLEngineItf self,
 SLObjectItf * pRecorder,

SLDataSource *pAudioSrc,
SLDataSink *pAudioSnk,

 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
 SLresult (*CreateMidiPlayer) (
 SLEngineItf self,
 SLObjectItf * pPlayer,
 SLDataSource *pMIDISrc,
 SLDataSource *pBankSrc,
 SLDataSink *pAudioOutput,
 SLDataSink *pVibra,
 SLDataSink *pLEDArray
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
 SLresult (*CreateListener) (
 SLEngineItf self,
 SLObjectItf * pListener,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
 SLresult (*Create3DGroup) (
 SLEngineItf self,
 SLObjectItf * pGroup,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
 SLresult (*CreateOutputMix) (
 SLEngineItf self,

SLObjectItf * pMix,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

SLresult (*CreateMetadataExtractor) (
 SLEngineItf self,
 SLObjectItf * pMetadataExtractor,
 SLDataSource * pDataSource,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

200 OpenSL ES 1.0.1 Specification

SLresult (*CreateExtensionObject) (
SLEngineItf self,
SLObjectItf * pObject,
void * pParameters,
SLuint32 objectID,
SLuint32 numInterfaces,
const SLInterfaceID * pInterfaceIds,
const SLboolean * pInterfaceRequired

);
SLresult (*QueryNumSupportedInterfaces) (

 SLEngineItf self,
 SLuint32 objectID,
 SLuint32 * pNumSupportedInterfaces
);
 SLresult (*QuerySupportedInterfaces) (
 SLEngineItf self,
 SLuint32 objectID,
 SLuint32 index,
 SLInterfaceID * pInterfaceId
);

SLresult (*QueryNumSupportedExtensions) (
SLEngineItf self,
SLuint32 * pNumExtensions

);
SLresult (*QuerySupportedExtension) (

SLEngineItf self,
SLuint32 index,
SLchar * pExtensionName,
SLint16 * pNameLength

);
SLresult (*IsExtensionSupported) (

SLEngineItf self,
const SLchar * pExtensionName,
SLboolean * pSupported

);
};

Interface ID

8d97c260-ddd4-11db-958f-0002a5d5c51b

Defaults

None (the interface is stateless)

OpenSL ES 1.0.1 Specification 201

Methods

CreateLEDDevice
SLresult (*CreateLEDDevice) (
 SLEngineItf self,
 SLObjectItf * pDevice,
 SLuint32 deviceID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates an LED device.

Pre-conditions None

self [in] Interface self-reference.

pDevice [out] Newly-created LED device object.

deviceID [in] ID of the LED device.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also SLEngineCapabilitiesItf [section 8.18] to determine the
capabilities of the LED device.

LED Device Object [section 7.5]

202 OpenSL ES 1.0.1 Specification

CreateVibraDevice
SLresult (*CreateVibraDevice) (
 SLEngineItf self,
 SLObjectItf * pDevice,
 SLuint32 deviceID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates a vibrator device.

Pre-conditions None

self [in] Interface self-reference.

pDevice [out] Newly-created vibrator device object.

deviceID [in] ID of the vibrator device.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also SLEngineCapabilitiesItf [section 8.18] to determine the
capabilities of the vibrator device.

Vibra Device Object [section 7.10]

OpenSL ES 1.0.1 Specification 203

CreateAudioPlayer
SLresult (*CreateAudioPlayer) (
 SLEngineItf self,
 SLObjectItf * pPlayer,
 SLDataSource *pAudioSrc,
 SLDataSink *pAudioSnk,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates an audio player object.

Pre-conditions If the data sink’s locator is an object (e.g. output mix) this object
must be in the realized state.

self [in] Interface self-reference.

pPlayer [out] Newly created audio player object.

pAudioSrc [in] Pointer to the structure specifying the
audio data source (e.g. a compressed
audio file). Must be non-NULL.

pAudioSnk [in] Pointer to the structure specifying the
audio data sink (such as an audio
output device).

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

204 OpenSL ES 1.0.1 Specification

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_CONTENT_CORRUPTED
SL_RESULT_CONTENT_UNSUPPORTED
SL_RESULT_CONTENT_NOT_FOUND
SL_RESULT_PERMISSION_DENIED

See also Audio Player Object [section 7.2]

OpenSL ES 1.0.1 Specification 205

CreateAudioRecorder
SLresult (*CreateAudioRecorder) (
 SLEngineItf self,
 SLObjectItf * pRecorder,
 SLDataSource *pAudioSrc,
 SLDataSink *pAudioSnk,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates an audio recorder.

Pre-conditions None

self [in] Interface self-reference.

pRecorder [out] Newly created audio recorder object.

pAudioSrc [in] Pointer to the structure specifying the
audio data source (such as a
microphone device).

pAudioSnk [in] Pointer to the structure specifying the
audio data sink (such as a compressed
audio output file). Must be non-NULL.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

206 OpenSL ES 1.0.1 Specification

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_BUFFER_INSUFFICIENT
SL_RESULT_CONTENT_UNSUPPORTED
SL_RESULT_PERMISSION_DENIED
SL_RESULT_FEATURE_UNSUPPORTED

See also Audio Recorder Object [section 7.3]

OpenSL ES 1.0.1 Specification 207

CreateMidiPlayer
SLresult (*CreateMidiPlayer) (
 SLEngineItf self,
 SLObjectItf * pPlayer,
 SLDataSource *pMIDISrc,
 SLDataSource *pBankSrc,
 SLDataSink *pAudioOutput,
 SLDataSink *pVibra,
 SLDataSink *pLEDArray,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean* pInterfaceRequired
);

Description Creates a MIDI player.

Pre-conditions If the audio output’s locator is an object (e.g. output mix) this object
must be in the realized state.

self [in] Interface self-reference.

pPlayer [out] Newly created MIDI player object.

pMIDISrc [in] Pointer to the structure specifying the
MIDI data source. This data source
must be a Mobile XMF [mXMF] or SP-
MIDI [SP-MIDI] file reference, or a MIDI
buffer queue.

pBankSrc [in] Pointer to the structure specifying the
instrument bank in Mobile DLS format.
This is an optional parameter. If NULL,
the default bank of instruments
definitions is used.

pAudioOutput [in] Pointer to the structure specifying the
audio data sink (such as an audio
output device).

pVibra [in] Pointer to the structure specifying the
vibra device to which the MIDI player
should send vibra data. This is an
optional parameter. If NULL, no vibra
devices will be controlled by the MIDI
data.

Parameters

pLEDArray [in] Pointer to the structure specifying the
LED array device to which the MIDI
player should send LED array data. This
is an optional parameter. If NULL, no
LED array devices will be controlled by
the MIDI data.

208 OpenSL ES 1.0.1 Specification

CreateMidiPlayer
numInterfaces [in] Number of interface that the object is

requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

pInterfaceRequired [in] An array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_CONTENT_CORRUPTED
SL_RESULT_CONTENT_UNSUPPORTED
SL_RESULT_CONTENT_NOT_FOUND
SL_RESULT_PERMISSION_DENIED
SL_RESULT_FEATURE_UNSUPPORTED

Comments The player creation may fail with a SL_RESULT_FEATURE_UNSUPPORTED
code if a bank is provided in the pBankSrc parameter and in addition a
bank is embedded in the MIDI source. In such a case, the application
is advised to try creating the MIDI player without providing a bank in
pBankSrc.

The application may wish to set pMIDISrc to NULL if it plans to solely
use the MIDI messaging interface SLMIDIMessageItf [see section
8.24] to feed MIDI data from a single player to the MIDI synthesizer.

See also MIDI Player Object [section 7.8]

OpenSL ES 1.0.1 Specification 209

CreateListener
SLresult (*CreateListener) (
 SLEngineItf self,
 SLObjectItf * pListener,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean* pInterfaceRequired
);

Description Creates a listener.

Pre-conditions None

self [in] Interface self-reference.

pListener [out] Newly created listener object.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also Listener Object [section 7.6]

210 OpenSL ES 1.0.1 Specification

Create3DGroup
SLresult (*Create3DGroup) (
 SLEngineItf self,
 SLObjectItf * pGroup,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean* pInterfaceRequired
);

Description Creates a 3D group.

Pre-conditions None

self [in] Interface self-reference.

pGroup [out] Newly created 3D group object.

numInterfaces [in] Number of interface that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also 3D Group Object [section 7.1]

OpenSL ES 1.0.1 Specification 211

CreateOutputMix
 SLresult (*CreateOutputMix) (
 SLEngineItf self,

 SLObjectItf * pMix,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates an output mix.

Pre-conditions None

self [in] Interface self-reference.

pMix [out] Newly created output mix object.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail
the creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also Output Mix Object [section 7.9]

212 OpenSL ES 1.0.1 Specification

CreateMetadataExtractor
SLresult (*CreateMetadataExtractor) (
 SLEngineItf self,
 SLObjectItf * pMetadataExtractor,
 SLDataSource * pDataSource,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates a Metadata Extractor object.

Pre-conditions None

self [in] Interface self-reference.

pMetadataExtractor [out] Newly created metadata extractor
object.

pDataSource [in] Pointer to the structure specifying the
audio data source (such as a media file).
Only local data sources are mandated to
be supported. Must be non-NULL.

numInterfaces [in] Number of interfaces that the object is
requested to support (not including
implicit interfaces).

pInterfaceIds [in] Array of numInterfaces interface IDs,
which the object should support.

This parameter is ignored if
numInterfaces is zero.

Parameters

pInterfaceRequired [in] Array of numInterfaces flags, each
specifying whether the respective
interface is required on the object or
optional. A required interface will fail the
creation of the object if it cannot be
accommodated.

This parameter is ignored if
numInterfaces is zero.

OpenSL ES 1.0.1 Specification 213

CreateMetadataExtractor
Return value The return value can be one of the following:

SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_FEATURE_UNSUPPORTED
SL_RESULT_CONTENT_CORRUPTED
SL_RESULT_CONTENT_UNSUPPORTED
SL_RESULT_CONTENT_NOT_FOUND
SL_RESULT_PERMISSION_DENIED

Comments None

See also Metadata Extractor Object [see section 7.7]

CreateExtensionObject
SLresult (*CreateExtensionObject) (
 SLEngineItf self,
 SLObjectItf * pObject,
 void * pParameters,
 SLuint32 objectID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);

Description Creates an object. This method is used for extension objects defined
externally from the specification. Objects defined by the specification
must be created by the specific creation methods in the engine interface.

Pre-
conditions

As documented by extension.

self [in] Interface self-
reference.

Parameters

pObject [out] Newly-created
object.

214 OpenSL ES 1.0.1 Specification

CreateExtensionObject

pParameters [in] Pointer to a
structure
specifying the
parameters
used for
creating the
object.

objectID [in] A valid object
ID.

numInterfaces [in] Number of
interfaces that
the object is
requested to
support (not
including
implicit
interfaces).

pInterfaceIds [in] Array of
numInterfaces
interface IDs,
which the
object should
support.

pInterfaceRequired [in] Array of
numInterfaces
flags, each
specifying
whether the
respective
interface is
required on the
object or
optional. A
required
interface will
fail the creation
of the object if
it cannot be
accommodated.

OpenSL ES 1.0.1 Specification 215

CreateExtensionObject
Return value The return value can be one of the following:

SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_PERMISSION_DENIED
SL_RESULT_FEATURE_UNSUPPORTED

Comments If the engine fails to create the object due to lack of memory or
resources it will return the SL_RESULT_MEMORY_FAILURE or the
SL_RESULT_RESOURCE_ERROR error, respectively. The ObjectID and the
data structure pointed to by pParameters should be defined by an
extension. When ObjectID is not valid the method will return
SL_RESULT_FEATURE_UNSUPPORTED.

See also Section 3.5

216 OpenSL ES 1.0.1 Specification

QueryNumSupportedInterfaces
SLresult (*QueryNumSupportedInterfaces) (
 SLEngineItf self,
 SLuint32 objectID,
 SLuint32 * pNumSupportedInterfaces
);
Description Queries the number of supported interfaces available.

self [in] Interface self-reference.

objectID [in] ID of the object being queried.
Refer to SL_OBJECTID type. If the
engine does not support the
identified object this method will
return
SL_RESULT_FEATURE_UNSUPPORTED.

Parameters

pNumSupportedInterfaces [out] Identifies the number of supported
interfaces available.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments The number of supported interfaces will include both mandated and
optional interfaces available for the object.

This method can be used to determine whether or not an object is
supported by an implementation by examining the return value.

See also QuerySupportedInterfaces(),
slQueryNumSupportedEngineInterfaces() [see section 6.2].

OpenSL ES 1.0.1 Specification 217

QuerySupportedInterfaces
SLresult (*QuerySupportedInterfaces) (
 SLEngineItf self,
 SLuint32 objectID,
 SLuint32 index,
 SLInterfaceID * pInterfaceId
);

Description Queries the supported interfaces.

Pre-conditions None

self [in] Interface self-reference.

objectID [in] ID of the object being queried. Refer to
SL_OBJECTID type. If the engine does not
support the identified object this method will
return SL_RESULT_FEATURE_UNSUPPORTED.

index [in] Incrementing index used to enumerate
available interfaces. Supported index range is
0 to N-1, where N is the number of supported
interfaces.

Parameters

pInterfaceId [out] Identifies the supported interface.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments The number of supported interfaces will include both mandated and
optional interfaces available for the object.

See also QueryNumberSupportedInterfaces(),
slQueryNumSupportedEngineInterfaces() [see section 6.3].

218 OpenSL ES 1.0.1 Specification

QueryNumSupportedExtensions
SLresult (*QueryNumSupportedExtensions) (
 SLEngineItf self,
 SLuint32 * pNumExtensions
);
Description Queries the number of supported extensions.

self [in] Interface self-reference. Parameters

pNumExtensions [out] Identifies the number of supported
extensions by this implementation.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The number of supported extensions will include both standardized
extensions listed in Khronos registry and vendor-specific extensions.

See also QuerySupportedExtensions()

OpenSL ES 1.0.1 Specification 219

QuerySupportedExtension
SLresult (*QuerySupportedExtension) (
 SLEngineItf self,
 SLuint32 index,
 SLchar * pExtensionName,
 SLint16 * pNameLength
);
Description Gets the name of the extension supported by the implementation based on

the given index.

Pre-conditions None

self [in] Interface self-reference.

index [in] The index of the extension. Must be [0,
numExtensions-1].

pExtensionName [out] The name of the supported extension, as
defined in the Khronos registry
(http://www.khronos.org/registry/) or in
vendor-specific documentation.

The length of the needed char array should
be first figured out from pNameLength out
parameter by calling this method with
pExtensionName as null.

Parameters

pNameLength [in/out] As an output, specifies the length of the
name including the terminating NULL.

As an input, specifies the length of the given
pExtensionName char array (ignored if
pExtensionName is NULL).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT

Comments If the given length is smaller than the needed size
SL_RESULT_BUFFER_INSUFFICIENT is returned and only data of the given
size will be written; however, no invalid strings are written. That is, the
null-terminator always exists and multibyte characters are not cut in the
middle.

See Also QueryNumSupportedExtensions(), IsExtensionSupported()

http://www.khronos.org/registry/

220 OpenSL ES 1.0.1 Specification

IsExtensionSupported
SLresult (*IsExtensionSupported) (
 SLEngineItf self,
 const SLchar * pExtensionName,
 SLboolean * pSupported
);
Description Queries if the given extension is supported by the implementation.

Pre-conditions None

self [in] Interface self-reference.

pExtensionName [in] The name of an extension, as defined in the
Khronos registry
(http://www.khronos.org/registry/) or in
vendor-specific documentation. Must be null-
terminated.

Parameters

pSupported [out] SL_BOOLEAN_TRUE if the given extension is
supported; SL_BOOLEAN_FALSE if it is not
supported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This is an alternative method to be used instead of
QueryNumSupportedExtensions() and QuerySupportedExtension() to
query the availability of just one known extension.

See Also None

http://www.khronos.org/registry/

OpenSL ES 1.0.1 Specification 221

8.18 SLEngineCapabilitiesItf

Description

Different implementations of OpenSL ES can support one or more of the three profiles
(Phone, Music and Game). Further, these implementations can also vary in their ability to
support simultaneous 2D and 3D sampled audio voices, as well as the MIDI polyphony
level and the ability to treat the output of the MIDI synthesizer(s) as 3D sound source(s).
For these reasons, an interface to query the capabilities of the OpenSL ES engine is
necessary. The SLEngineCapabilitiesItf interface provides this functionality.

Version 1.0 of OpenSL ES mandates support for “at least one” MIDI synthesizer. This does
not prevent implementations from supporting more than one synthesizer. Therefor, this
interface allows querying of the number of MIDI synthesizers supported.

This interface is supported on the engine [see section 7.4] object.

See section B.7.1 for an example using this interface.

Prototype
extern const SLInterfaceID SL_IID_ENGINECAPABILITIES;

struct SLEngineCapabilitiesItf_;
typedef const struct SLEngineCapabilitiesItf_* const *
SLEngineCapabilitiesItf;

struct SLEngineCapabilitiesItf_ {
 SLresult (*QuerySupportedProfiles) (
 SLEngineCapabilitiesItf self,
 SLuint16 *pProfilesSupported
);
 SLresult (*QueryAvailableVoices) (
 SLEngineCapabilitiesItf self,
 SLuint16 voiceType,
 SLint16 *pNumMaxVoices,
 SLboolean *pIsAbsoluteMax,
 SLint16 *pNumFreeVoices
);
 SLresult (*QueryNumberOfMIDISynthesizers) (
 SLEngineCapabilitiesItf self,
 SLint16 *pNumMIDIsynthesizers
);

222 OpenSL ES 1.0.1 Specification

 SLresult (*QueryAPIVersion) (
 SLEngineCapabilitiesItf self,
 SLint16 *pMajor,
 SLint16 *pMinor,
 SLint16 *pStep
);

SLresult (*QueryLEDCapabilities) (
 SLEngineCapabilitiesItf self,
 SLuint32 *pIndex,
 SLuint32 *pLEDDeviceID,
 SLLEDDescriptor *pDescriptor
);
SLresult (*QueryVibraCapabilities) (
 SLEngineCapabilitiesItf self,
 SLuint32 *pIndex,
 SLuint32 *pVibraDeviceID,
 SLVibraDescriptor *pDescriptor
);

 SLresult (*IsThreadSafe) (
 SLEngineCapabilitiesItf self,
 SLboolean *pIsThreadSafe
);
};

Interface ID

8320d0a0-ddd5-11db-a1b1-0002a5d5c51b

Defaults

None (the interface is stateless).

OpenSL ES 1.0.1 Specification 223

Methods

QuerySupportedProfiles
SLresult (*QuerySupportedProfiles)(
 SLEngineCapabilitiesIt self,
 SLuint16 *pProfilesSupported
);
Description Queries the supported profiles of the OpenSL ES API

Pre-conditions None

self [in] Interface self-reference. Parameters

pProfilesSupported [out] Bitmask containing one or more of the
three profiles supported, as defined in
the SL_PROFILE macros.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See Also Section 9.2.36 (SL_PROFILE macros)

224 OpenSL ES 1.0.1 Specification

QueryAvailableVoices
SLresult (*QueryAvailableVoices)(
 SLEngineCapabilitiesItf self,
 SLuint16 voiceType,
 SLint16 *pNumMaxVoices,
 SLboolean *pIsAbsoluteMax,
 SLint16 *pNumFreeVoices
);

Description Queries the number of simultaneous free voices currently available.

Pre-conditions None

self [in] Interface self-reference.

voiceType [in] One of the voice types listed in the
SL_VOICETYPE macros.

pNumMaxVoices [out] Maximum number of simultaneous voices
of type “voiceType” supported by the
implementation. For MIDI, it refers to the
maximum polyphony level.

Parameters

pIsAbsoluteMax [out] SL_BOOLEAN_TRUE if the numMaxVoices
returned is an absolute maximum that the
device cannot exceed in any
circumstances. This can be caused, for
example, by hardware limitations in
hardware-based implementations.

SL_BOOLEAN_FALSE if the numMaxVoices
returned specifies the maximum number
of voices that the application is
recommended to have active simultaneously
(as might be recommended for a typical
game playing situation when graphics
rendering (2D or 3D) and reverberation
are also taking place). The implementation
does not guarantee that this number of
voices may be active simultaneously under
all conditions; it is just a hint to the
application. (It may even be possible for
more than this number of voices to be
active simultaneously, but this is not
guaranteed, either.) SL_BOOLEAN_FALSE is
typically returned in software-based
implementations.

OpenSL ES 1.0.1 Specification 225

QueryAvailableVoices
pNumFreeVoices [out] Number of voices of type “voiceType”

currently available. For MIDI, it refers to
the currently available polyphony level.
Typically, “numFreeVoices” is expected to
be less than or equal to “numMaxVoices”,
depending on current resource usage in
the system.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See Also SL_VOICETYPE macros [see section 9.2.47]

QueryNumberOfMIDISynthesizers
SLresult (*QueryNumberOfMIDISynthesizers)(
 SLEngineCapabilitiesItf self,
 SLint16 *pNumMIDISynthesizers
);
Description Queries the number of MIDI synthesizers supported by the

implementation.

Pre-conditions None

self [in] Interface self-reference. Parameters

pNumMIDISynthesizers [out] Number of MIDI synthesizers
supported. Must be at least 1.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments OpenSL ES v1.0 mandates support for at least one synthesizer. It does
not prevent implementations from supporting more than one.

See Also None

226 OpenSL ES 1.0.1 Specification

QueryAPIVersion
SLresult (*QueryAPIVersion) (
 SLEngineCapabilitiesItf self,
 SLint16 *pMajor,
 SLint16 *pMinor,
 SLint16 *pStep
);
Description Queries the version of the OpenSL ES API implementation.

Pre-conditions None

self [in] Interface self-reference.

pMajor [out] Major version number.

pMinor [out] Minor version number.

Parameters

pStep [out] Step within the minor version number.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments For 1.0.1 implementations of OpenSL ES, this method should return 1,
0, and 1 for the pMajor, pMinor, and pStep fields, respectively.

OpenSL ES 1.0.1 Specification 227

QueryLEDCapabilities
SLresult (*QueryLEDCapabilities) (
 SLEngineCapabilitiesItf self,
 SLuint32 *pIndex,
 SLuint32 *pLEDDeviceID,
 SLLEDDescriptor *pDescriptor
);
Description Queries the LED array device for its capabilities.

Pre-conditions None

self [in] Interface self-reference.

pIndex [in/out] As an input, specifies which LED
array device to obtain the
capabilities of, the supported
range is [0, n), where n is the
number of LED array devices
available (ignored if pDescriptor
is NULL). As an output, specifies
the number of LED array devices
available in the system. Returns 0
if no LED array devices are
available.

pLEDDeviceId [in/out] If pIndex is non-NULL then returns
the LED array device ID
corresponding to LED array device
pIndex. If pIndex is NULL then,
as an input, specifies which LED
array device to obtain the
capabilities of
(SL_DEFAULTDEVICEID_LED can be
used to determine the default LED
array’s capabilities).

Parameters

pDescriptor [out] Structure defining the capabilities
of the LED array device.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

228 OpenSL ES 1.0.1 Specification

Comments An application can determine the number of LED array devices by
calling this method with pDescriptor set to NULL and examining
pIndex. The application can then determine the capabilties of all
the LED array devices by calling this method multiple times with
pIndex pointing to each different index from 0 up to one less than
the number of LED array devices.

An LED array device is selected using the CreateLEDDevice()
method.

See also SL_DEFAULTDEVICEID_LED [see section 9.2.10])

OpenSL ES 1.0.1 Specification 229

QueryVibraCapabilities
SLresult (*QueryVibraCapabilities) (
 SLEngineCapabilitiesItf self,
 SLuint32 *pIndex,
 SLuint32 *pVibraDeviceID,
 SLVibraDescriptor *pDescriptor
);
Description Queries the vibration device for its capabilities.

Pre-conditions None

self [in] Interface self-reference.

pIndex [in/out] As an input, specifies which vibration
device to obtain the capabilities of,
the supported range is [0, n), where
n is the number of vibration y
devices available (ignored if
pDescriptor is NULL). As an output,
specifies the number of vibration
devices available in the system.
Returns 0 if no vibration devices are
available.

pVibraDeviceId [in/out] If pIndex is non-NULL then returns
the vibration device ID
corresponding to vibration device
pIndex. If pIndex is NULL then, as
an input, specifies which vibration
device to obtain the capabilities of
(SL_DEFAULTDEVICEID_VIBRA can be
used to determine the default
vibration device’s capabilities).

Parameters

pDescriptor [out] Structure defining the capabilities of
the vibration device.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments An application can determine the number of vibration devices by
calling this method with pDescriptor set to NULL and examining
pIndex. The application can then determine the capabilties of all the
vibration devices by calling this method multiple times with pIndex
pointing to each different indexes from 0 up to one less than the
number of vibration devices.

A vibration device is selected using the CreateVibraDevice()
method.

See also SL_DEFAULTDEVICEID_VIBRA [see section 9.2.10])

230 OpenSL ES 1.0.1 Specification

IsThreadSafe
 SLresult (*IsThreadSafe) (
 SLEngineCapabilitiesItf self,
 SLboolean *pIsThreadSafe
);

Description Gets the thread-safety status of the OpenSL ES implementation.

Pre-conditions None

self [in] Interface self-reference. Parameters

pIsThreadSafe [out] SL_BOOLEAN_TRUE if the
implementation is thread-safe;
otherwise SL_BOOLEAN_FALSE.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

OpenSL ES 1.0.1 Specification 231

8.19 SLEnvironmentalReverbItf

Description

A sound generated within a particular acoustic environment typically reaches a listener via
many different paths. The listener first hears the direct sound from the sound source itself.
Somewhat later, he or she hears a number of discrete echoes caused by sound bouncing
once off nearby walls, the ceiling or the floor. These sounds are known as early reflections.
Later still, as sound waves arrive after undergoing more and more reflections, the
individual reflections become indistinguishable from one another and the listener hears
continuous reverberation that decays over time. This combination of direct, reflected and
reverberant sound is illustrated in the diagram below. Please note that the reflections level
and reverb level are total (integrated) energy levels of early reflections and late
reverberation, respectively, not peak levels.

 -6000 mB

Reflections
delay

Direct sound Early
reflections

Reverberation

Time

 Reverb
delay

Decay time

V
o
lu

m
e

0 mB

 SL_MILLIBEL_MIN mB

R
ev

er
b

le
ve

l

R
ef

le
ct

io
n
s

le
ve

l

Figure 33: Reflections and reverberation

This interface allows an application to control these properties in a global reverb
environment. The reverb controls exposed by this interface are based on the I3DL2
guidelines [I3DL2], with the restriction that the high-frequency reference level is fixed at 5
kHz.

When this interface is exposed on the Output Mix, it acts as an auxiliary effect; for reverb
to be applied to a player’s output, the SLEffectSendItf interface
[see section 8.14] must be exposed on the player.

232 OpenSL ES 1.0.1 Specification

The following restriction must be adhered to when exposing this interface:

 It is not possible to expose this interface while the SLPresetReverbItf interface of the
same object is already exposed.

This interface is supported on the Output Mix [see section 7.9] object.

See sections B.6.1 and C.4 for examples using this interface.

High Frequency Attenuation
When a sound is reflected against objects within a room, its high frequencies typically tail
off faster than its low frequencies. This interface exposes control over how much
attenuation is applied to the high frequency components of the reverb and reflections. The
attenuation is controlled using a setting that specifies the attenuation level (in millibels) of
the frequencies above 5 kHz (high frequencies) relative to low frequencies. This allows
different implementations to use different filter designs (such as one-pole, two-pole) for
the internal low-pass filter.

Prototype
extern const SLInterfaceID SL_IID_ENVIRONMENTALREVERB;

struct SLEnvironmentalReverbItf_;
typedef const struct SLEnvironmentalReverbItf_ * const *
SLEnvironmentalReverbItf;

struct SLEnvironmentalReverbItf_ {
 SLresult (*SetRoomLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel room
);
 SLresult (*GetRoomLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pRoom
);
 SLresult (*SetRoomHFLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel roomHF
);
 SLresult (*GetRoomHFLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pRoomHF
);
 SLresult (*SetDecayTime) (
 SLEnvironmentalReverbItf self,
 SLmillisecond decayTime
);
 SLresult (*GetDecayTime) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pDecayTime
);

OpenSL ES 1.0.1 Specification 233

 SLresult (*SetDecayHFRatio) (
 SLEnvironmentalReverbItf self,
 SLpermille decayHFRatio
);
 SLresult (*GetDecayHFRatio) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDecayHFRatio
);
 SLresult (*SetReflectionsLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel reflectionsLevel
);
 SLresult (*GetReflectionsLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pReflectionsLevel
);
 SLresult (*SetReflectionsDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond reflectionsDelay
);
 SLresult (*GetReflectionsDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pReflectionsDelay
);
 SLresult (*SetReverbLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel reverbLevel
);
 SLresult (*GetReverbLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pReverbLevel
);
 SLresult (*SetReverbDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond reverbDelay
);
 SLresult (*GetReverbDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pReverbDelay
);
 SLresult (*SetDiffusion) (
 SLEnvironmentalReverbItf self,
 SLpermille diffusion
);
 SLresult (*GetDiffusion) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDiffusion
);
 SLresult (*SetDensity) (
 SLEnvironmentalReverbItf self,
 SLpermille density
);

234 OpenSL ES 1.0.1 Specification

 SLresult (*GetDensity) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDensity
);
 SLresult (*SetEnvironmentalReverbProperties) (
 SLEnvironmentalReverbItf self,
 const SLEnvironmentalReverbSettings *pProperties
);
 SLresult (*GetEnvironmentalReverbProperties) (
 SLEnvironmentalReverbItf self,
 SLEnvironmentalReverbSettings *pProperties
);
};

Interface ID

c2e5d5f0-94bd-4763-9cac-4e23-4d06839e

Defaults

Room level: SL_MILLIBEL_MIN mB

Room HF level: 0 mB

Decay time: 1000 ms

Decay HF ratio: 500 ‰

Reflections delay: 20 ms

Reflections level: SL_MILLIBEL_MIN mB

Reverb level: SL_MILLIBEL_MIN mB

Reverb delay: 40 ms

Diffusion: 1000 ‰

Density: 1000 ‰

OpenSL ES 1.0.1 Specification 235

Methods

SetRoomLevel
SLresult (*SetRoomLevel)(
 SLEnvironmentalReverbItf self,
 SLmillibel room
);

Description Sets the master volume level of the environmental reverb effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

room [in] Room level in millibels. The valid range is
[SL_MILLIBEL_MIN, 0].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

GetRoomLevel
SLresult (*GetRoomLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pRoom
);

Description Gets the master volume level of the environmental reverb effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

pRoom [out] Pointer to a location for the room level in millibels.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

236 OpenSL ES 1.0.1 Specification

SetRoomHFLevel
SLresult (*SetRoomHFLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel roomHF
);

Description Sets the volume level at 5 kHz relative to the volume level at low
frequencies of the overall reverb effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

roomHF [in] High frequency attenuation level in millibels. The
valid range is [SL_MILLIBEL_MIN, 0].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments This controls a low-pass filter that will reduce the level of the high-
frequency.

GetRoomHFLevel
SLresult (*GetRoomHFLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pRoomHF
);

Description Gets the room HF level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pRoomHF [out] Pointer to a location for the room HF level in
millibels. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 237

SetDecayTime
SLresult (*SetDecayTime) (
 SLEnvironmentalReverbItf self,
 SLmillisecond decayTime
);

Description Sets the time taken for the level of reverberation to decay by 60 dB.

Pre-conditions None

self [in] Interface self-reference. Parameters

decayTime [in] Decay time in milliseconds. The valid range is
[100, 20000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

GetDecayTime
SLresult (*GetDecayTime) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pDecayTime
);

Description Gets the decay time.

Pre-conditions None

self [in] Interface self-reference. Parameters

pDecayTime [out] Pointer to a location for the decay time in
milliseconds. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

238 OpenSL ES 1.0.1 Specification

SetDecayHFRatio
SLresult (*SetDecayHFRatio) (
 SLEnvironmentalReverbItf self,
 SLpermille decayHFRatio
);

Description Sets the ratio of high frequency decay time (at 5 kHz) relative to the
decay time at low frequencies.

Pre-conditions None

self [in] Interface self-reference. Parameters

decayHFRatio [in] High frequency decay ratio using a permille
scale. The valid range is [100, 2000]. A ratio
of 1000 indicates that all frequencies decay at
the same rate.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

GetDecayHFRatio
SLresult (*GetDecayHFRatio) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDecayHFRatio
);

Description Gets the ratio of high frequency decay time (at 5 kHz) relative to low
frequencies.

Pre-conditions None

self [in] Interface self-reference. Parameters

pDecayHFRatio [out] Pointer to receive the decay HF ratio. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 239

SetReflectionsLevel
SLresult (*SetReflectionsLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel reflectionsLevel
);

Description Sets the volume level of the early reflections.

Pre-conditions None

self [in] Interface self-reference. Parameters

reflectionsLevel [in] Reflection level in millibels. The valid
range is [SL_MILLIBEL_MIN, 1000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments This level is combined with the overall room level (set using
SetRoomLevel).

GetReflectionsLevel
SLresult (*GetReflectionsLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pReflectionsLevel
);

Description Gets the reflections level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pReflectionsLevel [out] Pointer to the reflection level in millibels.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

240 OpenSL ES 1.0.1 Specification

SetReflectionsDelay
SLresult (*SetReflectionsDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond reflectionsDelay
);

Description Sets the delay time for the early reflections.

Pre-conditions None

self [in] Interface self-reference. Parameters

reflectionsDelay [in] Reflections delay in milliseconds. The valid
range is [0, 300].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments This method sets the time between when the direct path is heard and
when the first reflection is heard.

GetReflectionsDelay
SLresult (*GetReflectionsDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pReflectionsDelay
);

Description Gets the reflections delay.

Pre-conditions None

self [in] Interface self-reference. Parameters

pReflectionsDelay [out] Pointer to a location to receive
reflections delay in milliseconds. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 241

SetReverbLevel
SLresult (*SetReverbLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel reverbLevel
);

Description Sets the volume level of the late reverberation.

Pre-conditions None

self [in] Interface self-reference. Parameters

reverbLevel [in] Reverb level in millibels. The valid range is
[SL_MILLIBEL_MIN, 2000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments This level is combined with the overall room level (set using
SetRoomLevel).

GetReverbLevel
SLresult (*GetReverbLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pReverbLevel
);

Description Gets the reverb level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pReverbLevel [out] Pointer to a location for the reverb level in
millibels. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

242 OpenSL ES 1.0.1 Specification

SetReverbDelay
SLresult (*SetReverbDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond reverbDelay
);

Description Sets the time between the first reflection and the reverberation.

Pre-conditions None

self [in] Interface self-reference. Parameters

reverbDelay [in] Reverb delay in milliseconds. The valid range is
[0, 100].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

GetReverbDelay
SLresult (*GetReverbDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pReverbDelay
);

Description Gets the reverb delay length.

Pre-conditions None

self [in] Interface self-reference. Parameters

pReverbDelay [out] Pointer to the location for the reverb delay in
milliseconds. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 243

SetDiffusion
SLresult (*SetDiffusion) (
 SLEnvironmentalReverbItf self,
 SLpermille diffusion
);

Description Sets the echo density in the late reverberation decay.

Pre-conditions None

self [in] Interface self-reference. Parameters

diffusion [in] Diffusion specified using a permille scale. The
valid range is [0, 1000]. A value of 1000 ‰
indicates a smooth reverberation decay. Values
below this level give a more grainy character.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments The scale should approximately map linearly to the perceived change
in reverberation.

GetDiffusion
SLresult (*GetDiffusion) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDiffusion
);

Description Gets the level of diffusion.

Pre-conditions None

self [in] Interface self-reference. Parameters

pDiffusion [out] Pointer to a location for the diffusion level. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

244 OpenSL ES 1.0.1 Specification

SetDensity
SLresult (*SetDensity) (
 SLEnvironmentalReverbItf self,
 SLpermille density
);

Description Controls the modal density of the late reverberation decay.

Pre-conditions None

self [in] Interface self-reference. Parameters

density [in] Density specified using a permille scale. The valid
range is [0, 1000]. A value of 1000 ‰ indicates a
natural sounding reverberation. Values below this
level produce a more colored effect.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments The scale should approximately map linearly to the perceived change
in reverberation.

A lower density creates a hollow sound that is useful for simulating
small reverberation spaces such as bathrooms.

GetDensity
SLresult (*GetDensity) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDensity
);

Description Gets the density level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pDensity [out] Pointer to a location for the density level. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 245

SetEnvironmentalReverbProperties
SLresult (*SetEnvironmentalReverbProperties) (
 SLEnvironmentalReverbItf self,
 const SLEnvironmentalReverbSettings *pProperties
);

Description Sets all the environment properties in one method call.

Pre-conditions None

self [in] Interface self-reference. Parameters

pProperties [in] Pointer to a structure containing all the
environmental reverb properties [see section
9.1.17]. All the properties in the structure must
be within the ranges specified for each of the
properties in the “set” methods in this
interface. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments This can be used with the environmental reverb presets definitions.
For example:

SLEnvironmentalReverbSettings ReverbSettings =
 SL_I3DL2_ENVIRONMENT_PRESET_BATHROOM;

/* Change reverb environment to bathroom. */
pReverb->SetEnvironmentalReverbProperties(pReverb,
&ReverbSettings);

Developers are advised to use this method when changing more than
one parameter at a given time as this reduces the amount of
unnecessary processing.

246 OpenSL ES 1.0.1 Specification

GetEnvironmentalReverbProperties
SLresult (*GetEnvironmentalReverbProperties) (
 SLEnvironmentalReverbItf self,
 SLEnvironmentalReverbSettings *pProperties
);

Description Gets all the environment’s properties.

Pre-conditions None

self [in] Interface self-reference. Parameters

pProperties [in] Pointer to a structure to receive all the
environmental reverb properties [see section
9.1.17]. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 247

8.20 SLEqualizerItf

Description

SLEqualizerItf is an interface for manipulating the equalization settings of a media
object. The equalizer (EQ) can be set up in two different ways: by setting individual
frequency bands, or by using predefined presets.

The preset settings can be directly taken into use with the method UsePreset(). The
current preset can be queried with the method GetPreset(). If none of the presets is set,
SL_EQUALIZER_UNDEFINED will be returned. SL_EQUALIZER_UNDEFINED will also be returned
when a preset has been set, but the equalizer settings have been altered later with
SetBandLevel(). Presets have names that can be used in the user interface.

There are methods for getting and setting individual EQ-band gains (SetBandLevel() and
GetBandLevel()), methods for querying the number of the EQ-bands available
(GetNumberOfBands()) and methods for querying their center frequencies
(GetCenterFreq()).

The gains in this interface are defined in millibels (hundredths of a decibel), but it has to
be understood that many devices contain a Dynamic Range Control (DRC) system that will
affect the actual effect and therefore the value in millibels will affect as a guideline rather
than as a strict rule.

This interface affects different parts of the audio processing chain, depending on which
object the interface is exposed. If this interface is exposed on an Output Mix object, the
effect is applied to the output mix. If this interface is exposed on a Player object, it is
applied to the Player’s output only. For more information, see section 4.5.1.

This interface is supported on the Output Mix [see section 7.9] object.

See section B.6.2 for an example using this interface.

Prototype
extern const SLInterfaceID SL_IID_EQUALIZER;

struct SLEqualizerItf_;
typedef const struct SLEqualizerItf_ * const * SLEqualizerItf;

struct SLEqualizerItf_ {
 SLresult (*SetEnabled)(
 SLEqualizerItf self,
 SLboolean enabled
);

248 OpenSL ES 1.0.1 Specification

 SLresult (*IsEnabled)(
 SLEqualizerItf self,
 SLboolean *pEnabled
);
 SLresult (*GetNumberOfBands)(
 SLEqualizerItf self,
 SLuint16 *pNumBands
);
 SLresult (*GetBandLevelRange)(
 SLEqualizerItf self,
 SLmillibel *pMin,
 SLmillibel *pMax
);
 SLresult (*SetBandLevel)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmillibel level
);
 SLresult (*GetBandLevel)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmillibel *pLevel
);
 SLresult (*GetCenterFreq)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmilliHertz *pCenter
);
 SLresult (*GetBandFreqRange)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmilliHertz *pMin,
 SLmilliHertz *pMax
);
 SLresult (*GetBand)(
 SLEqualizerItf self,
 SLmilliHertz frequency,
 SLuint16 *pBand
);
 SLresult (*GetCurrentPreset)(
 SLEqualizerItf self,
 SLuint16 *pPreset
);
 SLresult (*UsePreset)(
 SLEqualizerItf self,
 SLuint16 index
);
 SLresult (*GetNumberOfPresets)(
 SLEqualizerItf self,
 SLuint16 *pNumPresets
);

OpenSL ES 1.0.1 Specification 249

 SLresult (*GetPresetName)(
 SLEqualizerItf self,
 SLuint16 index,
 const SLchar ** ppName
);
};

Interface ID

0bed4300-ddd6-11db-8f34-0002a5d5c51b

Defaults

Enabled: false (disabled)

All band levels: 0 mB (flat response curve)

Preset: SL_EQUALIZER_UNDEFINED (no preset)

Methods

SetEnabled
SLresult (*SetEnabled)(
 SLEqualizerItf self,
 SLboolean enabled
);

Description Enables the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

enabled [in] True to turn on the effect; false to switch it off.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_CONTROL_LOST

Comments None

250 OpenSL ES 1.0.1 Specification

IsEnabled
SLresult (*IsEnabled)(
 SLEqualizerItf self,
 SLboolean *pEnabled
);

Description Gets the enabled status of the effect.

Pre-
conditions

None

self [in] Interface self-reference. Parameters

pEnabled [out] True if the effect is on, otherwise false. This must be
non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

GetNumberOfBands
SLresult (*GetNumberOfBands)(
 SLEqualizerItf self,
 SLuint16 *pNumBands
);

Description Gets the number of frequency bands that the equalizer supports. A valid
equalizer must have at least two bands.

Pre-conditions None

self [in] Interface self-reference. Parameters

pNumBands [out] Number of frequency bands that the equalizer
supports. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 251

GetBandLevelRange
SLresult (*GetBandLevelRange)(
 SLEqualizerItf self,
 SLmillibel *pMin,
 SLmillibel *pMax
);

Description Returns the minimum and maximum band levels supported.

Pre-
conditions

None

self [in] Interface self-reference.

pMin [out] Minimum supported band level in millibels.

Parameters

pMax [out] Maximum supported band level in millibels.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The range returned by GetBandLevelRange must at least include 0 mB.

The application may pass NULL as one of the [out] parameters to find out
only the other one’s value.

252 OpenSL ES 1.0.1 Specification

SetBandLevel
SLresult (*SetBandLevel)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmillibel level
);
Description Sets the given equalizer band to the given gain value.

Pre-conditions None

self [in] Interface self-reference.

band [in] Frequency band that will have the new gain. The numbering
of the bands starts from 0 and ends at (number of bands –
1).

Parameters

level [in] New gain in millibels that will be set to the given band.
GetBandLevelRange() will define the maximum and
minimum values.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

OpenSL ES 1.0.1 Specification 253

GetBandLevel
SLresult (*GetBandLevel)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmillibel *pLevel
);
Description Gets the gain set for the given equalizer band.

Pre-conditions None

self [in] Interface self-reference.

band [in] Frequency band whose gain is requested. The numbering
of the bands starts from 0 and ends at (number of bands –
1).

Parameters

pLevel [out] Gain in millibels of the given band. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

GetCenterFreq
SLresult (*GetCenterFreq)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmilliHertz *pCenter
);
Description Gets the center frequency of the given band.

Pre-conditions None

self [in] Interface self-reference.

band [in] Frequency band whose center frequency is requested. The
numbering of the bands starts from 0 and ends at
(number of bands – 1).

Parameters

pCenter [out] The center frequency in milliHertz. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

254 OpenSL ES 1.0.1 Specification

GetBandFreqRange
SLresult (*GetBandFreqRange)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmilliHertz *pMin,
 SLmilliHertz *pMax
);

Description Gets the frequency range of the given frequency band.

Pre-conditions None

self [in] Interface self-reference.

band [in] Frequency band whose frequency range is requested. The
numbering of the band that can be used with this method
starts from 0 and ends at (number of bands – 1).

pMin [out] The minimum frequency in milliHertz.

Parameters

pMax [out] The maximum frequency in milliHertz.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The exposed band ranges do not overlap (physically they many times do,
but the virtual numbers returned here do not) - this is in order to simplify
the applications that want to use this information for graphical
representation of the EQ.

If shelving filters are used in the lowest and the highest band of the
equalizer, the lowest band returns 0 mHz as the minimum frequency and
the highest band returns the SL_MILLIHERTZ_MAX as the maximum
frequency.

The application may pass NULL as one of the [out] parameters to find out
only the other one’s value.

OpenSL ES 1.0.1 Specification 255

GetBand
SLresult (*GetBand)(
 SLEqualizerItf self,
 SLmilliHertz frequency,
 SLuint16 *pBand
);
Description Gets the band that has the most effect on the given frequency. If no band

has an effect on the given frequency, SL_EQUALIZER_UNDEFINED is
returned.

Pre-conditions None

self [in] Interface self-reference.

frequency [in] Frequency in milliHertz which is to be equalized via the
returned band

Parameters

pBand [out] Frequency band that has most effect on the given
frequency or SL_EQUALIZER_UNDEFINED if no band has
an effect on the given frequency. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

GetCurrentPreset
SLresult (*GetCurrentPreset)(
 SLEqualizerItf self,
 SLuint16 *pPreset
);
Description Gets the current preset.

Pre-conditions None

self [in] Interface self-reference. Parameters

pPreset [out] Preset that is set at the moment. If none of the presets
are set, SL_EQUALIZER_UNDEFINED will be returned. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

256 OpenSL ES 1.0.1 Specification

UsePreset
SLresult (*UsePreset)(
 SLEqualizerItf self,
 SLuint16 index
);
Description Sets the equalizer according to the given preset.

Pre-conditions None

self [in] Interface self-reference. Parameters

index [in] New preset that will be taken into use. The valid range is [0,
number of presets-1].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None

GetNumberOfPresets
SLresult (*GetNumberOfPresets)(
 SLEqualizerItf self,
 SLuint16 *pNumPresets
);
Description Gets the total number of presets the equalizer supports. The presets will

have indices [0, number of presets-1].

Pre-conditions None

self [in] Interface self-reference. Parameters

pNumPresets [out] Number of presets the equalizer supports. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 257

GetPresetName
SLresult (*GetPresetName)(
 SLEqualizerItf self,
 SLuint16 index,
 const SLchar ** ppName
);
Description Gets the preset name based on the index.

Pre-conditions None

self [in] Interface self-reference.

index [in] Index of the preset. The valid range is [0, number of
presets-1].

Parameters

ppName [out] A non-empty, null terminated string containing the name
of the given preset.

The character coding is UTF-8.

This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

258 OpenSL ES 1.0.1 Specification

8.21 SLLEDArrayItf

Description

SLLEDArrayItf is used to activate / deactivate the LEDs, as well as to set the color of
LEDs, if supported.

SLLEDArrayItf uses the following state model per LED, which indicates whether the LED is
on or off:

Figure 34: SLLEDArrayItf state model

This interface is supported on the LED Array [see section 8.21] object.

OpenSL ES 1.0.1 Specification 259

Prototype
extern const SLInterfaceID SL_IID_LED;

struct SLLEDArrayItf_;
typedef const struct SLLEDArrayItf_ * const * SLLEDArrayItf;

struct SLLEDArrayItf_ {
 SLresult (*ActivateLEDArray) (
 SLLEDArrayItf self,
 SLuint32 lightMask
);
 SLresult (*IsLEDArrayActivated) (
 SLLEDArrayItf self,
 SLuint32 *lightMask
);
 SLresult (*SetColor) (
 SLLEDArrayItf self,
 SLuint8 index,
 const SLHSL *color
);
 SLresult (*GetColor) (
 SLLEDArrayItf self,
 SLuint8 index,
 SLHSL *color
);
};

Interface ID

2cc1cd80-ddd6-11db-807e-0002a5d5c51b

Defaults

Initially, all LEDs are in the off state. Default color is undefined.

260 OpenSL ES 1.0.1 Specification

Methods

ActivateLEDArray
SLresult (*ActivateLEDArray) (
 SLLEDArrayItf self,
 SLuint32 lightMask
);

Description Activates or deactivates individual LEDs in an array of LEDs.

Pre-conditions None.

self [in] Pointer to a SLLEDArrayItf interface. Parameters

lightMask [in] Bit mask indicating which LEDs should be
activated or deactivated.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments Valid bits in lightMask range from the least significant bit, which
indicates the first LED in the array, to bit
SLLEDDescriptor::ledCount – 1, which indicates the last LED in the
array. Bits set outside this range are ignored.

See also SLLEDDescriptor [see section 9.1.20].

OpenSL ES 1.0.1 Specification 261

IsLEDArrayActivated
SLresult (*IsLEDArrayActivated) (
 SLLEDArrayItf self,
 SLuint32 *lightMask
);

Description Returns the state of each LED in an array of LEDs.

Pre-conditions None.

self [in] Pointer to a SLLEDArrayItf interface. Parameters

lightMask [out] Address to store a bit mask indicating which
LEDs are activated or deactivated.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Valid bits in lightMask range from the least significant bit, which
indicates the first LED in the array, to bit
SLLEDDescriptor::ledCount – 1, which indicates the last LED in the
array. Bits set outside this range are ignored.

See also SLLEDDescriptor [see section 9.1.20].

262 OpenSL ES 1.0.1 Specification

SetColor
SLresult (*SetColor) (
 SLLEDArrayItf self,
 SLuint8 index,
 const SLHSL *color
);

Description Sets the color of an individual LED.

Pre-conditions The LED must support setting color, per SLLEDDescriptor::colorMask.

self [in] Pointer to a SLLEDArrayItf interface.

index [in] Index of the LED. Range is [0,
SLLEDDescriptor::ledCount)

Parameters

color [in] Address of a data structure containing an HSL color.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None.

See also SLLEDDescriptor [see section 9.1.20].

OpenSL ES 1.0.1 Specification 263

GetColor
SLresult (*GetColor) (
 SLLEDArrayItf self,
 SLuint8 index,
 SLHSL *color
);
Description Returns the color of an individual LED.

Pre-conditions The LED must support setting color, per SLLEDDescriptor::colorMask.

self [in] Pointer to a SLLEDArrayItf interface.

index [in] Index of the LED. Range is [0,
SLLEDDescriptor::ledCount)

Parameters

color [out] Address to store a data structure containing an HSL color.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SLLEDDescriptor [see section 9.1.20].

264 OpenSL ES 1.0.1 Specification

8.22 SLMetadataExtractionItf

Description
The SLMetadataExtractionItf interface allows an application developer to acquire
metadata. It is used for scanning through a file’s metadata, providing the ability to
determine how many metadata items are available, to filter for or against metadata items
by key, and to have the engine fill in a data structure containing full metadata information
for a metadata item.

The SLMetadataExtractionItf interface defaults to a simple search: in the case of simple
formats (e.g. MP3, ADTS, WAVE, AU, AIFF), there is only one location for metadata, and
this simple method searches it completely; in the case of advanced formats (e.g. MP4/3GP,
XMF, SMIL), there are potentially many locations for metadata, and the engine searches
only the topmost layer of metadata. Used in combination with the
SLMetadataTraversalItf interface, the SLMetadataExtractionItf interface is able to
search all metadata in any file using a variety of search modes.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section
7.8] and Metadata Extractor [see section 7.7] objects.

See section B.4 for an example on using this interface.

Dynamic Interface Addition
If this interface is added dynamically (using DynamicInterfaceManagementItf) the set of
exposed metadata items might be limited compared to the set of exposed items had this
interface been requested during object creation time. Typically, this might be the case in
some implementations for efficiency reasons, or when the interface is added dynamically
during playback of non-seekable streamed content and the metadata is located earlier in
the stream than what was the interface addition time.

Khronos Keys
The keys that can be used to access metadata are the keys defined in the metadata
specification of the media format in question. In addition, the OpenSL ES specification
defines a few format-agnostic keys, called “Khronos keys”. The Khronos keys are for those
developers who may not be familiar with the original metadata keys of the various media
formats, but still want to extract metadata using OpenSL ES. It is the responsibility of API
implementations to map these Khronos keys to the format-specific standard metadata
keys. The Khronos keys are not meant to replace the standard metadata keys or to restrict
the number of metadata keys available to the application. Developers conversant with the
standard metadata keys in each format can still specify exactly the keys they are
interested in with the help of the MetadataExtractionItf. The support for these Khronos
keys is format-dependent.

OpenSL ES 1.0.1 Specification 265

The following table lists the Khronos keys. This list does not purport to be a comprehensive
union of the standard keys in the various media formats. On the contrary, it is deliberately
limited to the set of commonly-used metadata items. It should be considered as a baseline
list.

Table 10: Khronos Keys

“KhronosTitle” The title of the low-level entity, such as the name of the song,
book chapter, image, video clip.

“KhronosAlbum” The title of the high-level entity, such as the name of the
song/video/image album, the name of the book.

“KhronosTrackNumber” The number of the track.

“KhronosArtist” The name of the artist, performer.

“KhronosGenre” The genre of the media.

“KhronosYear” The release year.

“KhronosComment” Other comments on the media. For example, for images, this
could be the event at which the photo was taken.

“KhronosArtistURL” A URL pointing to the artist’s site.

“KhronosContentURL” A URL pointing to the site from which (alternate versions of) the
content can be downloaded.

“KhronosRating” A subjective rating of the media.

“KhronosAlbumArtJPEG” Associated JPEG image, such as album art. The value associated
with this key (the image itself) is in binary, in one of several
image formats.

“KhronosAlbumArtPNG” Associated PNG image, such as album art. The value associated
with this key (the image itself) is in binary, in one of several
image formats.

“KhronosCopyright” Copyright text.

“KhronosSeekPoint” Seek points of the media.

In this regard, three important scenarios are worth considering:

Scenario 1: Some of the Khronos keys do not have an equivalent standard
metadata key in the media format under consideration: Only those Khronos keys for
which there exists a mapping to the standard keys of the media are populated; the
remaining Khronos keys remain empty, that is, no mapping exists and they are not
exposed.

Scenario 2: The application is interested in metadata keys that are not part of the
list of Khronos keys: The application has the option of ignoring the Khronos keys entirely
and directly specifying exactly those standard metadata keys that it is interested in, using
MetadataExtractionItf.

266 OpenSL ES 1.0.1 Specification

Scenario 3: The application’s metadata key list of interest is a proper superset of
the Khronos key list: The application has the option of ignoring the Khronos key list
entirely (as in Scenario #2) or it can use the Khronos key list and supplement it by
accessing the extra format-specific standard keys directly using the
MetadataExtractionItf.

All the Khronos keys are encoded in ASCII. The encoding and the language country code of
the associated values depend on the media content. However, the encoding of the values
is in one of the encoded strings with an exception that the values associated with
“KhronosAlbumArtJPEG” and “KhronosAlbumArtPNG” keys have the encoding
SL_CHARACTERENCODING_BINARY.

Seek Points

SLMetadataExtractionItf can be used for querying the seek points of the media. This is
done by using the standard metadata (ASCII) key “KhronosSeekPoint”.

The associated value of Khronos seek points are represented with SLMetadataInfo
structures, which is the case with all the metadata keys. The character encoding of this
SLMetadataInfo structure is SL_CHARACTERENCODING_BINARY, since the value has special
format described below.

Figure 35: The data field of SLMetadataInfo Structure containing the value
corresponding to a KhronosSeekPoint key.

The data field of the SLMetadataInfo struct contains in its first 4 bytes the time offset
(little endian) of the seek point as SLmilliseconds. (The length of the value is 4 bytes,
since SLmillisecond is SLuint32.) SeekItf::SetPosition() can be used for seeking
that seek point.

The bytes from the 5th to the 8th contain the character encoding of the name of the seek
point as a SL_CHARACTERENCODING macro.

Starting from the 9th byte, the data field contains the name of the seek point (for example,
the chapter name) in the character encoding defined in bytes 5 to 8 and the language
defined in the SLMetadataInfo struct. The name is always null-terminated, which means
that even if the name would be empty, the length of the value is always at least 9 bytes.

There can be multiple “KhronosSeekPoint” items for the same seek point to allow multiple
language support. That is, the number of “KhronosSeekPoint” items is the number of seek
points times the number of languages supported. The AddKeyFilter() method can be
used for looking at seek points only in specific language by setting the pKey parameter as

OpenSL ES 1.0.1 Specification 267

“KhronosSeekPoint” and the valueLangCountry parameter to contain the language /
country code of interest.

Mandated Keys

An implementation of SLMetadataExtractionItf must support all methods on the
interface. This specification does not mandate that an implementation support any
particular key (Khronos key or otherwise) even in cases where the interface itself is
mandated on an object.

Filtering of Metadata Items

The interface enables filtering of metadata items according to several criteria (see
AddKeyFilter()). Theoretically, the application may never use the filtering functionality
and do filtering itself. However, in practice, an implementation may use the filtering
information in order to make extraction more efficient in terms of memory consumption or
computational complexity. For that matter, it is recommended that applications that are
not interested in the entire set of metadata items will use the filtering mechanism.

Prototype
extern const SLInterfaceID SL_IID_METADATAEXTRACTION;

struct SLMetadataExtractionItf_;
typedef const struct SLMetadataExtractionItf_
 * const * SLMetadataExtractionItf;

struct SLMetadataExtractionItf_ {
 SLresult (*GetItemCount) (
 SLMetadataExtractionItf self,
 SLuint32 *pItemCount
);
 SLresult (*GetKeySize) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 *pKeySize
);
 SLresult (*GetKey) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 keySize,
 SLMetadataInfo *pKey
);
 SLresult (*GetValueSize) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 *pValueSize
);

268 OpenSL ES 1.0.1 Specification

 SLresult (*GetValue) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 valueSize,
 SLMetadataInfo *pValue
);
 SLresult (*AddKeyFilter) (
 SLMetadataExtractionItf self,
 SLuint32 keySize,
 const void *pKey,
 SLuint32 keyEncoding,
 const SLchar *pValueLangCountry,
 SLuint32 valueEncoding,
 SLuint8 filterMask
);
 SLresult (*ClearKeyFilter) (
 SLMetadataExtractionItf self
);
};

Interface ID

aa5b1f80-ddd6-11db-ac8e-0002a5d5c51b

Defaults

The metadata key filter is empty upon realization of the interface. The default metadata
scope is the root of the file.

OpenSL ES 1.0.1 Specification 269

Methods

GetItemCount
SLresult (*GetItemCount) (
 SLMetadataExtractionItf self,
 SLuint32 *pItemCount
);

Description Returns the number of metadata items within the current scope of
the object.

Pre-conditions None

self [in] Interface self-reference. Parameters

pItemCount [out] Number of metadata items. Must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments itemCount is determined by the current metadata filter. For example,
in a situation where four metadata items exist, and there is no filter,
GetItemCount() will return 4; if there is a filter that matched only
one of the keys, GetItemCount() will return 1.

GetItemCount() returns the number of metadata items for a given
metadata scope (active node). The scope is determined by methods
within SLMetadataTraversalItf.

See also None

270 OpenSL ES 1.0.1 Specification

GetKeySize
SLresult (*GetKeySize) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 *pKeySize
);

Description Returns the byte size of a given metadata key.

Pre-conditions None

self [in] Interface self-reference.

index [in] Metadata item Index. Range is [0,
GetItemCount()).

Parameters

pKeySize [out] Address to store key size. size must be greater
than 0. Must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments GetKeySize() is used for determining how large a block of memory
is necessary to hold the key returned by GetKey().

See also GetKey()

OpenSL ES 1.0.1 Specification 271

GetKey
SLresult (*GetKey) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 keySize,
 SLMetadataInfo *pKey
);

Description Returns a SLMetadataInfo structure and associated data referenced
by the structure for a key.

Pre-conditions None

self [in] Interface self-reference.

index [in] Metadata item Index. Range is [0,
GetItemCount()).

keySize [in] Size of the memory block passed as key. Range
is [1, GetKeySize()].

Parameters

pKey [out] Address to store the key. Must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT

Comments GetKey() fills out the SLMetadataInfo structure, including data for
the key beyond the size of the structure.

If the given size is smaller than the needed size
SL_RESULT_BUFFER_INSUFFICIENT is returned and only data of the
given size will be written; however, no invalid strings are written.
That is, the null-terminator always exists and multibyte characters
are not cut in the middle.

See also GetKeySize()

272 OpenSL ES 1.0.1 Specification

GetValueSize
SLresult (*GetValueSize) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 *pValueSize
);
Description Returns the byte size of a given metadata value.

Pre-conditions None

self [in] Interface self-reference.

index [in] Metadata item Index. Range is [0,
GetItemCount()).

Parameters

pValueSize [out] Address to store value size. size must be greater
than 0. Must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments GetValueSize() is used for determining how large a block of memory is
necessary to hold the value returned by GetValue().

See also GetValue()

OpenSL ES 1.0.1 Specification 273

GetValue
SLresult (*GetValue) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 size,
 SLMetadataInfo *pValue
);

Description Returns a SLMetadataInfo structure and associated data referenced
by the structure for a value.

Pre-conditions None

self [in] Interface self-reference.

index [in] Metadata item Index. Range is [0,
GetItemCount()).

size [in] Size of the memory block passed as value.
Range is [0, GetValueSize()].

Parameters

pValue [out] Address to store the value. Must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT

Comments GetValue() fills out the SLMetadataInfo structure, including data for
the value beyond the size of the structure.

If the given size is smaller than the needed size
SL_RESULT_BUFFER_INSUFFICIENT is returned and only data of the
given size will be written; however, no invalid strings are written.
That is, the null-terminator always exists and multibyte characters
are not cut in the middle.

See also GetValueSize()

274 OpenSL ES 1.0.1 Specification

AddKeyFilter
SLresult (*AddKeyFilter) (
 SLMetadataExtractionItf self,
 SLuint32 keySize,
 const void *pKey,
 SLuint32 keyEncoding,
 const SLchar *pValueLangCountry,
 SLuint32 valueEncoding,
 SLuint8 filterMask
);
Description Adds a filter for a specific key.

Pre-conditions At least one criteria parameter (pKey, keyEncoding, pValueLangCountry,
valueEncoding) must be provided.

self [in] Interface self-reference.

keySize [in] Size, in bytes, of the pKey parameter.
Ignored if filtering by key is disabled.

pKey [in] The key to filter by. The entire key must
match. Ignored if filtering by key is
disabled.

keyEncoding [in] Character encoding of the pKey parameter.
Ignored if filtering by key is disabled.

pValueLangCountry [in] Language / country code of the value to
filter by. Ignored if filtering by language /
country is disabled. See SLMetadataInfo
structure in section 9.1.21.

valueEncoding [in] Encoding of the value to filter by. Ignored if
filtering by encoding is disabled.

Parameters

filterMask [in] Bitmask indicating which criteria to filter
by. Should be one of the
SL_METADATA_FILTER macros, see section
9.2.19.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments AddKeyFilter() adds a key to the metadata key filter. The filter defines
which metadata items are available when asking how many exist
(GetItemCount()) and how they are indexed for calls to GetKeySize(),
GetKey(), GetValueSize(), and GetValue(). For example, if a file
contains two metadata items, with keys “foo” and “bar” (both ASCII),
calling AddKeyFilter() for “foo” will cause GetItem to return only the
metadata item “foo.” A subsequent call to AddKeyFilter for “bar” will
cause GetItem() to return both metadata items.

OpenSL ES 1.0.1 Specification 275

AddKeyFilter
The key filter uses one or more of the following criteria: key data, value
encoding, and language country specification.

Key data filter will consider a metadata item to match when the data in the
filter key charset encoding and filter key value fields are identical to the
key charset encoding and key value, respectively, found in a metadata
item in the media. If the filter key charset encoding is different from the
charset encoding that the media metadata item uses, it is optional for the
implementation to convert the values of the filter key and the media
metadata item key to the same charset, and evaluate whether they match.

Language / country filter will consider a metadata item to match the
criteria if the item’s value language / country matches the filter’s language
/ country code. Refer to above for a description of what matching means.
The value encoding filter will simply match all items with the same value
encoding.

While it is possible to use all three criteria when calling AddKeyFilter(), it
is also possible to include fewer criteria. filterMask is used for defining
which criteria should be considered when calling AddKeyFilter(). It is
constructed by bit-wise ORing of the metadata filter macros, see section
9.2.19.

Note that AddKeyFilter() treats parameters as if they were ANDed
together. For example, calling AddKeyFilter() with key data and
language / country code (but not encoding) means that the filter will cause
metadata that matches both the key and the language / country code to
be returned, but not metadata that matches only one. Further note that
subsequent calls to AddKeyFilter() are treated as if they were ORed
together. For example, if the first call passed a key (but nothing else) and
a second call passed a key and an encoding (but no language / country
code), the interface will return metadata matching the first key and
metadata matching both the second key and the encoding.

For example, to filter for all metadata that uses the ASCII encoding for the
value, pass valueEncoding as SL_CHARACTERENCODING_ASCII and
filterMask as SL_METADATA_FILTER_ENCODING. To filter for all metadata
that uses the ASCII encoding for the value and uses the language country
code “en-us”, pass valueEncoding as SL_CHARACTERENCODING_ASCII,
valueLangCountry as “en-us,” and filterMask as
SL_METADATA_FILTER_ENCODING | SL_METADATA_FILTER_LANG.

Note that when the filter is clear (that is, when no filter criteria have been
added or after they have been cleared), the filter is defined so that
GetItemCount() returns all metadata items (as if each criteria was set to a
wildcard).

See also ClearKeyFilter()

276 OpenSL ES 1.0.1 Specification

ClearKeyFilter
SLresult (*ClearKeyFilter) (
 SLMetadataExtractionItf self
);

Description Clears the key filter.

Pre-conditions None

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments Note that when the filter is clear (that is, when no filter criteria have
been added or after they have been cleared), the filter is defined so
that GetItemCount() returns all metadata items (as if each criteria
was set to a wildcard).

See also AddKeyFilter()

OpenSL ES 1.0.1 Specification 277

8.23 SLMetadataTraversalItf

Description
The SLMetadataTraversalItf interface is used in order to support advanced metadata
extraction. It allows developers to traverse a file using a variety of modes, which
determine how to traverse the metadata and define how the methods within the interface
behave.

The interface provides the ability to set the traversal mode, to determine how many child
nodes exist within a given scope and what their type is, and to set the scope.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section
7.8] and Metadata Extractor [see section 7.7] objects.

Dynamic Interface Addition
If this interface is added dynamically (using SLDynamicInterfaceManagementItf [see
section 8.14]) the set of exposed metadata nodes might be limited compared to the set of
exposed nodes had this interface been requested during object creation time. Typically,
this might be the case in some implementations for efficiency reasons, or when the
interface is added dynamically during playback of non-seekable streamed content and the
metadata is located earlier in the stream than what was the interface addition time.

Prototype
extern const SLInterfaceID SL_IID_METADATATRAVERSAL;

struct SLMetadataTraversalItf_;
typedef const struct SLMetadataTraversalItf_
 * const * SLMetadataTraversalItf;

struct SLMetadataTraversalItf_ {
 SLresult (*SetMode) (
 SLMetadataTraversalItf self,
 SLuint32 mode
);
 SLresult (*GetChildCount) (
 SLMetadataTraversalItf self,
 SLuint32 *pCount
);
 SLresult (*GetChildMIMETypeSize) (
 SLMetadataTraversalItf self,
 SLuint32 index,
 SLuint32 *pSize
);
 SLresult (*GetChildInfo) (
 SLMetadataTraversalItf self,
 SLuint32 index,

278 OpenSL ES 1.0.1 Specification

 SLint32 *pNodeID,
 SLuint32 *pType,
 SLuint32 size,
 SLchar *pMimeType
);
 SLresult (*SetActiveNode) (
 SLMetadataTraversalItf self,
 SLuint32 index
);
};

Interface ID

c43662c0-ddd6-11db-a7ab-0002a5d5c51b

Defaults

The metadata traversal mode defaults to SL_METADATATRAVERSALMODE_NODE [see section
9.2.20]. The default metadata scope is the root of the file. That is, the active node is root
by default.

OpenSL ES 1.0.1 Specification 279

Methods

SetMode
SLresult (*SetMode) (
 SLMetadataTraversalItf self,
 SLuint32 mode
);

Description Sets the metadata traversal mode.

Pre-conditions None

self [in] Interface self-reference. Parameters

mode [in] Mode of metadata traversal. Must be one of
the SL_METADATATRAVERSALMODE macros.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Metadata traversal mode determines how a file is parsed for
metadata. It is possible to traverse the file either by iterating through
the file in tree fashion - by node (SL_METADATATRAVERSALMODE_NODE,
the default mode), or by scanning through the file as if it were a flat
list of metadata items (SL_METADATATRAVERSALMODE_ALL). The optimal
mode is largely determined by the file format.

See also SL_METADATATRAVERSALMODE [see section 9.2.20]

280 OpenSL ES 1.0.1 Specification

GetChildCount
SLresult (*GetChildCount) (
 SLMetadataTraversalItf self,
 SLuint32 *pCount
);

Description Returns the number of children (nodes, streams, etc.) within the
current scope.

Pre-conditions None

self [in] Interface self-reference. Parameters

pCount [out] Number of children.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Child count is determined by the metadata traversal mode see section
9.2.20]:

• If the mode is set to SL_METADATATRAVERSALMODE_ALL,
GetChildCount() will always return 0.

• If the mode is set to SL_METADATATRAVERSALMODE_NODE,
GetChildCount() will return the number of nodes within the
current scope. For example, in a Mobile XMF file with one SMF
node and one Mobile DLS node, GetChildCount() will return 2
from the root.

See also SetMode()

OpenSL ES 1.0.1 Specification 281

GetChildMIMETypeSize
SLresult (*GetChildMIMETypeSize) (
 SLMetadataTraversalItf self,
 SLuint32 index,
 SLu3int2 *pSize
);

Description Returns the size in bytes needed to store the MIME type of a child.

Pre-conditions None

self [in] Interface self-reference.

index [in] Child index. Range is [0, GetChildCount()).

Parameters

pSize [out] Size of the MIME type in bytes.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also GetChildCount()

282 OpenSL ES 1.0.1 Specification

GetChildInfo
SLresult (*GetChildInfo) (
 SLMetadataTraversalItf self,
 SLuint32 index,
 SLint32 *pNodeID,
 SLuint32 *pType,
 SLuint32 size,
 SLchar *mimeType
);

Description Returns information about a child.

Pre-conditions None

self [in] Interface self-reference.

index [in] Child index. Range is [0, GetChildCount()).

pNodeID [out] Unique identification number of the child.

pType [out] Node type. See SL_NODETYPE macros [see section
9.2.26].

size [in] Size of the memory block passed as mimeType.
Range is (0, max GetChildMIMETypeSize()].

Parameters

mimeType [out] Address to store the MIME type.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments To ignore MIME type, set size to 0 and mimeType to NULL.

See also GetChildCount()

OpenSL ES 1.0.1 Specification 283

SetActiveNode
SLresult (*SetActiveNode) (
 SLMetadataTraversalItf self,
 SLuint32 index
);

Description Sets the scope to a child index.

Pre-conditions None

self [in] Interface self-reference. Parameters

index [in] Child index. Range is special (see below).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments SetActiveNode() causes the current scope to descend or ascend to
the given index. To descend, set index to [0, GetChildCount()). To
ascend to the parent scope, set index to SL_NODE_PARENT. Calling
SetActiveNode() with index set to SL_NODE_PARENT will return
SL_RESULT_PARAMETER_INVALID if the active node is root.

See also GetChildCount(), SL_NODE_PARENT [see section 9.2.25]

284 OpenSL ES 1.0.1 Specification

8.24 SLMIDIMessageItf

Description

The MIDI message interface is used in order to send MIDI messages directly to a MIDI-
based player, and to set MIDI message and meta-event callbacks. It is used primarily to
determine the state of the internal MIDI synthesizer at runtime by setting callbacks that
report that state, as well as to set the state via the SendMessage method.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype
extern const SLInterfaceID SL_IID_MIDIMESSAGE;

struct SLMIDIMessageItf_;
typedef const struct SLMIDIMessageItf * const * SLMIDIMessageItf;

struct SLMIDIMessageItf_ {
 SLresult (*SendMessage) (
 SLMIDIMessageItf self,
 const SLuint8 *data,
 SLuint32 length
);
 SLresult (*RegisterMetaEventCallback) (
 SLMIDIMessageItf self,
 slMetaEventCallback callback,
 void *pContext
);
 SLresult (*RegisterMIDIMessageCallback) (
 SLMIDIMessageItf self,
 slMIDIMessageCallback callback,
 void *pContext
);
 SLresult (*AddMIDIMessageCallbackFilter) (
 SLMIDIMessageItf self,
 SLuint32 messageType
);
 SLresult (*ClearMIDIMessageCallbackFilter) (
 SLMIDIMessageItf self
);
};

Interface ID

ddf4a820-ddd6-11db-b174-0002a5d5c51b

OpenSL ES 1.0.1 Specification 285

Callbacks

slMetaEventCallback
typedef void (SLAPIENTRY *slMetaEventCallback) (
 SLMIDIMessageItf caller,
 void *pContext,
 SLuint8 type,
 SLuint32 length,
 const SLuint8 *pData,
 SLuint32 tick,
 SLuint16 track
);

Description Executes when a MIDI-based player encounters an SMF meta-event.

caller [in] Interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the callback
method is registered.

type [in] Type of the meta-event, as specified in MIDI
specification. Range is [0,127].

length [in] Length of the meta-event data.

pData [in] Address of an array of bytes containing the meta-
event data (may be NULL if length is 0).

tick [in] SMF tick at which the meta-event was encountered.

Parameters

track [in] SMF track on which the meta-event was encountered.

Comments slMetaEventCallback returns the address of the entire meta-event (not
including the 0xFF identifier, the type byte, or the size VLQ), the MIDI
tick at which the meta-event was found, and the Standard MIDI File
track number.

For example, the data of a Set Tempo meta-event for 500,000
microseconds per quarter note (120 BPM) would be represented by the
following byte sequence: 0x07 0xA1 0x20, since 0x7A120 = 500000.

See also RegisterMetaEventCallback()

286 OpenSL ES 1.0.1 Specification

slMIDIMessageCallback
typedef void (SLAPIENTRY *slMIDIMessageCallback) (
 SLMIDIMessageItf caller,
 void *pContext,
 SLuint8 statusByte,
 SLuint32 length,
 const SLuint8 *pData,
 SLuint32 tick,
 SLuint16 track
);

Description Executes when a MIDI-based player encounters a MIDI message.

caller [in] Interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the
callback method is registered.

statusByte [in] Status byte of the MIDI message. Range is
[0x80, 0xFF].

length [in] Length of the MIDI message, not including the
status byte. length must be greater than 0.

pData [in] Address of an array of bytes containing the MIDI
message data bytes.

tick [in] SMF tick at which the MIDI message was
encountered.

Parameters

track [in] SMF track on which the MIDI message was
encountered.

Comments slMIDIMessageCallback returns the status byte of the MIDI
message, the address of the data byte(s) of the MIDI message (not
including the status byte), the MIDI tick at which the MIDI message
was found, and, if applicable, the Standard MIDI file track number.

For example, a Note On message on channel 3 for note 64 with
velocity 96 (0x93 0x40 0x60) would be represented by the following
data byte sequence: 0x40 0x60. It would also return the status byte
as 0x93.

Note: if the origin of the MIDI message is a MIDI buffer queue, track
will be set to 0. Otherwise, track will be set to the SMF track on
which the MIDI message was encountered (zero-based, that is, when
the track parameter is 0, the message was contained in the first
track in the SMF).

Note: slMIDIMessageCallback passes the status byte separately to
ensure that MIDI messages that use running status are properly
identified.

See also RegisterMIDIMessageCallback()

OpenSL ES 1.0.1 Specification 287

Methods

SendMessage
SLresult (*SendMessage) (
 SLMIDIMessageItf self,
 const SLuint8 *data,
 SLuint32 length
);

Description Sends a MIDI message to a MIDI-based player.

Pre-conditions None

self [in] Interface self-reference.

data [in] Address of an array of bytes containing the MIDI
message.

Parameters

length [in] Length of the MIDI message data. length must be
greater than 0.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE
SL_RESULT_CONTENT_CORRUPTED

Comments See the MIDI 1.0 Detailed Specification [MIDI] for details on the
format of MIDI messages, and the Standard MIDI Files 1.0
specification for details on the format of SMF data including timing
information and meta events.

SendMessage() must begin with a valid MIDI status byte.

Note: SendMessage() does not support sending SMF meta-events.

The set of supported MIDI messages includes those specified in the
SP-MIDI Device 5-24 Note Profile for 3GPP and the Mobile DLS
Specification. MIDI player support for any additional MIDI messages
is optional, and specific to the implementation.

The play state does not affect controlling the MIDI Player with this
method.

See also None.

288 OpenSL ES 1.0.1 Specification

RegisterMetaEventCallback
SLresult (*RegisterMetaEventCallback) (
 SLMIDIMessageItf self,
 slMetaEventCallback callback,
 void *pContext
);

Description Sets or clears a MIDI-based player’s SMF meta-event callback.

Pre-conditions None

self [in] Interface self-reference.

callback [in] Address of the meta-event callback.

Parameters

pContext [in] User context data that is to be returned as part of
the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments See the Standard MIDI Files 1.0 specification [MIDI] for details on
the format of SMF meta-events.

See also slMetaEventCallback

OpenSL ES 1.0.1 Specification 289

RegisterMIDIMessageCallback
SLresult (*RegisterMIDIMessageCallback) (
 SLMIDIMessageItf self,
 slMIDIMessageCallback callback,
 void *pContext
);

Description Sets or clears a MIDI-based player’s MIDI message callback.

Pre-conditions None

self [in] Interface self-reference.

callback [in] Address of the MIDI message callback.

Parameters

pContext [in] User context data that is to be returned as part of
the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments It is necessary to add specific MIDI message types to the MIDI
message filter in order for the slMIDIMessageCallback to execute.

See the MIDI 1.0 Detailed Specification [MIDI] for details on the
format of MIDI messages.

See also slMIDIMessageCallback(), AddMIDIMessageCallbackFilter(),
ClearMIDIMessageCallbackFilter ()

290 OpenSL ES 1.0.1 Specification

AddMIDIMessageCallbackFilter
SLresult (*AddMIDIMessageCallbackFilter) (
 SLMIDIMessageItf self,
 SLuint32 messageType
);

Description Adds a MIDI message type to the player’s MIDI message callback
filter.

Pre-conditions None

self [in] Interface self-reference. Parameters

messageType [in] MIDI message type to filter. Must be one of the
SL_MIDIMESSAGETYPE macros.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The MIDI message callback filter is an additive opt-in filter that adds
MIDI message types to a list of messages that are used for
determining whether or not to execute the slMIDIMessageCallback.
If no message types are added, slMIDIMessageCallback will not
execute.

AddMIDIMessageCallbackFilter() may be called at any time.

See also slMIDIMessageCallback, ClearMIDIMessageCallbackFilter(),
RegisterMIDIMessageCallback(), SL_MIDIMESSAGETYPE()

ClearMIDIMessageCallbackFilter
SLresult (*ClearMIDIMessageCallbackFilter) (
 SLMIDIMessageItf self
);

Description Clears the player’s MIDI message callback filter.

Pre-conditions None

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments ClearMIDIMessageCallbackFilter() may be called at any time.

See also slMIDIMessageCallback, AddMIDIMessageCallbackFilter(),
RegisterMIDIMessageCallback()

OpenSL ES 1.0.1 Specification 291

8.25 SLMIDIMuteSoloItf

Description

The interface to mute and solo MIDI channels and tracks. It also returns the MIDI track
count.

Muting a MIDI channel or track silences it until it is unmuted. Soloing a channel or track
silences all other non-soloed channels or tracks. While silenced, channels and tracks
continue to process MIDI messages, but simply cease to contribute any Note On messages
to the player’s output.

It is possible to solo more than one channel or track at a time. In such circumstances, only
those channels or tracks that are soloed contribute to the player’s output. It is also
possible to mix muting and soloing on a channel or track. In this case, a channel or track
will be heard if and only if it is not muted and it is soloed or no other channel or track is
soloed.

Finally, it is possible to mix channel and track soloing and muting. Because tracks can play
to multiple channels, muting a track will silence whatever contribution it would make to
that channel.

Example:

Assume the following SP-MIDI file:

 Track 1 plays data to channels 0, 1, and 2
 Track 2 plays data to channels 2 and 3
 Track 3 plays data to channels 3

Muting channel 2 will silence the channel, implicitly silencing the contribution track 1 and
track 2 make to that channel (track 3’s output is unaffected).

Soloing channel 3 will silence all other channels, affecting the contribution of all tracks
except for track 3, which is unaffected because its entire contribution to the output is to
the soloed channel. Adding a solo to channel 2 will silence all channels other than 2 and 3,
meaning that only track 1 is affected (its contribution to channels 0 and 1 are silenced,
channel 2 continues to play).

Muting track 2 silences its contribution to channels 2 and 3, but allows tracks 1 and 3 to
continue unaffected.

Soloing track 2 silences the contribution all other tracks make. Adding a solo to track 3
allows track 2 and track 3 to play unaltered and to silence track 1.

292 OpenSL ES 1.0.1 Specification

Soloing Track 2 and soloing channel 0 effectively silences all playback; the effect is to
allow only track 2 to contribute to the player’s output, and only on channel 0, which it does
not use. In this case, adding a solo to track 1 would allow track 1 to play on channel 0
alone. Alternately, adding a solo to channel 2 would allow track 2 to play channel 2.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype
extern const SLInterfaceID SL_IID_MIDIMUTESOLO;

struct SLMIDIMuteSoloItf_;
typedef const struct SLMIDIMuteSoloItf_ * const * SLMIDIMuteSoloItf;

struct SLMIDIMuteSoloItf_ {
 SLresult (*SetChannelMute) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean mute
);
 SLresult (*GetChannelMute) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean *pMute
);
 SLresult (*SetChannelSolo) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean solo
);
 SLresult (*GetChannelSolo) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean *pSolo
);
 SLresult (*GetTrackCount) (
 SLMIDIMuteSoloItf self,
 SLuint16 *pCount
);
 SLresult (*SetTrackMute) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean mute
);
 SLresult (*GetTrackMute) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean *pMute
);

OpenSL ES 1.0.1 Specification 293

 SLresult (*SetTrackSolo) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean solo
);
 SLresult (*GetTrackSolo) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean *pSolo
);
};

Interface ID
039eaf80-ddd7-11db-9a02-0002a5d5c51b

Methods

SetChannelMute
SLresult (*SetChannelMute) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean mute
);

Description Mutes or unmutes a MIDI channel on a MIDI-based player.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

channel [in] MIDI channel. Range is [0, 15].

 mute [in] Boolean indicating whether to mute or unmute
the MIDI channel. SL_BOOLEAN_TRUE specifies that
the MIDI channel should be muted;
SL_BOOLEAN_FALSE specifies that the MIDI
channel should be unmuted.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE

Comments None.

See also None.

294 OpenSL ES 1.0.1 Specification

GetChannelMute
SLresult (*GetChannelMute) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean *pMute
);

Description Returns whether a MIDI channel on a MIDI-based player is muted or
unmuted.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

channel [in] Address to store MIDI channel. Range is [0, 15].

pMute [out] Address to store a Boolean that indicates whether
a MIDI channel is muted. This must be non-NULL.
SL_BOOLEAN_TRUE indicates that the MIDI channel
is muted; SL_BOOLEAN_FALSE indicates that the
MIDI channel is unmuted.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None.

OpenSL ES 1.0.1 Specification 295

SetChannelSolo
SLresult (*SetChannelSolo) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean solo
);

Description Solos or unsolos a MIDI channel on a MIDI-based player.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

channel [in] MIDI channel. Range is [0, 15].

 solo [in] Boolean indicating whether to solo or unsolo the
MIDI channel. SL_BOOLEAN_TRUE specifies that the
MIDI channel should be soloed;
SL_BOOLEAN_FALSE specifies that the MIDI
channel should be unsoloed.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE

Comments None.

See also None.

296 OpenSL ES 1.0.1 Specification

GetChannelSolo
SLresult (*GetChannelSolo) (
 SLMIDIMuteSoloItf self,
 SLuint8 channel,
 SLboolean *pSolo
);

Description Returns whether a MIDI channel on a MIDI-based player is soloed or
unsoloed.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

channel [in] Address to store MIDI channel. Range is [0, 15].

 pSolo [out] Address to store a Boolean indicating whether a
MIDI channel is soloed. This must be non-NULL.
SL_BOOLEAN_TRUE specifies that the MIDI channel
is soloed; SL_BOOLEAN_FALSE specifies that the
MIDI channel is unsoloed.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None.

OpenSL ES 1.0.1 Specification 297

GetTrackCount
SLresult (*GetTrackCount) (
 SLMIDIMuteSoloItf self,
 SLuint16 *pCount
);

Description Returns the number of MIDI tracks in a MIDI-based player’s SMF
data.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

pCount [out] Address to store the number of MIDI tracks. This
must be non-NULL. Range is [1 to 65535].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments MIDI buffer queues are treated as SMF type 0 files, and thus always
return 1.

See also None.

298 OpenSL ES 1.0.1 Specification

SetTrackMute
SLresult (*SetTrackMute) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean mute
);

Description Mutes or unmutes a MIDI track on a MIDI-based player.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

track [in] MIDI track. Range is [0,
SLMIDIMuteSoloItf::GetTrackCount()).

 mute [in] Boolean indicating whether to mute or unmute
the MIDI track. SL_BOOLEAN_TRUE specifies that
the MIDI track should be muted;
SL_BOOLEAN_SL_BOOLEAN_FALSE specifies that the
MIDI track should be unmuted.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE

Comments None.

See also None.

OpenSL ES 1.0.1 Specification 299

GetTrackMute
SLresult (*GetTrackMute) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean *pMute
);

Description Returns whether a MIDI track on a MIDI-based player is muted or
unmuted.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

track [in] Address to store MIDI track. Range is [0,
SLMIDIMuteSoloItf::GetTrackCount()).

 pMute [out] Address to store a Boolean indicating whether a
MIDI track is muted. This must be non-NULL.
SL_BOOLEAN_TRUE specifies that the MIDI track is
muted; SL_BOOLEAN_FALSE specifies that the MIDI
track is unmuted.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None.

300 OpenSL ES 1.0.1 Specification

SetTrackSolo
SLresult (*SetTrackSolo) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean solo
);

Description Solos or unsolos a MIDI track on a MIDI-based player.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

track [in] MIDI track. Range is [0,
SLMIDIMuteSoloItf::GetTrackCount()).

 solo [in] Boolean indicating whether to solo or unsolo the
MIDI track. SL_BOOLEAN_TRUE specifies that the
MIDI track should be soloed; SL_BOOLEAN_FALSE
specifies that the MIDI track should be unsoloed.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE

Comments None.

See also None.

OpenSL ES 1.0.1 Specification 301

GetTrackSolo
SLresult (*GetTrackSolo) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean *pSolo
);

Description Returns whether a MIDI track on a MIDI-based player is soloed or
unsoloed.

Pre-conditions None

self [in] Pointer to a SLMIDIMuteSoloItf interface. Parameters

track [in] Address to store MIDI track. [0,
SLMIDIMuteSoloItf::GetTrackCount()).

 pSolo [out] Address to store a Boolean indicating whether a
MIDI track is soloed. This must be non-NULL.
SL_BOOLEAN_TRUE specifies that the MIDI track is
soloed; SL_BOOLEAN_FALSE specifies that the MIDI
track is unsoloed.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None.

302 OpenSL ES 1.0.1 Specification

8.26 SLMIDITempoItf

Description

Interface for interacting with the MIDI data’s tempo.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype
extern const SLInterfaceID SL_IID_MIDITEMPO;

struct SLMIDITempoItf_;
typedef const struct SLMIDITempoItf_ * const * SLMIDITempoItf;

struct SLMIDITempoItf_ {
 SLresult (*SetTicksPerQuarterNote) (
 SLMIDITempoItf self,
 SLuint32 tpqn
);
 SLresult (*GetTicksPerQuarterNote) (
 SLMIDITempoItf self,
 SLuint32 *pTpqn
);
 SLresult (*SetMicrosecondsPerQuarterNote) (
 SLMIDITempoItf self,
 SLmicrosecond uspqn
);
 SLresult (*GetMicrosecondsPerQuarterNote) (
 SLMIDITempoItf self,
 SLmicrosecond *uspqn
);
};

Interface ID

1f347400-ddd7-11db-a7ce-0002a5d5c51b

Defaults

 96 ticks per quarter note.
 500,000 microseconds per quarter note (120 BPM).

OpenSL ES 1.0.1 Specification 303

Methods

SetTicksPerQuarterNote
SLresult (*SetTicksPerQuarterNote) (
 SLMIDITempoItf self,
 SLuint32 tpqn
);

Description Sets a MIDI-based player’s time in ticks per quarter note.

Pre-conditions Playback must be stopped.

self [in] Pointer to a MIDITempoItf interface. Parameters

tpqn [in] Ticks per quarter note. Range is [1, 32767].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED

Comments This method is intended for setting the tick resolution when working
with a buffer queue source on a MIDI player. When playing back
MIDI files, the file itself contains this information.

Note: ticks per quarter note is also known as ticks per beat and
pulses per quarter note.

See also None.

304 OpenSL ES 1.0.1 Specification

GetTicksPerQuarterNote
SLresult (*GetTicksPerQuarterNote) (
 SLMIDITempoItf self,
 SLuint32 *pTpqn
);

Description Returns a MIDI-based player’s delta-time in ticks per quarter note.

Pre-conditions None

self [in] Pointer to a MIDITempoItf interface. Parameters

pTpqn [out] Address to store ticks per quarter note. This must
be non-NULL. Range is [0, 32767], where 0 has a
special meaning (see comments).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Some SMF files define the tick resolution in terms other than ticks
per quarter note (e.g. in terms of SMPTE frames). In such cases, the
returned value will be 0.

Note: ticks per quarter note is also known as ticks per beat and
pulses per quarter note.

See also None.

OpenSL ES 1.0.1 Specification 305

SetMicrosecondsPerQuarterNote
SLresult (*SetMicrosecondsPerQuarterNote) (
 SLMIDITempoItf self,
 SLmicrosecond uspqn
);

Description Sets a MIDI-based player’s tempo in microseconds per quarter note.

Pre-conditions None

self [in] Pointer to a SLMIDITempoItf interface. Parameters

uspqn [in] Tempo in microseconds per quarter note. Range
is [0, 16,777,215].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Example: 500,000 microseconds per quarter note yields 120 beats
per minute.

Note: The player’s SMF metadata may set the tempo independently,
thus overriding any value that SetMicrosecondsPerQuarterNote()
may set.

See also None.

GetMicrosecondsPerQuarterNote
SLresult (*GetMicrosecondsPerQuarterNote) (
 SLMIDITempoItf self,
 SLmicrosecond *uspqn
);

Description Returns a MIDI-based player’s tempo in microseconds per quarter
note.

Pre-conditions None

self [in] Pointer to a SLMIDITempoItf interface. Parameters

uspqn [out] Address to store tempo in microseconds per
quarter note. This must be non-NULL. Range is [0,
16,777,215].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Example: 500,000 microseconds per quarter note yields 120 beats
per minute.

See also None.

306 OpenSL ES 1.0.1 Specification

8.27 SLMIDITimeItf

Description

Interface for interacting with the MIDI data in time (ticks). This interface is not available
on MIDI-based players created using SLDataLocator_MIDIBufferQueue.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype
extern const SLInterfaceID SL_IID_MIDITIME;

struct SLMIDITimeItf_;
typedef const struct SLMIDITimeItf_ * const * SLMIDITimeItf;

struct SLMIDITimeItf_ {
 SLresult (*GetDuration) (
 SLMIDITimeItf self,
 SLuint32 *pDuration
);
 SLresult (*SetPosition) (
 SLMIDITimeItf self,
 SLuint32 position
);
 SLresult (*GetPosition) (
 SLMIDITimeItf self,
 SLuint32 *pPosition
);
 SLresult (*SetLoopPoints) (
 SLMIDITimeItf self,
 SLuint32 startTick,
 SLuint32 numTicks
);
 SLresult (*GetLoopPoints) (
 SLMIDITimeItf self,
 SLuint32 *pStartTick,
 SLuint32 *pNumTicks
);
};

Interface ID

3da51de0-ddd7-11db-af70-0002a5d5c51b

OpenSL ES 1.0.1 Specification 307

Methods

GetDuration
SLresult (*GetDuration) (
 SLMIDITimeItf self,
 SLuint32 *pDuration
);

Description Returns the duration of a MIDI-based player in MIDI ticks.

Pre-conditions None

self [in] Pointer to a SLMIDITimeItf interface. Parameters

pDuration [out] Address to store the MIDI tick duration. This
must be non-NULL. pDuration must be greater
than 0.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SLMIDITempoItf::GetTicksPerQuarterNote().

SetPosition
SLresult (*SetPosition) (
 SLMIDITimeItf self,
 SLuint32 position
);

Description Sets a MIDI-based player’s current position in MIDI ticks.

Pre-conditions None.

self [in] Pointer to a SLMIDITimeItf interface. Parameters

position [in] MIDI tick position. Range is [0,
SLMIDITimeItf::GetDuration()).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SLMIDITempoItf::GetTicksPerQuarterNote().

308 OpenSL ES 1.0.1 Specification

GetPosition
SLresult (*GetPosition) (
 SLMIDITimeItf self,
 SLuint32 *pPosition
);

Description Returns a MIDI-based player’s current position in MIDI ticks.

Pre-conditions None

self [in] Pointer to a SLMIDITimeItf interface. Parameters

pPosition [out] Address to store the MIDI tick position. This
must be non-NULL. Range is [0,
SLMIDITimeItf::GetDuration()).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SLMIDITempoItf::GetTicksPerQuarterNote().

OpenSL ES 1.0.1 Specification 309

SetLoopPoints
SLresult (*SetLoopPoints) (
 SLMIDITimeItf self,
 SLuint32 startTick,
 SLuint32 numTicks
);

Description Sets a MIDI-based player’s loop points in MIDI ticks.

Pre-conditions The player must be in the SL_PLAYSTATE_STOPPED state.

self [in] Pointer to a SLMIDITimeItf interface.

startTick [in] MIDI tick position of loop start. Range is [0,
SLMIDITimeItf::GetDuration()).

Parameters

numTicks [in] Number of MIDI ticks in the loop. Range is [0,
SLMIDITimeItf::GetDuration() - startTick],
where 0 is a special value, designating “no
looping.”

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_FEATURE_UNSUPPORTED

Comments Note: setting loop points in MIDI files may cause unpredictable audio
output if the MIDI data is not known. This is due to a number of
reasons, including the possibility of looping back after a note
message on has been sent, but before the corresponding Note Off
was sent, or looping back to MIDI data that plays properly only when
a specific set of controllers are set.

See also SLMIDITempoItf::GetTicksPerQuarterNote().

310 OpenSL ES 1.0.1 Specification

GetLoopPoints
SLresult (*GetLoopPoints) (
 SLMIDITimeItf self,
 SLuint32 *pStartTick,
 SLuint32 *pNumTicks
);

Description Returns a MIDI-based player’s loop points in MIDI ticks.

Pre-conditions None

self [in] Pointer to a SLMIDITimeItf interface.

pStartTick [out] Address to store the MIDI tick position of loop
start. This must be non-NULL. Range is [0,
SLMIDITimeItf::GetDuration()).

Parameters

pNumTicks [out] Address to store the number of MIDI ticks in the
loop. This must be non-NULL. Range is [0,
SLMIDITimeItf::GetDuration() - startTick],
where 0 is a special value, designating “no
looping.”

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments GetLoopPoints returns startTick as 0 and numTicks as
SLMIDITimeItf::GetDuration() if not previously set.

See also SLMIDITempoItf::GetTicksPerQuarterNote().

OpenSL ES 1.0.1 Specification 311

8.28 SLMuteSoloItf
Description
This interface exposes controls for selecting which of the player’s channels are heard and
silenced.

The following restriction is placed on this interface:

 This interface cannot be exposed on a player whose audio format is mono.

This interface is supported on the Audio Player [see section 7.2] object.

Prototype
extern const SLInterfaceID SL_IID_MUTESOLO;

struct SLMuteSoloItf_;
typedef const struct SLMuteSoloItf_ * const * SLMuteSoloItf;

struct SLMuteSoloItf_ {
 SLresult (*SetChannelMute) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean mute
);
 SLresult (*GetChannelMute) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean *pMute
);
 SLresult (*SetChannelSolo) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean solo
);
 SLresult (*GetChannelSolo) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean *pSolo
);
 SLresult (*GetNumChannels) (
 SLMuteSoloItf self,
 SLuint8 *pNumChannels
);
};

Interface ID
5a28ebe0-ddd7-11db-8220-0002a5d5c51b

312 OpenSL ES 1.0.1 Specification

Defaults
 No channels muted
 No channels soloed

Methods

SetChannelMute
SLresult (*SetChannelMute) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean mute
);

Description Mutes or unmutes a specified channel of a player.

Pre-conditions None

self [in] Interface self-reference.

chan [in] Channel to mute or unmute. The valid range is [0,
n-1], where n is the number of audio channels in
player’s audio format.

Parameters

mute [in] If set to true, mutes the channel. If set to false,
unmutes the channel.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments When a channel is muted it should continue to play silently in
synchronization with the other channels.

See also SLVolumeItf::SetMute(), SetChannelSolo()

OpenSL ES 1.0.1 Specification 313

GetChannelMute
SLresult (*GetChannelMute) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean *pMute
);

Description Retrieves the mute status of a specified channel of a player.

Pre-conditions None

self [in] Interface self-reference.

chan [in] Channel to query the mute state. The valid range
is [0, n-1], where n is the number of audio
channels in player’s audio format.

Parameters

pMute [out] Pointer to a location to receive the mute status of
the specified channel. If set to true, the channel is
muted. If set to false, the channel is not muted.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This method only returns the per-channel mute setting and is
independent of any global mute or per-channel soloing that may
be enabled.

See also SLVolumeItf::SetMute()

314 OpenSL ES 1.0.1 Specification

SetChannelSolo
SLresult (*SetChannelSolo) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean solo
);

Description Enables or disables soloing of a specified channel of a player.

Pre-conditions None

self [in] Interface self-reference.

chan [in] Channel to solo or unsolo. The valid range is [0, n-
1], where n is the number of audio channels in
player’s audio format.

Parameters

solo [in] If set to true, the channel is soloed; all non-soloed
channels are silenced. If set to false, disables any
soloing currently enabled for the specified channel.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments When any channel is soloed, all non-soloed channels should
continue to play silently in synchronization with the soloed
channels.

If a channel is both muted and soloed (using SetChannelMute()),
the channel will be silent until the channel is unmuted.

If no channels are soloed, all unmuted channels are heard.

See also SetChannelMute()

OpenSL ES 1.0.1 Specification 315

GetChannelSolo
SLresult (*GetChannelSolo) (
 SLMuteSoloItf self,
 SLuint8 chan,
 SLboolean *pSolo
);

Description Retrieves the soloed state of a specified channel of a player.

Pre-conditions None

self [in] Interface self-reference.

chan [in] Channel to query the solo state. The valid range is
[0, n-1], where n is the number of audio channels
in player’s audio format.

Parameters

pSolo [out] Pointer to a location to receive the solo status of
the specified channel. If set to true, the channel is
soloed. If set to false, the channel is not soloed.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also None

316 OpenSL ES 1.0.1 Specification

GetNumChannels
SLresult (*GetNumChannels) (
 SLMuteSoloItf self,
 SLuint8 *pNumChannels
);

Description Retrieves the number of audio channels contained in the player’s audio
format

Pre-conditions None

self [in] Interface self-reference. Parameters

pNumChannels [out] Pointer to a location to receive the number of
audio channels contained in the player’s audio
format. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also None

OpenSL ES 1.0.1 Specification 317

8.29 SLObjectItf
Description
The SLObjectItf interface provides essential utility methods for all objects. Such
functionality includes the destruction of the object, realization and recovery, acquisition of
interface pointers, a callback for runtime errors, and asynchronous operation termination.

A maximum of one asynchronous operation may be performed by an object at any given
time. Trying to invoke an asynchronous operation when an object is already processing an
asynchronous call is equivalent to aborting the first operation, then invoking the second
one.

SLObjectItf is an implicit interface of all object types and is automatically available upon
creation of every object.

Please refer to section 3.1.1 for details on the object states.

This interface is supported on all objects [see section 7].

See Appendix B: and Appendix C: for examples using this interface.

Priority
This interface exposes a control for setting an object’s priority relative to the other objects
under control of the same instance of the engine. This priority provides a hint that the
implementation can use when there is resource contention between objects.

Given resource contention between objects, an implementation will give preference to the
object with the highest priority. This may imply that the implementation takes resources
from one object to give to another if the two objects are competing for the same resources
and the latter has higher priority. Given two objects of identical priority competing for
resources, the implementation, by default, leaves the resources with the object that
acquired them first. However, an application may override this behavior by setting the pre-
emptable flag on an object. The implementation may steal resources from a “pre-
emptable” object to give to another object of the same priority even when the second
object is realized after the first. If both objects have the preemptable flag set, the
implementation observes the default resource allocation behavior, that is, it leaves
resources with the object that acquired them first.

Different objects may require entirely different resources. For this reason, it is possible
that an object of high priority may have its resources stolen before an object of low priority.
For example, a high-priority object may require access to dedicated hardware on the
device while the low-priority object does not. If this dedicated hardware is demanded by
the system, the resources may need to be stolen from the higher priority object, leaving
the low priority object in the Realized state.

318 OpenSL ES 1.0.1 Specification

Loss of Control
This interface also contains a notification mechanism (via slObjectCallback()) to tell the
current application A that another entity (such as another application B or the system) has
taken control of a resource, but the application A is still allowed to use it (without being
able to control it). See the related object event macros
(SL_OBJECT_EVENT_ITF_CONTROL_TAKEN, SL_OBJECT_EVENT_ITF_CONTROL_RETURNED and
SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED [see section 9.2.27]) and the error code
SL_RESULT_CONTROL_LOST [see section 9.2.42] for details.

Prototype
extern const SLInterfaceID SL_IID_OBJECT;

struct SLObjectItf_;
typedef const struct SLObjectItf_ * const * SLObjectItf;

struct SLObjectItf_ {
 SLresult (*Realize) (
 SLObjectItf self,
 SLboolean async
);
 SLresult (*Resume) (
 SLObjectItf self,
 SLboolean async
);
 SLresult (*GetState) (
 SLObjectItf self,
 SLuint32 * pState
);
 SLresult (*GetInterface) (
 SLObjectItf self,
 const SLInterfaceID iid,
 void * pInterface
);
 SLresult (*RegisterCallback) (
 SLObjectItf self,
 slObjectCallback callback,
 void * pContext
);
 void (*AbortAsyncOperation) (
 SLObjectItf self
);
 void (*Destroy) (
 SLObjectItf self
);
 SLresult (*SetPriority) (
 SLObjectItf self,
 SLint32 priority,
 SLboolean preemptable
);

OpenSL ES 1.0.1 Specification 319

 SLresult (*GetPriority) (
 SLObjectItf self,
 SLint32 *pPriority,
 SLboolean *pPreemptable
);
 SLresult (*SetLossOfControlInterfaces) (
 SLObjectItf self,
 SLint16 numInterfaces,
 SLInterfaceID * pInterfaceIDs,
 SLboolean enabled
);
};

Interface ID

79216360-ddd7-11db-ac16-0002a5d5c51b

Defaults

The object is in Unrealized state.

No callback is registered.

Priority: SL_PRIORITY_NORMAL

Preemptable by object of same priority that is realized later than this object:
SL_BOOLEAN_FALSE

320 OpenSL ES 1.0.1 Specification

Callbacks

slObjectCallback
typedef void (SLAPIENTRY *slObjectCallback) (
 SLObjectItf caller,
 const void * pContext,
 SLuint32 event,
 SLresult result,
 SLuint32 param,
 void * pInterface
);
Description A callback function, notifying of a runtime error, termination of an

asynchronous call or change in the object’s resource state.

caller [in] Interface which invoked the callback.

pContext [in] User context data that is supplied when the
callback method is registered.

event [in] One of the SL_OBJECT_EVENT macros.

result [in] If the event is
SL_OBJECT_EVENT_RUNTIME_ERROR, result
contains the error code. If the event is
SL_OBJECT_EVENT_ASYNC_TERMINATION,
result contains the asynchronous function
return code. For other values of event, this
parameter should be ignored.

param [in] If event is
SL_OBJECT_EVENT_RUNTIME_ERROR,
SL_OBJECT_EVENT_RESOURCES_LOST or
SL_OBJECT_EVENT_ASYNC_TERMINATION,
param contains the state of the object after
the event. For other values of event, this
parameter should be ignored.

Parameters

pInterface [in] If event is
SL_OBJECT_EVENT_ITF_CONTROL_TAKEN,
SL_OBJECT_EVENT_ITF_CONTROL_RETURNED or
SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED,
pInterface contains the interface affected.
For other values of event, this parameter
should be ignored.

Comments Please note the restrictions applying to operations performed from
within callback context, in section 3.3.

See also RegisterCallback()

OpenSL ES 1.0.1 Specification 321

Methods

Realize
SLresult (*Realize) (
 SLObjectItf self,
 SLboolean async
);
Description Transitions the object from Unrealized state to Realized state,

either synchronously or asynchronously.

Pre-conditions The object must be in Unrealized state.

self [in] Interface self-reference. Parameters

async [in] If SL_BOOLEAN_FALSE, the method will block until
termination. Otherwise, the method will return
SL_RESULT_SUCCESS, and will be executed
asynchronously. On termination, the
slObjectCallback() will be invoked, if registered,
with the SL_OBJECT_EVENT_ASYNC_TERMINATION.
The result parameter of the slObjectCallback()
will contain the result code of the function.
However, if the implementation is unable to initiate
the asynchronous call SL_RESULT_RESOURCE_ERROR
will be returned.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_RESOURCE_ERROR
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_MEMORY_FAILURE
SL_RESULT_IO_ERROR
SL_RESULT_CONTENT_CORRUPTED
SL_RESULT_CONTENT_UNSUPPORTED
SL_RESULT_CONTENT_NOT_FOUND
SL_RESULT_PERMISSION_DENIED

Comments Realizing the object acquires the resources required for its
functionality. The operation may fail if insufficient resources are
available. In such a case, the application may wait until resources
become available and a SL_OBJECT_EVENT_RESOURCES_AVAILABLE
event is received, and then retry the realization. Another option is
to try and increase the object’s priority, thus increasing the
likelihood that the object will steal another object’s resources.

See also Section 3.1.4, SL_OBJECT_EVENT_RESOURCES_AVAILABLE [see
section 9.2.27]

322 OpenSL ES 1.0.1 Specification

Resume
SLresult (*Resume) (
 SLObjectItf self,
 SLboolean async
);
Description Transitions the object from Suspended state to Realized state,

either synchronously or asynchronously.

Pre-conditions The object must be in Suspended state.

self [in] Interface self-reference. Parameters

async [in] If SL_BOOLEAN_FALSE, the method will block until
termination. Otherwise, the method will return
SL_RESULT_SUCCESS and will be executed
asynchronously. On termination, the
slObjectCallback() will be invoked, if registered,
with the SL_OBJECT_EVENT_ASYNC_TERMINATION.
The result parameter of the slObjectCallback()
will contain the result code of the function. However,
if the implementation is unable to initiate the
asynchronous call SL_RESULT_RESOURCE_ERROR will
be returned.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_RESOURCE_ERROR
SL_RESULT_PRECONDITIONS_VIOLATED

Comments Resuming the object acquires the resources required for its
functionality. The operation may fail if insufficient resources are
available. In such a case, the application may wait until resources
become available and an SL_OBJECT_EVENT_RESOURCES_AVAILABLE
event is received, and then retry the resumption. Another option is
to try and increase the object’s priority, thus increasing the
likelihood that the object will steal another object’s resources.

See also Section 3.1.4, SL_OBJECT_EVENT_RESOURCES_AVAILABLE [see
section 9.2.27]

OpenSL ES 1.0.1 Specification 323

GetState
SLresult (*GetState) (
 SLObjectItf self,
 SLuint32 * pState
);
Description Retrieves the current object state.

self [in] Interface self-reference. Parameters

pState [out] Pointer to the current state of the object. One of
the SL_OBJECT_STATE macros will be written as
result [see section 9.2.28]. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

See also Section 3.1.4

324 OpenSL ES 1.0.1 Specification

GetInterface
SLresult (*GetInterface) (
 SLObjectItf self,
 const SLInterfaceID iid,
 void * pInterface
);
Description Obtains an interface exposed by the object

Preconditions The object is in the Realized state.

self [in] Interface self-reference.

iid [in] The interface type ID.

Parameters

pInterface [out] This should be a non-NULL pointer to a
variable of the interface’s type – for
example, if a SLObjectItf is retrieved,
this parameter should be of type
SLObjectItf * type.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED
SL_RESULT_PRECONDITIONS_VIOLATED

Comments If the object does not expose the requested interface type, the
return code will be SL_RESULT_FEATURE_UNSUPPORTED.

See also Section 3.1.4

OpenSL ES 1.0.1 Specification 325

RegisterCallback
SLresult (*RegisterCallback) (
 SLObjectItf self,
 slObjectCallback callback,
 void * pContext
);
Description Registers a callback on the object that executes when a runtime

error occurs or an asynchronous operation terminates.

self [in] Interface self-reference.

callback [in] Address of the result callback. If NULL, the
callback is disabled.

Parameters

pContext [in] User context data that is to be returned as part
of the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The callback will report only runtime errors and results of calls to
asynchronous functions.

See also slObjectCallback

AbortAsyncOperation
void (*AbortAsyncOperation) (
 SLObjectItf self
);
Description Aborts asynchronous call currently processed by the object. This

method affects asynchronous calls initiated from SLObjectItf or
XADynamicInterfaceManagementItf only. If no such call is being
processed, the call is ignored.

If a callback is registered, it will be invoked, with a
SL_OBJECT_EVENT_ASYNC_TERMINATION as event and
SL_RESULT_OPERATION_ABORTED as return code.

Parameters self [in] Interface self-reference.

Return value None.

Comments The method is meant for graceful timeout or user-initiated abortion
of asynchronous calls.

326 OpenSL ES 1.0.1 Specification

Destroy
void (*Destroy) (
 SLObjectItf self
);

Description Destroys the object.

Parameters self [in] Interface self-reference.

Return value None.

Comments Destroy implicitly transfers the object through Unrealized state,
thus freeing any resources allocated to the object prior to freeing
it. All references to interfaces belonging to this object become
invalid and may cause undefined behavior if used.

All pending asynchronous operations are aborted, as if
AbortAsyncOperations() has been called.

OpenSL ES 1.0.1 Specification 327

SetPriority
SLresult (*SetPriority) (
 SLObjectItf self,
 SLint32 priority,
 SLboolean preemptable
);

Description Set the object’s priority.

Pre-conditions None

self [in] Interface self-reference.

priority [in] The priority. The valid range for this parameter
is [min SLint32, max SLint32]. The larger the
number, the higher the priority: zero is the
default priority; negative numbers indicate
below normal priority; and positive numbers
indicate above normal priority.

Parameters

preemptable [in] True indicates that objects of identical priority
that are realized after this object may be given
resource allocation priority.

False indicates that the object should have
resource allocation preference over objects of
the same priority realized after this object.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Although it is possible to set any priority within the specified range,
SL_PRIORITY [see section 9.2.35] defines a fixed set of priorities for
use with this method.

See also None

328 OpenSL ES 1.0.1 Specification

GetPriority
SLresult (*GetPriority) (
 struct SLObjectItf self,
 SLint32 *pPriority,
 SLboolean *pPreemptable
);

Description Gets the object’s priority.

Pre-conditions None

self [in] Interface self-reference.

pPriority [out] Pointer to a location to receive the object’s
priority. This must be non-NULL.

Parameters

pPreemptable [out] Pointer to a location to receive the object’s
pre-emptable status. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None

OpenSL ES 1.0.1 Specification 329

SetLossOfControllnterfaces
SLresult (*SetLossOfControlInterfaces) (
 SLObjectItf self,
 SLint16 numInterfaces,
 SLInterfaceID * pInterfaceIDs,
 SLboolean enabled
);

Description Sets/unsets loss of control functionality for a list of interface IDs.
The default value of the enabled flag is determined by the global
setting (see SL_ENGINEOPTION_LOSSOFCONTROL 9.2.15).

Pre-conditions None

self [in] Interface self-reference.

numInterfaces [in] The length of the pInterfaceIDs array
(ignored if pInterfaceIDs is NULL).

pInterfaceIDs [in] Array of interface IDs representing the
interfaces impacted by the enabled flag.

Parameters

enabled [in] If SL_BOOLEAN_TRUE, loss of control
functionality is enabled for all interfaces
represented by pInterfaceIDs.

If SL_BOOLEAN_FALSE, loss of control
functionality is disabled for all interfaces
represented by pInterfaceIDs.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments A call to this method overrides the global setting for loss of
control functionality for the specified list of interfaces.

330 OpenSL ES 1.0.1 Specification

8.30 SLOutputMixItf

Description

SLOutputMixItf is an interface for interacting with an output mix, including querying for
the associated destination output devices, registering for the notification of changes to
those outputs, and requesting changes to an output mix’s associated devices.

This interface is supported on the Output Mix [see section 7.9] object.

Prototype
extern const SLInterfaceID SL_IID_OUTPUTMIX;

struct SLOutputMixItf_;
typedef const struct SLOutputMixItf_ * const * SLOutputMixItf;

struct SLOutputMixItf_ {
 SLresult (*GetDestinationOutputDeviceIDs) (
 SLOutputMixItf self,
 SLint32 *pNumDevices,
 SLuint32 *pDeviceIDs
);
 SLresult (*RegisterDeviceChangeCallback) (
 SLOutputMixItf self,
 slMixDeviceChangeCallback callback,
 void *pContext
);

SLresult (*ReRoute) (
 SLOutputMixItf self,
 SLint32 numOutputDevices,
 SLuint32 *pOutputDeviceIDs
);

};

Interface ID

97750f60-ddd7-11db-92b1-0002a5d5c51b

Defaults

An output mix defaults to device ID values specific to the implementation.

OpenSL ES 1.0.1 Specification 331

Callbacks

slMixDeviceChangeCallback
typedef void (SLAPIENTRY *slMixDeviceChangeCallback) (
 SLOutputMixItf caller,
 void *pContext
);

Description Executes whenever an output mix changes its set of destination
output devices. Upon this notification, the application may query for
the new set of devices via the SLOutputMixItf interface.

caller [in] Interface on which this callback was registered. Parameters

pContext [in] User context data that is supplied when the
callback method is registered.

Comments none

See Also RegisterDeviceChangeCallback()

332 OpenSL ES 1.0.1 Specification

Methods

GetDestinationOutputDeviceIDs
SLresult (*GetDestinationOutputDeviceIDs) (
 SLOutputMixItf self,
 SLint32 *pNumDevices,
 SLuint32 *pDeviceIDs
);

Description Retrieves the device IDs of the destination output devices currently
associated with the output mix.

Pre-conditions None

self [in] Interface self-reference.

pNumDevices [in/out] As an input, specifies the length of the
pDeviceIDs array (ignored if pDeviceIDs is
NULL). As an output, specifies the number of
destination output device IDs associated with
the output mix.

Parameters

pDeviceIDs [out] Populated by the call with the list of
deviceIDs (provided that pNumDevices is
equal to or greater than the number of
actual device IDs). If pNumDevices is less
than the number of actual device IDs, the
error code
SL_RESULT_BUFFER_INSUFFICIENT is
returned. Note: IDs may include
SL_DEFAULTDEVICEID_AUDIOOUTPUT.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_BUFFER_INSUFFICIENT

Comments None

See also None

OpenSL ES 1.0.1 Specification 333

RegisterDeviceChangeCallback
SLresult (*RegisterDeviceChangeCallback) (
 SLOutputMixItf self,
 slMixDeviceChangeCallback callback
 void * pContext,
);

Description Registers a callback to notify the application when there are changes
to the device IDs associated with the output mix.

Pre-conditions None

self [in] Interface self-reference.

callback [in] Callback to receive the changes in device IDs
associated with the output mix.

Parameters

pContext [in] User context data that is to be returned as
part of the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also None

334 OpenSL ES 1.0.1 Specification

ReRoute
SLresult (*ReRoute)(
 SLOutputMixItf self,
 SLint32 numOutputDevices,
 SLuint32 *pOutputDeviceIDs
);

Description Requests a change to the specified set of output devices on an output
mix.

Pre-conditions None.

self [in] Interface self-reference.

numOutputDevices [in] Number of output devices specified.

Parameters

pOutputDeviceIDs [in] List of the devices specified. (Note: IDs
may include
SL_DEFAULTDEVICEID_AUDIOOUTPUT)

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This method simply requests for a change in routing. The
implementation may choose not to fulfill the request. If it does not
fulfill the request, the method returns
SL_RESULT_FEATURE_UNSUPPORTED.

PROFILE NOTE
In the Phone profile, audio can be routed to multiple simultaneous
outputs, provided the underlying implementation supports such
routing. For implementations that do not support such routing, this
method returns SL_FEATURE_UNSUPPORTED.

OpenSL ES 1.0.1 Specification 335

8.31 SLPitchItf

Description

The SLPitchItf interface controls a pitch shift applied to a sound. The pitch shift is
specified in permilles:

A value of 1000 ‰ indicates no change in pitch.

A value of 500 ‰ indicates causing a pitch shift of –12 semitones (one octave
decrease).

A value of 2000 ‰ indicates a pitch shift of 12 semitones (one octave increase).

Changing the pitch with this interface does not change the playback rate.

Prototype
extern const SLInterfaceID SL_IID_PITCH;

struct SLPitchItf;
typedef const struct SLPitchItf_ * const * SLPitchItf;

struct SLPitchItf_ {
 SLresult (*SetPitch) (
 SLPitchItf self,
 SLpermille pitch
);
 SLresult (*GetPitch) (
 SLPitchItf self,
 SLpermille *pPitch
);
 SLresult (*GetPitchCapabilities) (
 SLPitchItf self,
 SLpermille *pMinPitch,
 SLpermille *pMaxPitch
);
};

Interface ID

c7e8ee00-ddd7-11db-a42c-0002a5d5c51b

Defaults

Pitch: 1000 ‰

336 OpenSL ES 1.0.1 Specification

Methods

SetPitch
SLresult (*SetPitch) (
 SLPitchItf self,
 SLpermille pitch
);

Description Sets a player’s pitch shift.

Pre-conditions None

self [in] Interface self-reference. Parameters

pitch [in] The pitch shift factor in permille. The range
supported by this parameter is both implementation
and content-dependent and can be determined using
the GetPitchCapabilities() method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments As the Doppler effect may be implemented internally as a pitch shift
and the maximum pitch shift may be capped, in some situations,
such as when the pitch shift due to Doppler exceeds the device
capabilities, this method may appear to have no audible effect, even
though the method succeeded. In this case, the effect will be
audible when the amount of Doppler is reduced.

See also None

OpenSL ES 1.0.1 Specification 337

GetPitch
SLresult (*GetPitch) (
 SLPitchItf self,
 SLpermille *pPitch,
);

Description Gets the player’s current pitch shift.

Pre-conditions None

self [in] Interface self-reference. Parameters

pPitch [out] Pointer to a location to receive the player’s pitch
shift in permille. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None

338 OpenSL ES 1.0.1 Specification

GetPitchCapabilities
SLresult (*GetPitchCapabilities) (
SLPitchItf self,
SLpermille *pMinPitch,
SLpermille *pMaxPitch
);

Description Retrieves the player’s pitch shifting capabilities.

Pre-conditions None

self [in] Interface self-reference.

pMinPitch [out] Pointer to a location to receive the minimum
pitch shift supported for the player. If NULL, the
minimum pitch is not reported.

Parameters

pMaxPitch [out] Pointer to a location to receive the maximum
pitch shift supported for the player. If NULL, the
maximum pitch is not reported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The values returned by this method are the absolute minimum and
maximum values supported by the implementation for the player
when no other changes, such as Doppler-related changes , are
applied.

See also None

OpenSL ES 1.0.1 Specification 339

8.32 SLPlayItf
Description

SLPlayItf is an interface for controlling the playback state of an object. The playback
state machine is as follows:

Table 11: Play Head Position in Different Play States

Play State Head forced to beginning Prefetching Head trying to move

Stopped X

Paused X

Playing X X

This interface is supported on the Audio Player [see section 7.2] and MIDI Player [see
section 7.8] objects.

See Appendix B: and Appendix C: for examples using this interface.

340 OpenSL ES 1.0.1 Specification

Prototype
extern const SLInterfaceID SL_IID_PLAY;

struct SLPlayItf_;
typedef const struct SLPlayItf_ * const * SLPlayItf;

struct SLPlayItf_ {
 SLresult (*SetPlayState) (
 SLPlayItf self,
 SLuint32 state
);
 SLresult (*GetPlayState) (
 SLPlayItf self,
 SLuint32 *pState
);
 SLresult (*GetDuration) (
 SLPlayItf self,
 SLmillisecond *pMsec
);
 SLresult (*GetPosition) (
 SLPlayItf self,
 SLmillisecond *pMsec
);
 SLresult (*RegisterCallback) (
 SLPlayItf self,
 slPlayCallback callback,
 void *pContext
);
 SLresult (*SetCallbackEventsMask) (
 SLPlayItf self,
 SLuint32 eventFlags
);
 SLresult (*GetCallbackEventsMask) (
 SLPlayItf self,
 SLuint32 *pEventFlags
);
 SLresult (*SetMarkerPosition) (
 SLPlayItf self,
 SLmillisecond mSec
);
 SLresult (*ClearMarkerPosition) (
 SLPlayItf self
);

OpenSL ES 1.0.1 Specification 341

 SLresult (*GetMarkerPosition) (
 SLPlayItf self,
 SLmillisecond *pMsec
);
 SLresult (*SetPositionUpdatePeriod) (
 SLPlayItf self,
 SLmillisecond mSec
);
 SLresult (*GetPositionUpdatePeriod) (
 SLPlayItf self,
 SLmillisecond *pMsec
);
};

342 OpenSL ES 1.0.1 Specification

Interface ID

ef0bd9c0-ddd7-11db-bf49-0002a5d5c51b

Defaults

Initially, the playback state is SL_PLAYSTATE_STOPPED, the position is at the beginning of
the content, the update period is one second, and there are no markers set nor callbacks
registered and the callback event flags are cleared.

Callbacks

slPlayCallback
typedef void (SLAPIENTRY *slPlayCallback) (
 SLPlayItf caller,
 void *pContext,
 SLuint32 event
);

Description Notifies the player application of a playback event.

caller [in] Interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the
callback method is registered.

Parameters

event [in] Indicates which event has occurred (see
SL_PLAYEVENT macros in section 9.2.31).

Comments None

See also RegisterCallback()

OpenSL ES 1.0.1 Specification 343

Methods

SetPlayState
SLresult (*SetPlayState) (
 SLPlayItf self,
 SLuint32 state
);

Description Requests a transition of the player into the given play state.

Pre-conditions None. The player may be in any state.

self [in] Interface self-reference. Parameters

state [in] Desired playback state. Must be one of the
SL_PLAYSTATE defines [see section 9.2.32].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PERMISSION_DENIED
SL_RESULT_CONTENT_CORRUPTED
SL_RESULT_CONTENT_UNSUPPORTED

Comments All state transitions are legal. The state defaults to
SL_PLAYSTATE_STOPPED. Note that although the state change is
immediate, there may be some latency between the execution of
this method and its effect on behavior. In this sense, a player’s
state technically represents the application’s intentions for the
player. Note that the player’s state has an effect on the player’s
prefetch status (see SLPrefetchStatusItf for details). The player
may return SL_RESULT_PERMISSION_DENIED,
SL_RESULT_CONTENT_CORRUPTED or
SL_RESULT_CONTENT_UNSUPPORTED respectively if, at the time a
state change is requested, it detects insufficient permissions,
corrupted content, or unsupported content.

When the player reaches the end of content, the play state will
transition to paused and the play cursor will remain at the end of
the content.

344 OpenSL ES 1.0.1 Specification

GetPlayState
SLresult (*GetPlayState) (
 SLPlayItf self,
 SLuint32 *pState
);

Description Gets the player’s current play state.

Pre-conditions None.

self [in] Interface self-reference. Parameters

pState [out] Pointer to a location to receive the current play
state of the player. The state returned is one of
the SL_PLAYSTATE macros [see section 9.2.32].
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

GetDuration
SLresult (*GetDuration) (
 SLPlayItf self,
 SLmillisecond *pMsec
);

Description Gets the duration of the current content, in milliseconds.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMsec [out] Pointer to a location to receive the number of
milliseconds corresponding to the total duration
of this current content. If the duration is
unknown, this value shall be SL_TIME_UNKNOWN
[see section 9.2.47]. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments In the case where the data source is a buffer queue, the current
duration is the cumulative duration of all buffers since the last buffer
queue Clear() method.

OpenSL ES 1.0.1 Specification 345

GetPosition
SLresult (*GetPosition) (
 SLPlayItf self,
 SLmillisecond *pMsec
);

Description Returns the current position of the playback head relative to the
beginning of the content.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMsec [out] Pointer to a location to receive the position of
the playback head relative to the beginning of
the content, and is expressed in milliseconds.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The returned value is bounded between 0 and the duration of the
content. In the case where the data source is a buffer queue, the
current position is the cumulative duration of all buffers since the last
buffer queue Clear() method. Note that the position is defined
relative to the content playing at 1x forward rate; positions do not
scale with changes in playback rate.

346 OpenSL ES 1.0.1 Specification

RegisterCallback
SLresult (*RegisterCallback) (
 SLPlayItf self,
 slPlayCallback callback,
 void *pContext
);

Description Sets the playback callback function.

Pre-conditions None

self [in] Interface self-reference.

callback [in]
Callback function invoked when one of the
specified events occurs. A NULL value
indicates that there is no callback.

Parameters

pContext [in]
User context data that is to be returned
as part of the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The callback function defaults to NULL.

The context pointer can be used by the application to pass state to
the callback function.

OpenSL ES 1.0.1 Specification 347

SetCallbackEventsMask
SLresult (*SetCallbackEventsMask) (
 SLPlayItf self,
 SLuint32 eventFlags
);

Description Enables/disables notification of playback events.

Pre-conditions None

self [in] Interface self-reference. Parameters

eventFlags [in] Bitmask of play event flags (see SL_PLAYEVENT
macros in section 9.2.31) indicating which
callback events are enabled. The presence of a
flag enables notification for the corresponding
event. The absence of a flag disables
notification for the corresponding event.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The callback event flags default to all flags cleared.

GetCallbackEventsMask
SLresult (*GetCallbackEventsMask) (
 SLPlayItf self,
 SLuint32 *pEventFlags
);

Description Queries for the notification state (enabled/disabled) of playback
events.

Pre-conditions None

self [in] Interface self-reference. Parameters

pEventFlags [out] Pointer to a location to receive the bitmask of
play event flags (see SL_PLAYEVENT macros in
section 9.2.31) indicating which callback
events are enabled. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

348 OpenSL ES 1.0.1 Specification

SetMarkerPosition
SLresult (*SetMarkerPosition) (
 SLPlayItf self,
 SLmillisecond mSec
);

Description Sets the position of the playback marker.

Pre-conditions None

self [in] Interface self-reference. Parameters

mSec [in] Position of the marker expressed in milliseconds
and relative to the beginning of the content.
Must be between 0 and the reported duration of
the content.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The player will notify the application when the playback head passes
through the marker via a callback with an
SL_PLAYEVENT_HEADATMARKER event [see section 9.2.31]. By default,
there is no marker position defined.

When a marker position coincides with a periodic position update (as
specified by SetPositionUpdatePeriod()), then both the marker
position callback and the periodic position update callback must be
posted next to each other. The order of the two callbacks is
insignificant.

See Also ClearMarkerPosition(), SetPositionUpdatePeriod()

OpenSL ES 1.0.1 Specification 349

ClearMarkerPosition
SLresult (*ClearMarkerPosition) (
 SLPlayItf self
);

Description Clears marker.

Pre-conditions None

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This function succeeds even if the marker is already clear.

See Also SetMarkerPosition()

GetMarkerPosition
SLresult (*GetMarkerPosition) (
 SLPlayItf self,
 SLmillisecond *pMsec
);

Description Queries the position of playback marker.

Pre-conditions A marked has been set (using SetMarkerPosition())

self [in] Interface self-reference. Parameters

pMsec [out] Pointer to a location to receive the position of
the marker expressed in milliseconds, relative to
the beginning of the content.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_PRECONDITIONS_VIOLATED

Comments None

See Also SetMarkerPosition(), ClearMarkerPosition()

350 OpenSL ES 1.0.1 Specification

SetPositionUpdatePeriod
SLresult (*SetPositionUpdatePeriod) (
 SLPlayItf self,
 SLmillisecond mSec
);

Description Sets the interval between periodic position notifications.

Pre-conditions None

self [in] Interface self-reference. Parameters

mSec [in] Period between position notifications in
milliseconds.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The player will notify the application when the playback head passes
through the positions implied by the specified period. Those positions
are defined as the whole multiples of the period relative to the
beginning of the content. By default, the update period is 1000
milliseconds.

When a periodic position update coincides with a marker position(as
specified by SetMarkerPosition()), then both the position update
period callback and the marker position callback must be posted next
to each other. The order of the two callbacks is insignificant.

See Also SetMarkerPosition()

GetPositionUpdatePeriod
SLresult (*GetPositionUpdatePeriod) (
 SLPlayItf self,
 SLmillisecond *pMsec
);

Description Queries the interval between periodic position notifications.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMsec [out] Pointer to a location to receive the period
between position notifications in milliseconds.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 351

8.33 SLPlaybackRateItf

Description

SLPlaybackRateItf is an interface for controlling setting and retrieving the rate at which
an object presents data. Rates are expressed as a permille type (namely, parts per
thousand):

 Negative values indicate reverse presentation.
 A value of 0‰ indicates paused presentation.
 Positive values less than 1000‰ indicate slow forward rates.
 A value of 1000‰ indicates normal 1X forward playback.
 Positive values greater than 1000‰ indicate fast forward rates.

352 OpenSL ES 1.0.1 Specification

Prototype
extern const SLInterfaceID SL_IID_PLAYBACKRATE;

struct SLPlaybackRateItf_;
typedef const struct SLPlaybackRateItf_ * const * SLPlaybackRateItf;

struct SLPlaybackRateItf_ {
 SLresult (*SetRate)(
 SLPlaybackRateItf self,
 SLpermille rate
);
 SLresult (*GetRate)(
 SLPlaybackRateItf self,
 SLpermille *pRate
);
 SLresult (*SetPropertyConstraints)(
 SLPlaybackRateItf self,
 SLuint32 constraints
);
 SLresult (*GetProperties)(
 SLPlaybackRateItf self,
 SLuint32 *pProperties
);
 SLresult (*GetCapabilitiesOfRate)(
 SLPlaybackRateItf self,
 SLpermille rate,
 SLuint32 *pCapabilities
);
 SLresult (*GetRateRange) (
 SLPlaybackRateItf self,
 SLuint8 index,
 SLpermille *pMinRate,
 SLpermille *pMaxRate,
 SLpermille *pStepSize,
 SLuint32 *pCapabilities
);
};

Interface ID

2e3b2a40-ddda-11db-a349-0002a5d5c51b

Defaults

The rate value defaults to 1000‰ (that is, normal 1X forward playback).

OpenSL ES 1.0.1 Specification 353

Methods

SetRate
SLresult (*SetRate) (
 SLPlaybackRateItf self,
 SLpermille rate
);

Description Sets the rate of presentation.

Pre-conditions None.

self [in] Interface self-reference. Parameters

rate [in] Desired rate.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments 1000 is the default rate. The application may query supported rates
via the GetRateRange() method. The
SL_RESULT_FEATURE_UNSUPPORTED return value accommodates the
circumstance where the content being played does not afford
adjustments of the playback rate.

GetRate
SLresult (*GetRate) (
 SLPlaybackRateItf self,
 SLpermille *pRate
);

Description Gets the rate of presentation.

Pre-conditions None.

self [in] Interface self-reference. Parameters

pRate [out] Pointer to a location to receive the rate of the
player. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

354 OpenSL ES 1.0.1 Specification

SetPropertyConstraints
SLresult (*SetPropertyConstraints) (
 SLPlaybackRateItf self,
 SLuint32 constraints
);

Description Sets the current rate property constraints.

Pre-conditions None.

self [in] Interface self-reference. Parameters

constraints [in] Bitmask of the allowed rate properties
requested (see SL_RATEPROP macros in section
9.2.38). An implementation may choose any of
the given properties to implement rate and
none of the excluded properties.

If the bitmask is not well-formed, this method
returns SL_RESULT_PARAMETER_INVALID.

If the constraints cannot be satisfied, this
method returns
SL_RESULT_FEATURE_UNSUPPORTED.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments Note that rate property capabilities may vary from one rate to
another. This implies that a setting supported for one rate may be
unsupported for another.

The default audio properties are SL_RATEPROP_NOPITCHCORAUDIO.

OpenSL ES 1.0.1 Specification 355

GetProperties
SLresult (*GetProperties) (
 SLPlaybackRateItf self,
 SLuint32 *pProperties
);

Description Gets the current properties.

Pre-conditions None.

self [in] Interface self-reference. Parameters

pProperties [out] Pointer to a location to receive the bitmask
expressing the current rate properties. The
range of the bitmask is defined by the
SL_RATEPROP macros [see section 9.2.38]. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

356 OpenSL ES 1.0.1 Specification

GetCapabilitiesOfRate
SLresult (*GetCapabilitiesOfRate) (
 SLPlaybackRateItf self,
 SLpermille rate,
 SLuint32 *pCapabilities
);

Description Gets the capabilities of the specified rate.

Pre-conditions None.

self [in] Interface self-reference.

rate [in] Rate for which the capabilities are being
queried.

Parameters

pCapabilities [out] Pointer to a location to receive the bitmask
expressing capabilities of the given rate in
terms of rate properties (see SL_RATEPROP
macros in section 9.2.38).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments A application may also leverage this method to verify that a particular
rate is supported.

OpenSL ES 1.0.1 Specification 357

GetRateRange
SLresult (*GetRateRange) (
 SLPlaybackRateItf self,
 SLuint8 index,
 SLpermille *pMinRate,
 SLpermille *pMaxRate,
 SLpermille *pStepSize,
 SLuint32 *pCapabilities
);

Description Retrieves the ranges of rates supported.

Pre-conditions None.

self [in] Interface self-reference.

index [in] Index of the range being queried. If an
implementation supports n rate ranges,
this value is between 0 and (n-1) and all
values greater than n cause the method to
return SL_RESULT_PARAMETER_INVALID.

pMinRate [out] Pointer to a location to receive the
minimum rate supported. May be negative
or positive. Must be equal to or less than
maxRate. This must be non-NULL.

pMaxRate [out] Pointer to a location to receive the
maximum rate supported. May be negative
or positive. Must be equal to or greater
than minRate. This must be non-NULL.

pStepSize [out] Pointer to a location to receive the
distance between one rate and an adjacent
rate in the range. A value of zero denotes
a continuous range. This must be non-
NULL.

Parameters

pCapabilities [out] Pointer to a location to receive the bitmask
of supported rate properties in the given
range. The range of the bitmask is defined
by the SL_RATEPROP macros [see section
9.2.38]. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments An implementation expresses the set of supported rates as one or
more ranges. Each range is defined by the lowest and highest rates in
the range, the step size between these bounds, and the rate
properties of this range.

If all rates an implementation supports are evenly spaced and have

358 OpenSL ES 1.0.1 Specification

same capabilities, GetRateRange() method may return a single
range.

If not, the GetRateRange() method will return as many ranges as
necessary in order to adequately express the set of rates (and
associated properties) supported. In this case, the application must
call GetRateRange() multiple times to query all the ranges;
GetRateRange() returns only one range per call.

Rate range examples: Range 1 has a min of -4000‰, a
max of -2000‰ and a step of 500‰. Range 2 has a min of -
2000‰, a max of 2000‰, and a step of 0‰. Range 3 has a
min of 2000‰, a max of 4000‰ and a step of 500‰.

Rate range 3 Rate range 2 Rate range 1

-4X -3X -2X -1X 1X 2X 3X 4X 0

Figure 36: Example rate ranges

OpenSL ES 1.0.1 Specification 359

8.34 SLPrefetchStatusItf

Description

SLPrefetchStatusItf is an interface for querying the prefetch status of a player.

The prefetch status is a continuum ranging from no data prefetched to the maximum
amount of data prefetched. It includes a range where underflow may occur and a range
where there is a sufficient amount of data present. The underflow and sufficient data
ranges may not relate to fixed fill level positions, but be implementation dependent and
dynamically vary based on factors as e.g. buffering length, consumption rate,
communication latency, hysteresis, etc. The prefetch status interface allows an application
to query for prefetch status or register prefetch status callbacks. The latency of status and
fill level callbacks are implementation dependent.

One example usage of the SLPrefetchStatusItf is to order the player into paused state
when receiving an underflow event and into play state when receiving a sufficient data
event when playing network stored media sources. Another example usage is to display fill
level percentage to the end user by using the callback and the GetFillLevel method.

Underflow Sufficient Data Overflow

0 permille 1000 permille

Figure 37: Prefetch continuum range

This interface is supported on Audio Player [see section 7.2] and MIDI Player
[see section 7.8] objects.

See section C.4 for an example using this interface.

360 OpenSL ES 1.0.1 Specification

Prototype
extern const SLInterfaceID SL_IID_PREFETCHSTATUS;

struct SLPrefetchStatusItf_;
typedef const struct SLPrefetchStatusItf_
 * const * SLPrefetchStatusItf;

struct SLPrefetchStatusItf_ {
 SLresult (*GetPrefetchStatus) (
 SLPrefetchStatusItf self,
 SLuint32 *pStatus
);
 SLresult (*GetFillLevel) (
 SLPrefetchStatusItf self,
 SLpermille *pLevel
);
 SLresult (*RegisterCallback) (
 SLPrefetchStatusItf self,
 slPrefetchCallback callback,
 void *pContext
);
 SLresult (*SetCallbackEventsMask) (
 SLPrefetchStatusItf self,
 SLuint32 eventFlags
);
 SLresult (*GetCallbackEventsMask) (
 SLPrefetchStatusItf self,
 SLuint32 *pEventFlags
);
 SLresult (*SetFillUpdatePeriod) (
 SLPrefetchStatusItf self,
 SLpermille period
);
 SLresult (*GetFillUpdatePeriod) (
 SLPrefetchStatusItf self,
 SLpermille *pPeriod
);
}

Interface ID

2a41ee80-ddd8-11db-a41f-0002a5d5c51b

Defaults

Initially, there is no callback registered, the fill update period is 100 permille, and the
event flags are clear.

OpenSL ES 1.0.1 Specification 361

Callbacks

slPrefetchCallback
typedef void (SLAPIENTRY *slPrefetchCallback) (
 SLPrefetchStatusItf caller,
 void *pContext,
 SLuint32 event
);

Description Notifies the player application of a prefetch event.

caller [in] Interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the callback
method is registered.

Parameters

event [in] Event that has occurred (see SL_PREFETCHEVENT
macros in section 9.2.33).

Comments None

See also RegisterCallback()

Methods

GetPrefetchStatus
SLresult (*GetPrefetchStatus) (
 SLPrefetchStatusItf self,
 SLuint32 *pStatus
);

Description Gets the player’s current prefetch status.

Pre-conditions None.

self [in] Interface self-reference. Parameters

pStatus [out] Pointer to a location to receive the current prefetch
status of the player. The status returned is one of
the SL_PREFETCHSTATUS defines [see section
9.2.34]. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

362 OpenSL ES 1.0.1 Specification

GetFillLevel
SLresult (*GetFillLevel) (
 SLPrefetchStatusItf self,
 SLpermille *pLevel
);

Description Queries the fill level of the prefetch.

Pre-conditions None

self [in] Interface self-reference. Parameters

pLevel [out] Pointer to a location to receive the data fill level
in parts per thousand. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The fill level is not tied to specific buffer within a player, but indicates
more abstractly the progress a player has made in preparing data for
playback.

OpenSL ES 1.0.1 Specification 363

RegisterCallback
SLresult (*RegisterCallback) (
 SLPrefetchStatusItf self,
 slPrefetchCallback callback,
 void *pContext
);

Description Sets the prefetch callback function.

Pre-conditions None

self [in] Interface self-reference.

callback [in] Callback function invoked when one of the
specified events occurs. A NULL value indicates
that there is no callback.

Parameters

pContext [in] User context data that is to be returned as part
of the callback method.

Return value The return value can be the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Callback function defaults to NULL.

The context pointer can be used by the application to pass state to
the callback function.

See Also SL_PREFETCHEVENT macros [see section 9.2.33].

364 OpenSL ES 1.0.1 Specification

SetCallbackEventsMask
SLresult (*SetCallbackEventsMask) (
 SLPrefetchStatusItf self,
 SLuint32 eventFlags
);

Description Sets the notification state of the prefetch events.

Pre-conditions None

self [in] Interface self-reference. Parameters

eventFlags [in] Bitmask of prefetch event flags (see
SL_PREFETCHEVENT macros in section 9.2.33)
indicating which callback events are enabled.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Event flags default to all flags cleared.

GetCallbackEventsMask
SLresult (*GetCallbackEventsMask) (
 SLPrefetchStatusItf self,
 SLuint32 *pEventFlags
);

Description Queries the notification state of the prefetch events.

Pre-conditions None

self [in] Interface self-reference. Parameters

pEventFlags [out] Pointer to a location to receive the bitmask of
prefetch event flags (see SL_PREFETCHEVENT
macros in section 9.2.33) indicating which
callback events are enabled. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 365

SetFillUpdatePeriod
SLresult (*SetFillUpdatePeriod) (
 SLPrefetchStatusItf self,
 SLpermille period
);

Description Sets the notification period for fill level updates. This period implies
the set discrete fill level values that will generate notifications from
the player.

Pre-conditions None

self [in] Interface self-reference. Parameters

period [in] Non-zero period between fill level notifications in
permille units.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Non-zero period between fill level notifications in permille.
Notifications will occur at 0 permille (i.e. empty) and at whole
number increments of the period from 0. For instance, if the period
is 200 permille (i.e. 20%), then the player will generate a
notification when 0%, 20%, 40%, 60%, 80%, or 100% full. The
default period is 100 permille.

GetFillUpdatePeriod
SLresult (*GetFillUpdatePeriod) (
 SLPrefetchStatusItf self,
 SLpermille *pPeriod
);

Description Queries the notification period for fill level updates.

Pre-conditions None

self [in] Interface self-reference. Parameters

pPeriod [out] Pointer to a location to receive the period
between fill level notifications in permille units.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

366 OpenSL ES 1.0.1 Specification

8.35 SLPresetReverbItf

Description

This interface allows an application to configure the global reverb using a reverb preset.
This is primarily used for adding some reverb in a music playback context. Applications
requiring control over a more advanced environmental reverb are advised to use the
SLEnvironmentalReverbItf interface, where available.

When this interface is exposed on the Output Mix, it acts as an auxiliary effect; for reverb
to be applied to a player’s output, the SLEffectSendItf interface
[see section 8.14] must be exposed on the player.

The following restriction must be adhered to when exposing this interface:

 It is not possible to expose this interface while the SLEnvironmentalReverbItf
interface of the same object is already exposed.

This interface is supported on Output Mix [see section 7.9] objects.

See section C.2 for an example using this interface.

Prototype
extern const SLInterfaceID SL_IID_PRESETREVERB;

struct SLPresetReverbItf_;
typedef const struct SLPresetReverbItf_ * const * SLPresetReverbItf;

struct SLPresetReverbItf_ {
 SLresult (*SetPreset) (
 SLPresetReverbItf self,
 SLuint16 preset
);
 SLresult (*GetPreset) (
 SLPresetReverbItf self,
 SLuint16 *pPreset
);
};

Interface ID

47382d60-ddd8-11db-bf3a-0002a5d5c51b

Defaults

Reverb preset: SL_REVERBPRESET_NONE.

OpenSL ES 1.0.1 Specification 367

Methods

SetPreset
SLresult (*SetPreset) (
 SLPresetReverbItf self,
 SLuint16 preset
);

Description Enables a preset on the global reverb.

Pre-conditions None

self [in] Interface self-reference.

Parameters

preset [in] Reverb preset. This must be one of the
SL_REVERBPRESET presets listed [see section
9.2.41].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments The reverb SL_REVERBPRESET_NONE disables any reverb from the
current output but does not free the resources associated with the
reverb. For an application to signal to the implementation to free the
resources, it must either change the object’s state to Unrealized or
dynamically remove the SLReverbPresetItf interface using
SLDynamicInterfaceManagementItf::RemoveInterface [see
section 8.14].

Some implementations may support an extended set of reverb
presets, in which case a wider range of reverb presets are accepted
in this method.

368 OpenSL ES 1.0.1 Specification

GetPreset
SLresult (*GetPreset) (
 SLPresetReverbItf self,
 SLuint16 *pPreset
);

Description Gets the current global reverb preset.

Pre-conditions None

self [in] Interface self-reference.

Parameters

pPreset [out] Pointer to location for the current reverb preset.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 369

8.36 SLRatePitchItf

Description

SLRatePitchItf is an interface for controlling the rate at which a sound is played back. A
change in rate will cause a change in pitch. The rate is specified using a permille factor
that controls the playback rate:

 A value of 1000 ‰ indicates normal playback rate; there is no change in pitch.
 A value of 500 ‰ indicates playback at half the normal rate, causing a pitch shift of –

12 semitones (one octave decrease).

 A value of 2000 ‰ indicates playback at double the normal rate, causing a pitch shift
of 12 semitones (one octave increase).

This interface is supported on the Audio Player [see section 7.2] object.

Prototype
extern const SLInterfaceID SL_IID_RATEPITCH;

struct SLRatePitchItf_;
typedef const struct SLRatePitchItf_ * const * SLRatePitchItf;

struct SLRatePitchItf_ {
 SLresult (*SetRate) (
 SLRatePitchItf self,
 SLpermille rate
);
 SLresult (*GetRate) (
 SLRatePitchItf self,
 SLpermille *pRate
);

SLresult (*GetRatePitchCapabilities) (
 SLRatePitchItf self,
 SLpermille *pMinRate,
 SLpermille *pMaxRate
);

};

Interface ID

61b62e60-ddda-11db-9eb8-0002a5d5c51b

Defaults

370 OpenSL ES 1.0.1 Specification

Rate: 1000 ‰

Methods

SetRate
SLresult (*SetRate) (
 SLRatePitchItf self,
 SLpermille rate
);

Description Sets a player’s rate.

Pre-conditions None

self [in] Interface self-reference. Parameters

rate [in] Rate factor in permille. The range supported by this
parameter is both implementation- and content-
dependent and can be determined using the
GetRatePitchCapabilities() method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Changing a player’s rate will change the pitch at which a sound is
played. For example, when the rate is set at 2000 ‰, the sound
will be played at twice the normal playback rate, causing a one
octave increase in pitch.

As the Doppler effect may be implemented internally as a rate
change and the rate change may be capped, in some situations,
such as when the rate change exceeds the device capabilities, this
method may appear to have no audible effect, even though the
method succeeded. In this case, the effect will be audible when the
amount of Doppler is reduced.

See also SL3DDopplerItf [see section 8.2].

OpenSL ES 1.0.1 Specification 371

GetRate
SLresult (*GetRate) (
 SLRatePitchItf self,
 SLpermille *pRate,
);

Description Gets the player’s current rate.

Pre-conditions None

self [in] Interface self-reference. Parameters

pRate [out] Pointer to location for the player’s rate in permille.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SL3DDopplerItf [see section 8.2].

372 OpenSL ES 1.0.1 Specification

GetRatePitchCapabilities
SLresult (*GetRatePitchCapabilities) (

SLRatePitchItf self,
SLpermille *pMinRate,
SLpermille *pMaxRate

);
Description Retrieves the player’s rate pitch capabilities.

Pre-conditions None

self [in] Interface self-reference.

pMinRate [out] Pointer to a location for minimum rate supported
for the player. If NULL, the minimum rate is not
reported.

Parameters

pMaxRate [out] Pointer to a location for the maximum rate
supported for the player. If NULL, the maximum
rate is not reported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS

Comments The values returned by this method are the absolute minimum and
maximum values supported by the implementation for the player
when no other Doppler or rate changes are applied.

See also None

OpenSL ES 1.0.1 Specification 373

8.37 SLRecordItf

Description

SLRecordItf is an interface for controlling the recording state of an object. The record
state machine is as follows:

Figure 38: Record state machine

Table 12: Data Status and Recording State

Recording State Destination1 closed Head2 moving (sending data to destination)

Stopped X

Paused³

Recording X

In case the storage media become full while recording to a file,
SL_OBJECT_EVENT_RUNTIME_ERROR will be posted via slObjectCallback with
SL_RESULT_IO_ERROR as this callback’s result parameter. The recorder will in that case
autotransition into SL_RECORDSTATE_STOPPED state.

1 “Destination” denotes the sink of the recording process (for example, a file being
written to).

2 “Head” denotes the position of the recording process relative in time to the duration
of the entire recording (for example, if the five seconds of audio have been sent to the
destination, the head is at five seconds).

³ If a recorder transitions from Paused to Recording (without an intervening transition

374 OpenSL ES 1.0.1 Specification

to Stopped), the newly captured data is appended to data already sent to the
destination.

This interface is supported on the Audio Recorder [see section 7.2] object.

See section B.1.2 for an example using this interface.

Prototype
extern const SLInterfaceID SL_IID_RECORD;

struct SLRecordItf_;
typedef const struct SLRecordItf_ * const * SLRecordItf;

struct SLRecordItf_ {
 SLresult (*SetRecordState) (
 SLRecordItf self,
 SLuint32 state
);
 SLresult (*GetRecordState) (
 SLRecordItf self,
 SLuint32 *pState
);
 SLresult (*SetDurationLimit) (
 SLRecordItf self,
 SLmillisecond msec
);
 SLresult (*GetPosition) (
 SLRecordItf self,
 SLmillisecond *pMsec
);
 SLresult (*RegisterCallback) (
 SLRecordItf self,
 slRecordCallback callback,
 void *pContext
);
 SLresult (*SetCallbackEventsMask) (
 SLRecordItf self,
 SLuint32 eventFlags
);
 SLresult (*GetCallbackEventsMask) (
 SLRecordItf self,
 SLuint32 *pEventFlags
);
 SLresult (*SetMarkerPosition) (
 SLRecordItf self,
 SLmillisecond mSec
);
 SLresult (*ClearMarkerPosition) (
 SLRecordItf self
);

OpenSL ES 1.0.1 Specification 375

 SLresult (*GetMarkerPosition) (
 SLRecordItf self,
 SLmillisecond *pMsec
);
 SLresult (*SetPositionUpdatePeriod) (
 SLRecordItf self,
 SLmillisecond mSec
);
 SLresult (*GetPositionUpdatePeriod) (
 SLRecordItf self,
 SLmillisecond *pMsec
);
};

Interface ID

c5657aa0-dddb-11db-82f7-0002a5d5c51b

Defaults

A recorder defaults to the SL_RECORDSTATE_STOPPED state, with no marker, no duration
limit, an update period of one second, and there are no markers set nor callbacks
registered and the callback event flags are cleared.

Callbacks

slRecordCallback
typedef void (SLAPIENTRY *slRecordCallback) (
 SLRecordItf caller,
 void *pContext,
 SLuint32 event
);

Description Notifies the recorder application of a recording event.

caller [in] Interface instantiation on which the callback was
registered.

pContext [in] User context data that is supplied when the
callback method is registered.

Parameters

event [in] Event that has occurred (see SL_RECORDEVENT
macros in section 9.2.39).

Comments None

See Also RegisterCallback()

376 OpenSL ES 1.0.1 Specification

Methods

SetRecordState
SLresult (*SetRecordState) (
 SLRecordItf self,
 SLuint32 state
);

Description Transitions recorder into the given record state.

Pre-conditions None. The recorder may be in any state.

self [in] Interface self-reference. Parameters

state [in] Desired recorder state. Must be one of
SL_RECORDSTATE macros [see section 9.2.40].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments All state transitions are legal.

GetRecordState
SLresult (*GetRecordState) (
 SLRecordItf self,
 SLuint32 *pState
);

Description Gets the recorder’s current record state.

Pre-conditions None.

self [in] Interface self-reference. Parameters

pState [out] Pointer to a location to receive the current record
state of the recorder. See SL_RECORDSTATE macros
in section 9.2.40. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 377

SetDurationLimit
SLresult (*SetDurationLimit) (
 SLRecordItf self,
 SLmillisecond msec
);

Description Sets the duration of current content in milliseconds.

Pre-conditions None

self [in] Interface self-reference. Parameters

msec [in] Non-zero limit on the duration of total recorded
content in milliseconds. A value of
SL_TIME_UNKNOWN indicates no limit.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments When the recorder reaches the limit, it automatically transitions to
the SL_RECORDSTATE_STOPPED state and notifies the application via
the SL_RECORDEVENT_HEADATLIMIT event [see section 9.2.39].

GetPosition
SLresult (*GetPosition) (
 SLRecordItf self,
 SLmillisecond *pMsec
);

Description Returns the current position of the recording head relative to the
beginning of content.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMsec [out] Pointer to a location to receive the position of
the recording head relative to the beginning of
the content, expressed in milliseconds. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The position is synonymous with the amount of recorded content.

378 OpenSL ES 1.0.1 Specification

RegisterCallback
SLresult (*RegisterCallback) (
 SLRecordItf self,
 slRecordCallback callback,
 void *pContext
);

Description Registers the record callback function.

Pre-conditions None

self [in] Interface self-reference.

callback [in] Callback function invoked when one of the
specified events occurs. A NULL value indicates
that there is no callback.

Parameters

pContext [in] User context data that is to be returned as part
of the callback method.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See Also SL_RECORDEVENT [see section 9.2.39].

OpenSL ES 1.0.1 Specification 379

SetCallbackEventsMask
SLresult (*SetCallbackEventsMask) (
 SLRecordItf self,
 SLuint32 eventFlags
);

Description Sets the notification state of record events.

Pre-conditions None

self [in] Interface self-reference. Parameters

eventFlags [in] Combination record event flags (see
SL_RECORDEVENT macros in section 9.2.39)
indicating which callback events are enabled.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The callback event flags default to all flags cleared.

GetCallbackEventsMask
SLresult (*GetCallbackEventsMask) (
 SLRecordItf self,
 SLuint32 *pEventFlags
);

Description Queries the notification state of record events.

Pre-conditions None

self [in] Interface self-reference. Parameters

pEventFlags [out] Pointer to a location to receive the combination
of record event flags (see SL_RECORDEVENT
macros in section 9.2.39) indicating which
callback events are enabled. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

380 OpenSL ES 1.0.1 Specification

SetMarkerPosition
SLresult (*SetMarkerPosition) (
 SLRecordItf self,
 SLmillisecond mSec
);

Description Sets the position of the recording marker.

Pre-conditions None

self [in] Interface self-reference. Parameters

mSec [in] Position of the marker expressed in milliseconds
and relative to the beginning of the content.
Must be between 0 and the specified duration
limit.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The player will notify the application when the recording head passes
through the marker via a callback with a
SL_RECORDEVENT_HEADATMARKER event [see section 9.2.39].

ClearMarkerPosition
SLresult (*ClearMarkerPosition) (
 SLRecordItf self
);

Description Clears marker.

Pre-conditions None

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments This function succeeds even if the marker is already clear.

See Also SetMarkerPosition()

OpenSL ES 1.0.1 Specification 381

GetMarkerPosition
SLresult (*GetMarkerPosition) (
 SLRecordItf self,
 SLmillisecond *pMSec
);

Description Queries the position of the recording marker.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMSec [out] Pointer to a location to receive the position of
the marker expressed in milliseconds and
relative to the beginning of the content. Must be
between 0 and the specified duration limit. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

SetPositionUpdatePeriod
SLresult (*SetPositionUpdatePeriod) (
 SLRecordItf self,
 SLmillisecond mSec
);

Description Sets the interval between periodic position notifications.

Pre-conditions None

self [in] Interface self-reference. Parameters

mSec [in] Non-zero period between position notifications in
milliseconds.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The recorder will notify the application when the recording head
passes through the positions implied by the specified period. Those
positions are defined as the whole multiples of the period relative to
the beginning of the content.

382 OpenSL ES 1.0.1 Specification

GetPositionUpdatePeriod
SLresult (*GetPositionUpdatePeriod) (
 SLRecordItf self,
 SLmillisecond *pMSec
);

Description Queries the interval between periodic position notifications.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMSec [out] Pointer to a location to receive the period
between position notifications in milliseconds.
This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 383

8.38 SLSeekItf

Description

SeekItf is an interface for manipulating a playback head, including setting its position and
looping characteristics. When supported, seeking may be used, regardless of playback
state or rate.

This interface is supported on the Audio Player [see section 7.2] and MIDI Player
[see section 7.8] objects.

See sections B.5.2, B.6.1, and Appendix C: for examples using this interface.

Prototype
extern const SLInterfaceID SL_IID_SEEK;

struct SLSeekItf_;
typedef const struct SLSeekItf_ * const * SLSeekItf;

struct SLSeekItf_ {
 SLresult (*SetPosition)(
 SLSeekItf self,
 SLmillisecond pos,
 SLuint32 seekMode
);
 SLresult (*SetLoop)(
 SLSeekItf self,
 SLboolean loopEnable,
 SLmillisecond startPos,
 SLmillisecond endPos
);
 SLresult (*GetLoop)(
 SLSeekItf self,
 SLboolean *pLoopEnabled,
 SLmillisecond *pStartPos,
 SLmillisecond *pEndPos
);
};

Interface ID

d43135a0-dddc-11db-b458-0002a5d5c51b

384 OpenSL ES 1.0.1 Specification

Defaults

The playback position defaults to 0 milliseconds (the beginning of the current content).
Global and local looping are disabled by default.

Methods

SetPosition
SLresult (*SetPosition) (
 SLSeekItf self,
 SLmillisecond pos,
 SLuint32 seekMode
);

Description Sets the position of the playback head.

Pre-conditions None.

self [in] Interface self-reference.

pos [in] Desired playback position in milliseconds, relative
to the beginning of content.

Parameters

seekMode [in] Inherent seek mode. See the seek mode
definition for details [see section 9.2.45]. If the
seek mode is not supported, this method will
return SL_RESULT_FEATURE_UNSUPPORTED.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments The implementation may set the position to the nearest discrete
sample or frame. Note that the position is defined relative to the
content playing at 1x forward rate; positions do not scale with
changes in playback rate.

OpenSL ES 1.0.1 Specification 385

SetLoop
SLresult (*SetLoop) (
 SLSeekItf self,
 SLboolean loopEnable,
 SLmillisecond startPos,
 SLmillisecond endPos
);

Description Enables or disables looping and sets the start and end points of
looping. When looping is enabled and the playback head reaches the
end position, the player automatically sets the head to the start
position and remains in the SL_PLAYSTATE_PLAYING state. Setting a
loop does not otherwise have any effect on the playback head even if
the head is outside the loop at the time the loop is set.

Pre-conditions Specified end position is greater than specified start position.

self [in] Interface self-reference.

loopEnable [in] Specifies whether looping is enabled
(true) or disabled (false).

startPos [in] Position in milliseconds relative to the
beginning of content specifying the start
of the loop.

Parameters

endPos [in] Position in milliseconds relative to the
beginning of content specifying the end
the loop. endPos must be greater than
startPos. A value of SL_TIME_UNKNOWN
denotes the end of the stream.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments If local looping is not supported, this method returns
SL_RESULT_FEATURE_UNSUPPORTED.

PROFILE NOTE
In the Phone profile, audio players are mandated only to support
SetLoop where startPos = 0, endPos = SL_TIME_UNKNOWN.

For all the others profiles and objects SetLoop is mandated as
defined in the object’s profile notes.

386 OpenSL ES 1.0.1 Specification

GetLoop
SLresult (*GetLoop) (
 SLSeekItf self,
 SLboolean *pLoopEnabled,
 SLmillisecond *pStartPos,
 SLmillisecond *pEndPos
);

Description Queries whether looping is enabled or disabled, and retrieves loop
points.

Pre-conditions None.

self [in] Interface self-reference.

pLoopEnabled [out] Pointer to a location to receive the flag
indicating whether looping is enabled
(true) or disabled (false). This must be
non-NULL.

pStartPos [out] Pointer to a location to receive the
position in milliseconds relative to the
beginning of content specifying the start
of the loop. This must be non-NULL.

Parameters

pEndPos [out] Pointer to a location to receive the
position in milliseconds relative to the
beginning of content specifying the end
the loop. A value of SL_TIME_UNKNOWN
denotes the end of the stream. This
must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 387

8.39 SLThreadSyncItf

Description

Registered callbacks can be invoked concurrently to application threads and even
concurrently to other callbacks. The application cannot assume anything about the context
from which registered callbacks are invoked, and thus using the native synchronization
mechanisms for synchronization of callback contexts is not guaranteed to work.

For this purpose, a critical section mechanism is introduced. There is one critical section
per engine object. Applications that require more flexibility can implement such a
mechanism on top of this critical section mechanism.

The semantics of the critical section mechanism are specified as follows:

 The engine is said to be in a critical section state during the time between when a
call to EnterCriticalSection() has returned successfully and until the time when a
call to ExitCriticalSection() is made.

 When the engine is in a critical section state, any call to EnterCriticalSection() will
block until the engine exited the critical section state, or until an error has occurred
(the return code of the EnterCriticalSection() call will reflect which of the
conditions has occurred).

One important point is worth mentioning: when the engine is operating in non-thread-safe
mode, the EnterCriticalSection() and ExitCriticalSection() methods are not
thread safe, in the sense that their behavior is undefined, should the application call them
from within multiple application contexts concurrently. These methods will, however,
work properly when invoked from a single application context in concurrency with one or
more callback contexts.

This interface is supported on the engine [see section 7.4] object.

Prototype
extern const SLInterfaceID SL_IID_THREADSYNC;

struct SLThreadSyncItf_;
typedef const struct SLThreadSyncItf_ * const * SLThreadSyncItf;

struct SLThreadSyncItf_ {
 SLresult (*EnterCriticalSection) (
 SLThreadSyncItf self
);

388 OpenSL ES 1.0.1 Specification

 SLresult (*ExitCriticalSection) (
 SLThreadSyncItf self
);
};

Interface ID

f6ac6b40-dddc-11db-a62e-0002a5d5c51b

Defaults

Not in critical section state.

Methods

EnterCriticalSection
SLresult (*EnterCriticalSection) (
 SLThreadSyncItf self
);

Description Blocks until the engine is not in critical section state, then transitions
the engine into critical section state.

Pre-conditions The calling context must not already be in critical section state.

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED

Comments Use this method to achieve synchronization between application
context and callback context(s), or between multiple callback contexts.

See comments in the description section regarding thread-safety of
this method.

See also ExitCriticalSection()

OpenSL ES 1.0.1 Specification 389

ExitCriticalSection
SLresult (*ExitCriticalSection) (
 SLThreadSyncItf self
);

Description Transitions the engine from critical section state to non-critical section
state.

Pre-conditions The engine must be in critical section state. The call must be made
from the same context that entered the critical section.

Parameters self [in] Interface self-reference.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED

Comments Use this method to achieve synchronization between client application
context and callback context(s), or between multiple callback contexts.

See comment in description section regarding thread-safety of this
method.

See also EnterCriticalSection()

390 OpenSL ES 1.0.1 Specification

8.40 SLVibraItf

Description

SLVibraItf interface is used to activate and deactivate the Vibra I/O device object, as well
as to set its frequency and intensity, if supported.

SLVibraItf uses the following state model, which indicates whether the vibration device is
vibrating or not:

Figure 39: Vibra I/O device state model

This interface is supported on the Vibra I/O device object [see section 7.10].

OpenSL ES 1.0.1 Specification 391

Prototype
extern const SLInterfaceID SL_IID_VIBRA;

struct SLVibraItf_;
typedef const struct SLVibraItf_ * const * SLVibraItf;

struct SLVibraItf_ {
 SLresult (*Vibrate) (
 SLVibraItf self,
 SLboolean vibrate
);
 SLresult (*IsVibrating) (
 SLVibraItf self,
 SLboolean *pVibrating
);
 SLresult (*SetFrequency) (
 SLVibraItf self,
 SLmilliHertz frequency
);
 SLresult (*GetFrequency) (
 SLVibraItf self,
 SLmilliHertz *pFrequency
);
 SLresult (*SetIntensity) (
 SLVibraItf self,
 SLpermille intensity
);
 SLresult (*GetIntensity) (
 SLVibraItf self,
 SLpermille *pIntensity
);
};

Interface ID

169a8d60-dddd-11db-923d-0002a5d5c51b

Defaults

Initially, the object is in the off state. Default frequency and intensity are undefined.

392 OpenSL ES 1.0.1 Specification

Methods

Vibrate
SLresult (*Vibrate) (
 SLVibraItf self,
 SLboolean vibrate
);

Description Activates or deactivates vibration for the I/O device.

Pre-conditions None.

self [in] Interface self-reference. Parameters

vibrate [in] Boolean indicating whether to vibrate.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_IO_ERROR
SL_RESULT_CONTROL_LOST

Comments None.

See also None.

IsVibrating
SLresult (*IsVibrating) (
 SLVibraItf self,
 SLboolean *pVibrating
);

Description Returns whether the I/O device is vibrating.

Pre-conditions None.

self [in] Interface self-reference. Parameters

pVibrating [out] Address to store a boolean indicating whether
the I/O device is vibrating.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None.

See also None.

OpenSL ES 1.0.1 Specification 393

SetFrequency
SLresult (*SetFrequency) (
 SLVibraItf self,
 SLmilliHertz frequency
);

Description Sets the vibration frequency of the I/O device.

Pre-conditions The Vibra I/O device must support setting intensity, per
SLVibraDescriptor::supportsFrequency.

self [in] Interface self-reference. Parameters

frequency [in] Frequency of vibration. Range is
[SLVibraDescriptor::minFrequency,
SLVibraDescriptor::maxFrequency]

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_RESOURCE_LOST
SL_RESULT_CONTROL_LOST

Comments None.

See also SLVibraDescriptor [see section 9.1.23].

394 OpenSL ES 1.0.1 Specification

GetFrequency
SLresult (*GetFrequency) (
 SLVibraItf self,
 SLmilliHertz *pFrequency
);

Description Returns the vibration frequency of the I/O device.

Pre-conditions The Vibra I/O device must support setting intensity, per
SLVibraDescriptor::supportsFrequency.

self [in] Interface self-reference. Parameters

pFrequency [out] Address to store the vibration frequency. Range
is [SLVibraDescriptor::minFrequency,
SLVibraDescriptor::maxFrequency]

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SLVibraDescriptor [see section 9.1.23].

SetIntensity
SLresult (*SetIntensity) (
 SLVibraItf self,
 SLpermille intensity
);

Description Sets the vibration intensity of the Vibra I/O device.

Pre-conditions The Vibra I/O device must support setting intensity, per
SLVibraDescriptor::supportsIntensity.

self [in] Interface self-reference. Parameters

intensity [in] Intensity of vibration. Range is [0, 1000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments None.

See also SLVibraDescriptor [see section 9.1.23].

OpenSL ES 1.0.1 Specification 395

GetIntensity
SLresult (*GetIntensity) (
 const SLVibraItf self,
 SLpermille *pIntensity
);

Description Returns the vibration intensity of the Vibra I/O device.

Pre-conditions The Vibra I/O device must support setting intensity, per
SLVibraDescriptor::supportsIntensity.

self [in] Interface self-reference. Parameters

pIntensity [out] Address to store the vibration intensity of the
Vibra I/O device. Range is [0, 1000].

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PRECONDITIONS_VIOLATED
SL_RESULT_PARAMETER_INVALID

Comments None.

See also SLVibraDescriptor [see section 9.1.23].

396 OpenSL ES 1.0.1 Specification

8.41 SLVirtualizerItf

Description

This interface is for controlling audio virtualizer functionality. Audio virtualizer is a general
name for an effect to spatialize audio channels. The exact behavior of this effect is
dependent on the number of audio input channels and the types and number of audio
output channels of the device. For example, in the case of a stereo input and stereo
headphone output, a stereo widening effect is used when this effect is turned on. An input
with 5.1-channels uses similarly a virtual surround algorithm. The exact behavior in each
case is listed in the table below:

Table 13: Audio Virtualizer Functionality

 Mono Input Stereo Input Multi-channel Input (more
than two channels)

Mono loudspeaker No effect No effect No effect

Stereo loudspeakers Pseudo-stereo Stereo widening Channel virtualization

Mono headset No effect No effect No effect

Stereo headset Pseudo-stereo Stereo widening
(Also other terms,
including “Stereo
virtualization,” are
used for this kind of
algorithm.)

Channel virtualization

As the table shows, the effect is not audible if mono output is used.

This interface affects different parts of the audio processing chain depending on which
object the interface is exposed. If this interface is exposed on an Output Mix object, the
effect is applied to the output mix. If this interface is exposed on a Player object, it is
applied to the Player’s output only. For more information, see section 4.5.1.

When this interface is exposed on an Output Mix object, the effect will not affect the
output of any of the 3D sources.

This interface is supported on the Output Mix [see section 7.9] object.

OpenSL ES 1.0.1 Specification 397

Prototype
extern const SLInterfaceID SL_IID_VIRTUALIZER;

struct SLVirtualizerItf_;
typedef const struct SLVirtualizerItf_ * const * SLVirtualizerItf;

struct SLVirtualizerItf_ {
 SLresult (*SetEnabled)(
 SLVirtualizerItf self,
 SLboolean enabled
);
 SLresult (*IsEnabled)(
 SLVirtualizerItf self,
 SLboolean *pEnabled
);
 SLresult (*SetStrength)(
 SLVirtualizerItf self,
 SLpermille strength
);
 SLresult (*GetRoundedStrength)(
 SLVirtualizerItf self,
 SLpermille *pStrength
);
 SLresult (*IsStrengthSupported)(
 SLVirtualizerItf self,
 SLboolean *pSupported
);
};

Interface ID

37cc2c00-dddd-11db-8577-0002a5d5c51b

398 OpenSL ES 1.0.1 Specification

Methods

SetEnabled
SLresult (*SetEnabled)(
 SLVirtualizerItf self,
 SLboolean enabled
);

Description Enables the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

enabled [in] True to turn on the effect, false to switch it off.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_CONTROL_LOST

Comments None

IsEnabled
SLresult (*IsEnabled)(
 SLVirtualizerItf self,
 SLboolean *pEnabled
);

Description Gets the enabled status of the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

pEnabled [out] True if the effect is on, false otherwise.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

OpenSL ES 1.0.1 Specification 399

SetStrength
SLresult (*SetStrength)(
 SLVirtualizerItf self,
 SLpermille strength
);

Description Sets the strength of the effect. If the implementation does not
support per mille accuracy for setting the strength, it is allowed to
round the given strength to the nearest supported value. You can use
the GetRoundedStrength() method to query the (possibly rounded)
value that was actually set.

Pre-conditions None

self [in] Interface self-reference. Parameters

strength [in] Strength of the effect. The valid range for
strength is [0, 1000], where 0 per mille
designates the mildest effect and 1000 per
mille designates the strongest effect,

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_CONTROL_LOST

Comments Please note that the strength does not affect the output if the effect is
not enabled. This set method will in all cases store the setting, even if
the effect is not enabled currently.

Please note also that the strength can also change if the output
device is changed (as, for example, from stereo loudspeakers to
stereo headphones) and those output devices use different algorithms
with different accuracies. You can use device changed callbacks
(slAvailableAudioOutputsChangedCallback() in the
SLAudioIODeviceCapabilitiesItf interface) to monitor device
changes and query the possibly-changed strength using
GetRoundedStrength() if you want to, in order, for example, for a
graphical user interface to follow the current strength accurately.

See Also SLAudioIODeviceCapabilitiesItf [see section 8.10].

400 OpenSL ES 1.0.1 Specification

GetRoundedStrength
SLresult (*GetRoundedStrength)(
 SLVirtualizerItf self,
 SLpermille *pStrength
);

Description Gets the current strength of the effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

pStrength [out] Strength of the effect. The valid range for
strength is [0, 1000], where 0 per mille
designates the mildest effect and 1000 per mille
designates the strongest effect,

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments Please note that the strength does not affect the output if the effect
is not enabled.

Please note also that in some cases the exact mapping of the
strength to the underlying algorithms might not maintain the full
accuracy exposed by the API. This is due to the fact that, for
example, a global VirtualizerItf might actually control internally
multiple algorithms that might use different accuracies: one for
mono inputs and another for stereo inputs.

OpenSL ES 1.0.1 Specification 401

IsStrengthSupported
SLresult (*IsStrengthSupported)(
 SLVirtualizerItf self,
 SLboolean *pSupported
);

Description Tells whether setting strength is supported. If this method returns
false, only one strength is supported and SetStrength() method
always rounds to that value.

Pre-conditions None

self [in] Interface self-reference. Parameters

pSupported [out] True if setting of the strength is supported,
false if only one strength is supported.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

402 OpenSL ES 1.0.1 Specification

8.42 SLVisualizationtItf

Description

This interface is for getting data for visualization purposes. The mechanism provides two
kinds of data to the application:

 Waveform data: 512 consecutive 8-bit mono samples
 Frequency data: 256-length 8-bit magnitude FFT

This interface can be exposed on either an engine object or a media object. If it is exposed
on the engine object, it provides global data from the main mix; if it is exposed on a media
object, it provides media object-specific data.

The media object-specific visualization data is not affected by any of the API volume
controls. Global visualization data is affected by all media object-specific OpenSL ES-
controlled processing, such as volume and effects, but it is implementation-dependent
whether global processing affects global visualization data.

Prototype
extern const SLInterfaceID SL_IID_VISUALIZATION;

struct SLVisualizationItf_;
typedef const struct SLVisualizationItf_ * const * SLVisualizationItf;

struct SLVisualizationItf_{
 SLresult (*RegisterVisualizationCallback)(
 SLVisualizationItf self,
 slVisualizationCallback callback,
 void *pContext,
 SLmilliHertz rate
);
 SLresult (*GetMaxRate)(
 SLVisualizationItf self,
 SLmilliHertz* pRate
);
};

Interface ID

e46b26a0-dddd-11db-8afd-0002a5d5c51b

OpenSL ES 1.0.1 Specification 403

Callbacks

slVisualizationCallback
typedef void (SLAPIENTRY *slVisualizationCallback) (
 SLVisualizationItf caller,
 void *pContext,
 const SLuint8 waveform[],
 const SLuint8 fft[],
 SLmilliHertz samplerate
);

Description Gives visualization data to the application.

caller [in] Interface instantiation on which the
callback was registered.

pContext [in] User context data that is supplied when
the callback method is registered.

waveform [in] Waveform data, 512 consecutive 8-bit
mono samples. The value range is [0,
255] and the value 128 represents a
zero signal.

The application must utilize the data
before the callback returns; there is no
guarantee that the pointer is valid after
this function returns.

fft [in] Frequency data, 256-length 8-bit
magnitude FFT for visualization. The
value range is [0, 255].

The same full-scale sine signal in both
channels of a stereo signal produces a
full-scale output at one of the FFT-bins,
provided that the signal frequency
matches bin-frequency exactly.

The application must utilize the data
before the callback returns; there is no
guarantee that the pointer is valid after
this function returns.

Parameters

samplerate [in] Sampling rate of the waveform and FFT
data.

Comments None

See also SLVisualization::RegisterVisualizationCallback

404 OpenSL ES 1.0.1 Specification

Methods

RegisterVisualizationCallback
SLresult (*RegisterVisualizationCallback)(
 SLVisualizationItf self,
 slVisualizationCallback callback,
 void *pContext,
 SLmilliHertz rate
);

Description Sets or clears the slVisualizationCallback.

Pre-conditions None

self [in] Interface self-reference.

callback [in] Address of the callback.

pContext [in] User context data that is supplied when the
callback method is registered.

Parameters

rate [in] Rate how often the callback is called (in
milliHertz). This parameter must always be
greater than zero. Use GetMaxRate()
method to query the maximum supported
rate.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_MEMORY_FAILURE

Comments None

OpenSL ES 1.0.1 Specification 405

GetMaxRate
SLresult (*GetMaxRate)(
 SLVisualizationItf self,
 SLmilliHertz* pRate
);

Description Gets the maximum supported rate. A valid implementation must
return at least 20000 mHz.

Pre-conditions None

self [in] Interface self-reference. Parameters

pRate [out] Maximum supported rate (in milliHertz) for
how often the callback can be called.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

406 OpenSL ES 1.0.1 Specification

8.43 SLVolumeItf

Description
This interface exposes controls for manipulating the object’s audio volume properties.

This interface additionally exposes a stereo position control. Its exact effect is determined
by the object’s format; if the object’s format is mono, a pan effect is applied, and if the
object’s format is stereo, a balance effect is applied.

This interface is supported on the Audio Player [see section 7.2], MIDI Player
[see section 7.8] and Output Mix [see section 7.9] objects.

See Appendix C: for examples using this interface.

Prototype
extern const SLInterfaceID SL_IID_VOLUME;

struct SLVolumeItf_;
typedef const struct SLVolumeItf_ * const * SLVolumeItf;

struct SLVolumeItf_ {
 SLresult (*SetVolumeLevel) (
 SLVolumeItf self,
 SLmillibel level
);
 SLresult (*GetVolumeLevel) (
 SLVolumeItf self,
 SLmillibel *pLevel
);

SLresult (*GetMaxVolumeLevel) (
 SLVolumeItf self,
 SLmillibel *pMaxLevel
);

 SLresult (*SetMute) (
 SLVolumeItf self,
 SLboolean mute
);
 SLresult (*GetMute) (
 SLVolumeItf self,
 SLboolean *pMute
);

SLresult (*EnableStereoPosition) (
 SLVolumeItf self,

 SLboolean enable
);
SLresult (*IsEnabledStereoPosition) (

 SLVolumeItf self,
 SLboolean *pEnable
);

OpenSL ES 1.0.1 Specification 407

 SLresult (*SetStereoPosition) (
 SLVolumeItf self,
 SLpermille stereoPosition
);
 SLresult (*GetStereoPosition) (
 SLVolumeItf self,
 SLpermille *pStereoPosition
);
};

Interface ID
09e8ede0-ddde-11db-b4f6-0002a5d5c51b

Defaults

 Volume level: 0 mB
 Mute: disabled (not muted)
 Stereo position: disabled, 0 ‰ (center)

408 OpenSL ES 1.0.1 Specification

Methods

SetVolumeLevel
SLresult (*SetVolumeLevel) (
 SLVolumeItf self,
 SLmillibel level
);

Description Sets the object’s volume level.

Pre-conditions None

self [in] Interface self-reference. Parameters

level [in] Volume level in millibels. The valid range is
[SL_MILLIBEL_MIN, maximum supported level],
where maximum supported level can be queried with
the method GetMaxVolumeLevel(). The maximum
supported level is always at least 0 mB.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments If the object is muted, calls to SetVolumeLevel() will still change
the internal volume level, but this will have no audible effect until
the object is unmuted.

See also SetMute()

OpenSL ES 1.0.1 Specification 409

GetVolumeLevel
SLresult (*GetVolumeLevel) (
 SLVolumeItf self,
 SLmillibel *pLevel
);

Description Gets the object’s volume level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pLevel [out] Pointer to a location to receive the object’s volume
level in millibels. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also None

GetMaxVolumeLevel
SLresult (*GetMaxVolumeLevel) (
 SLVolumeItf self,
 SLmillibel *pMaxLevel
);

Description Gets the maximum supported level.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMaxLevel [out] Pointer to a location to receive the maximum
supported volume level in millibels. This must be
non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments The maximum supported level is implementation-dependent, but will
always be at least 0 mB.

See also None

410 OpenSL ES 1.0.1 Specification

SetMute
SLresult (*SetMute) (
 SLVolumeItf self,
 SLboolean mute
);

Description Mutes or unmutes the object.

Pre-conditions None

self [in] Interface self-reference. Parameters

mute [in] If true, the object is muted. If false, the object is
unmuted.

Return value The return value can be the following:
SL_RESULT_SUCCESS

Comments Muting the object does not change the volume level reported by
GetVolumeLevel().

Calling SetMute() with mute set to true when the object is already
muted is a valid operation that has no effect.

Calling SetMute() with mute set to false when the object is already
unmuted is a valid operation that has no effect.

See also GetVolumeLevel()

GetMute
SLresult (*GetMute) (
 SLVolumeItf self,
 SLboolean *pMute
);

Description Retrieves the object’s mute state.

Pre-conditions None

self [in] Interface self-reference. Parameters

pMute [out] Pointer to a boolean to receive the object’s mute
state. This must be non-NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID

Comments None

See also None

OpenSL ES 1.0.1 Specification 411

EnableStereoPosition
SLresult (*EnableStereoPosition) (
SLVolumeItf self,
SLboolean enable
);

Description Enables or disables the stereo positioning effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

enable [in] If true, enables the stereo position effect. If false,
disables the stereo positioning effect (no
attenuation due to stereo positioning is applied to
the left or right channels).

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments If the output of the object is monophonic this setting

doesn't have any effect.

PROFILE NOTES
This method is mandated only in the Game and Music
profiles.

See also None.

412 OpenSL ES 1.0.1 Specification

IsEnabledStereoPosition
SLresult (*IsEnabledStereoPosition) (
 const SLVolumeItf self,
 SLboolean *pEnable
);

Description Returns the enabled state of the stereo positioning effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

pEnable [out] Pointer to a location to receive the enabled state of
the stereo positioning effect.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments If the output of the object is monophonic this setting

doesn't have any effect.

PROFILE NOTES
This method is mandated only in the Game and Music
profiles.

See also None

OpenSL ES 1.0.1 Specification 413

SetStereoPosition
SLresult (*SetStereoPosition) (
 SLVolumeItf self,
 SLpermille stereoPosition
);

Description Sets the stereo position of the object; For mono objects, this will
control a constant energy pan effect, and for stereo objects, this will
control a balance effect.

Pre-conditions None

self [in] Interface self-reference. Parameters

stereoPosition [in] Stereo position in the range [-1000 ‰,
1000 ‰].

A stereo position of 0 ‰ indicates the
object is in the center. That is, in the case of
balance, no attenuation is applied to the left
and right channels; and in the case of pan,
3 dB attenuation is applied to the left and
right channels.

A stereo position of –1000 ‰ pans the
object fully to the left; the right channel is
silent.

A stereo position of 1000 ‰ pans the
object fully to the right; the left channel is
silent.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments The exact pan and balance curves used for this method are
implementation-dependent, subject to satisfying the parameter
description.

For objects whose (input) format is mono, this method controls a
constant energy pan effect.

For objects whose (input) format is stereo, this method controls a
balance effect.

If the output of the object is monophonic this setting doesn't have
any effect.

PROFILE NOTES
This method is mandated only in the Game and Music profiles.

See also None

414 OpenSL ES 1.0.1 Specification

GetStereoPosition
SLresult (*GetStereoPosition) (
 const SLVolumeItf self,
 SLpermille *pStereoPosition
);

Description Gets the object’s stereo position setting.

Pre-conditions None

self [in] Interface self-reference. Parameters

pStereoPosition [out] Pointer to a location to receive the current
stereo position setting. This must be non-
NULL.

Return value The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID
SL_RESULT_FEATURE_UNSUPPORTED

Comments None

See also None

OpenSL ES 1.0.1 Specification 415

9 Macros and Typedefs

9.1 Structures

9.1.1 SLAudioCodecDescriptor
typedef struct SLAudioCodecDescriptor_ {
 SLuint32 maxChannels;
 SLuint32 minBitsPerSample;
 SLuint32 maxBitsPerSample;
 SLmilliHertz minSampleRate;
 SLmilliHertz maxSampleRate;
 SLboolean isFreqRangeContinuous;
 SLmilliHertz *pSampleRatesSupported;
 SLuint32 numSampleRatesSupported;
 SLuint32 minBitRate;
 SLuint32 maxBitRate;
 SLboolean isBitrateRangeContinuous;
 SLuint32 *pBitratesSupported;
 SLuint32 numBitratesSupported;
 SLuint32 profileSetting;
 SLuint32 modeSetting;
} SLAudioCodecDescriptor;

This structure is used for querying the capabilities of an audio codec.

Field Description

maxChannels Maximum number of audio channels.

minBitsPerSample Minimum bits per sample of PCM data.

maxBitsPerSample Maximum bits per sample of PCM data.

minSampleRate Minimum sampling rate supported.

maxSampleRate Maximum sampling rate supported.

isFreqRangeContinuous Returns SL_BOOLEAN_TRUE if the device supports a
continuous range of sampling rates between minSampleRate
and maxSampleRate; otherwise returns SL_BOOLEAN_FALSE.

pSampleRatesSupported Indexed array containing the supported sampling rates.
Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE. If
pSampleRatesSupported is NULL, the number of supported
sample rates is returned in numSampleRatesSupported.

numSampleRatesSupported Size of the pSamplingRatesSupported array. Ignored if
isFreqRangeContinuous is SL_BOOLEAN_TRUE.

minBitRate Minimum bit-rate.

416 OpenSL ES 1.0.1 Specification

Field Description

maxBitRate Maximum bit-rate.

isBitrateRangeContinuous Returns SL_BOOLEAN_TRUE if the device supports a
continuous range of bitrates between minBitRate and
maxBitRate; otherwise returns SL_BOOLEAN_FALSE.

pBitratesSupported Indexed array containing the supported bitrates. Ignored if
isBitrateRangeContinuous is SL_BOOLEAN_TRUE. If
pBitratesSupported is NULL, the number of supported
bitrates is returned in numBitratesSupported.

numBitratesSupported Size of the pBitratesSupported array. Ignored if
isBitrateRangeContinuous is SL_BOOLEAN_TRUE.

profileSetting Profile supported by codec. See SL_AUDIOPROFILE defines
[see section 9.2.2].

modeSetting Level supported by codec. See SL_AUDIOMODE defines [see
section 9.2.2].

OpenSL ES 1.0.1 Specification 417

9.1.2 SLAudioEncoderSettings
typedef struct SLAudioEncoderSettings_ {
 SLuint32 encoderId;
 SLuint32 channelsIn;
 SLuint32 channelsOut;
 SLmilliHertz sampleRate;
 SLuint32 bitRate;
 SLuint32 bitsPerSample;
 SLuint32 rateControl;
 SLuint32 profileSetting;
 SLuint32 levelSetting;
 SLuint32 channelMode;
 SLuint32 streamFormat;
 SLuint32 encodeOptions;
 SLuint32 blockAlignment;
} SLAudioEncoderSettings;

This structure is used to set the audio encoding parameters. Set a field’s value to zero to
specify use of the default setting for that encoding parameter.

Field Description

encoderId Identifies the supported audio encoder. Refer to SL_AUDIOOCODEC
defines in section 9.2.1.

channelsIn Number of input audio channels.

channelsOut Number of output channels in encoded data. In case of contradiction
between this field and the channelMode field, the channelMode field
overrides.

sampleRate Audio sample rate of input audio data in millihertz

bitRate Bitrate of encoded data.

bitsPerSample Bits per sample of input data.

rateControl Encoding rate control mode. See SL_RATECONTROLMODE defines in
section 9.2.37.

profileSetting Profile to use for encoding. See SL_AUDIOPROFILE defines in section
9.2.2.

levelSetting Level to use for encoding. See SL_AUDIOMODE defines in section 9.2.2.

channelMode Channel mode for encoder. See SL_AUDIOCHANMODE defines in section
9.2.2.

streamFormat Format of encoded bit-stream. For example, AMR encoders use this to
select between IF1, IF2, or RTPPAYLOAD bit-stream formats. Refer to
SL_AUDIOSTREAMFORMAT_XXX defines in section 9.2.2.

418 OpenSL ES 1.0.1 Specification

Field Description

encodeOptions Codec specific encoder options. For example, WMA encoders use it to
specify codec version, framesize, frequency extensions, and other
options. See the relevant encoder documentation for format. This is
typically a bitfield specifying encode options. Use a value of zero to
specify use of the default encoder settings for the encoder.

blockAlignment Block alignment in bytes of an audio sample.

9.1.3 SLAudioInputDescriptor
typedef struct SLAudioInputDescriptor_ {
 SLchar *deviceName;
 SLint16 deviceConnection;
 SLint16 deviceScope;
 SLint16 deviceLocation;
 SLboolean isForTelephony;
 SLmilliHertz minSampleRate;
 SLmilliHertz maxSampleRate;
 SLboolean isFreqRangeContinuous;
 SLmilliHertz *samplingRatesSupported;
 SLint16 numOfSamplingRatesSupported;
 SLint16 maxChannels;
} SLAudioInputDescriptor;

This structure is used for returning the description of audio input device capabilities. The
deviceConnection, deviceScope and deviceLocation fields collectively describe the type
of audio input device in a standardized way, while still allowing new device types to be
added (by vendor-specific extensions of the corresponding macros), if necessary. For
example, on a mobile phone, the integrated microphone would have the following values
for each of these three fields, respectively: SL_DEVCONNECTION_INTEGRATED,
SL_DEVSCOPE_USER and SL_DEVLOCATION_HANDSET, while a Bluetooth headset microphone
would have the following values: SL_DEVCONNECTION_ATTACHED_WIRELESS,
SL_DEVSCOPE_USER and SL_DEVLOCATION_HEADSET.

Field Description

deviceName Human-readable string representing the name of the
device, such as “Bluetooth microphone” or “wired
microphone.”

deviceConnection One of the device connection types listed in the
SL_DEVCONNECTION macros.

deviceScope One of the device scope types listed in the SL_DEVSCOPE
macros.

deviceLocation One of the device location types listed in the
SL_DEVLOCATION macros

OpenSL ES 1.0.1 Specification 419

Field Description

isForTelephony Returns SL_BOOLEAN_TRUE if the audio input device is
deemed suitable for telephony uplink audio; otherwise
returns SL_BOOLEAN_FALSE. For example: a line-in jack
would not be considered suitable for telephony, as it is
difficult to determine what can be connected to it.

minSampleRate Minimum sampling rate supported.

maxSampleRate Maximum sampling rate supported.

isFreqRangeContinuous Returns SL_BOOLEAN_TRUE if the input device supports a
continuous range of sampling rates between
minSampleRate and maxSampleRate; otherwise returns
SL_BOOLEAN_FALSE.

samplingRatesSupported Indexed array containing the supported sampling rates,
as defined in the SL_SAMPLING_RATE macros. Ignored if
isFreqRangeContinuous is SL_BOOLEAN_TRUE.

numOfSamplingRatesSupported Size of the samplingRatesSupported array. Ignored if
isFreqRangeContinuous is SL_BOOLEAN_TRUE.

maxChannels Maximum number of channels supported; for mono
devices, value would be 1.

420 OpenSL ES 1.0.1 Specification

The table below shows examples of the first five fields of the SLAudioInputDescriptor
struct for various audio input devices. For the sake of brevity and clarity, the full names of
the SL_DEV macros have been abbreviated to include just the distinct portion of the names
(such as SL_DEVCONNECTION_INTEGRATED appears as INTEGRATED and
SL_DEVSCOPE_PRIVATE as PRIVATE).

Table 14: Examples of Audio Input Devices

 deviceName device-
Connection

device-Scope device-

Location

isForTelephony

Handset
microphone

INTEGRATED USER HANDSET TRUE

Bluetooth
microphone

WIRELESS USER HEADSET TRUE

Wired headset
microphone

WIRED USER HEADSET TRUE

Carkit
microphone

WIRED ENVIRO-
NMENT

CARKIT TRUE

Carkit handset
microphone

WIRED USER CARKIT TRUE

System line-in
jack

INTEGRATED UNKNOWN HANDSET FALSE

Networked
Media Server

NETWORK UNKNOWN RESLTE FALSE

OpenSL ES 1.0.1 Specification 421

9.1.4 SLAudioOutputDescriptor
typedef struct SLAudioOutputDescriptor_ {
 SLchar *pDeviceName;
 SLint16 deviceConnection;
 SLint16 deviceScope;
 SLint16 deviceLocation;
 SLboolean isForTelephony;
 SLmilliHertz minSampleRate;
 SLmilliHertz maxSampleRate;
 SLboolean isFreqRangeContinuous;
 SLmilliHertz *samplingRatesSupported;
 SLint16 numOfSamplingRatesSupported;
 SLint16 maxChannels;
} SLAudioOutputDescriptor;

This structure is used for returning the description of audio output device capabilities. The
deviceConnection, deviceScope and deviceLocation fields collectively describe the type
of audio output device in a standardized way, while still allowing new device types to be
added (by vendor-specific extensions of the corresponding macros), if necessary. For
example, on a mobile phone, the earpiece would have the following values for each of
these three fields, respectively: SL_DEVCONNECTION_INTEGRATED, SL_DEVSCOPE_USER and
SL_DEVLOCATION_HANDSET, while a pair of speakers that are part of a music dock would
have the following: SL_DEVCONNECTION_ATTACHED_WIRED, SL_DEVSCOPE_ENVIRONMENT and
SL_DEVLOCATION_DOCK.

Field Description

deviceName Human-readable string representing the name of the
output device, such as “integrated loudspeaker” or
“Bluetooth headset.”

deviceConnection One of the device connection types listed in the
SL_DEVCONNECTION macros.

deviceScope One of the device scope types listed in the SL_DEVSCOPE
macros.

deviceLocation One of the device location types listed in the
SL_DEVLOCATION macros.

isForTelephony Returns SL_BOOLEAN_TRUE if the audio output device is
deemed suitable for telephony downlink audio;
otherwise returns SL_BOOLEAN_FALSE. For example, a
line-out jack would not be a suitable for telephony
downlink audio.

minSampleRate Minimum sampling rate supported.

maxSampleRate Maximum sampling rate supported.

422 OpenSL ES 1.0.1 Specification

Field Description

isFreqRangeContinuous Returns SL_BOOLEAN_TRUE if the output device supports
a continuous range of sampling rates between
minSampleRate and maxSampleRate; otherwise returns
SL_BOOLEAN_FALSE.

samplingRatesSupported Indexed array containing the supported sampling rates,
as defined in the SL_SAMPLINGRATE macros. Ignored if
isFreqRangeContinuous is SL_BOOLEAN_TRUE.

numOfSamplingRatesSupported Size of the samplingRatesSupported array. Ignored if
isFreqRangeContinuous is SL_BOOLEAN_TRUE.

maxChannels Maximum number of channels supported; for mono
devices, value would be 1.

The table below shows examples of the first six fields of the SLAudioOutputDescriptor
struct for various audio output devices. For the sake of brevity and clarity, the full names
of the SL_DEV macros have been abbreviated to include just the distinct portion of the
names (such as SL_DEVCONNECTION_INTEGRATED appears as INTEGRATED and
SL_DEVSCOPE_USER as USER).

Table 15: Examples of Audio Output Devices

deviceName device-
Connection

device-
Scope

device-
Location

isFor-Telephony

Earpiece INTEGRATED USER HANDSET TRUE

Loudspeaker INTEGRATED ENVIRON-
MENT

HANDSET TRUE

Bluetooth
headset
speaker

WIRELESS USER HEADSET TRUE

Wired
headset
speaker

WIRED USER HEADSET TRUE

Carkit
loudspeaker

WIRED ENVIRON-
MENT

CARKIT TRUE

Carkit
handset
speaker

WIRED USER CARKIT TRUE

System line-
out jack

INTEGRATED UNKNOWN HANDSET FALSE

Dock
loudspeaker

WIRED ENVIRON-
MENT

DOCK FALSE

OpenSL ES 1.0.1 Specification 423

deviceName device- device- device- isFor-Telephony
Connection Scope Location

FM Radio
Transmitter

WIRED ENVIRON-
MENT

DOCK FALSE

Networked
media
renderer

NETWORK UNKNOWN REMOTE FALSE

9.1.5 SLBufferQueueState
typedef struct SLBufferQueueState_ {
 SLuint32 count;
 SLuint32 playIndex;
} SLBufferQueueState;

Field Description

count Number of buffers currently in the queue

playIndex Index of the currently playing buffer. This is a linear index that keeps a
cumulative count of the number of buffers played. It is set to zero by a call
to the SLBufferQueue::Clear() method [see section 8.12].

424 OpenSL ES 1.0.1 Specification

9.1.6 SLDataFormat_MIME
typedef struct SLDataFormat_MIME_ {
 SLuint32 formatType;
 SLchar * mimeType;
 SLuint32 containerType;
} SLDataFormat_MIME;

Fields include:

Field Description

formatType The format type, which must always be SL_DATAFORMAT_MIME for this
structure.

mimeType The mime type of the data expressed as a string.

containerType The container type of the data.

When an application uses this structure to specify the data source for a
player use case, the application may leave the containerType
unspecified (for example SL_CONTAINERTYPE_UNSPECIFIED) or may
provide a specific value as a hint to the player.

When an application uses this structure to specify the data sink for a
recorder use case, the application is dictating the container type of the
captured content.

9.1.7 SLDataFormat_PCM
typedef struct SLDataFormat_PCM_ {
 SLuint32 formatType;
 SLuint32 numChannels;
 SLuint32 samplesPerSec;
 SLuint32 bitsPerSample;
 SLuint32 containerSize;
 SLuint32 channelMask;
 SLuint32 endianness;
} SLDataFormat_PCM;

Fields include:

Field Description

formatType The format type, which must always be SL_DATAFORMAT_PCM for this
structure.

numChannels Numbers of audio channels present in the data. Multi-channel audio is
always interleaved in the data buffer.

samplesPerSec The audio sample rate of the data.

bitsPerSample Number of actual data bits in a sample.

OpenSL ES 1.0.1 Specification 425

Field Description

containerSize The container size for PCM data in bits, for example 24 bit data in a 32
bit container. Data is left-justified within the container. For best
performance, it is recommended that the container size be the size of
the native data types.

channelMask Channel mask indicating mapping of audio channels to speaker
location.

The channelMask member specifies which channels are present in the
multichannel stream. The least significant bit corresponds to the front
left speaker (SL_SPEAKER_FRONT_LEFT), the next least significant bit
corresponds to the front right speaker (SL_SPEAKER_FRONT_RIGHT),
and so on. The full list of valid speaker locations is defined in section
9.2.46. The channels specified in channelMask must be present in the
prescribed order (from least significant bit up). For example, if only
SL_SPEAKER_FRONT_LEFT and SL_SPEAKER_FRONT_RIGHT are specified,
the samples for the front left speaker must come first in the
interleaved stream. The number of bits set in channelMask should be
the same as the number of channels specified in numChannels with the
caveat that a default setting of zero indicates stereo format (i.e. the
setting is equivalent to SL_SPEAKER_FRONT_LEFT |
SL_SPEAKER_FRONT_RIGHT)

endianness Endianness of the audio data. See SL_BYTEORDER macro for definition
[see section 9.2.5].

9.1.8 SLDataLocator_Address
typedef struct SLDataLocator_Address_ {
 SLuint32 locatorType;
 void *pAddress;
 SLuint32 length;
} SLDataLocator_Address;

Fields include:

Field Description

locatorType Locator type, which must always be SL_DATALOCATOR_ADDRESS for this
structure.

pAddress Address of the first byte of data.

length Length of the data in bytes.

426 OpenSL ES 1.0.1 Specification

9.1.9 SLDataLocator_IODevice
typedef struct SLDataLocator_IODevice_ {
 SLuint32 locatorType;
 SLuint32 deviceType;
 SLuint32 deviceID;
 SLObjectItf device;
} SLDataLocator_IODevice;

Fields include:

Field Description

locatorType Locator type, which must be SL_DATALOCATOR_IODEVICE for this
structure [see section 9.2.9].

deviceType Type of I/O device. See SL_IODEVICE macros in section 9.2.18.

deviceID ID of the device. Ignored if device is not NULL.

device I/O device object itself. Must be NULL if deviceID parameter is to be
used.

9.1.10 SLDataLocator_BufferQueue
typedef struct SLDataLocator_BufferQueue {
 SLuint32 locatorType;
 SLuint32 numBuffers;
} SLDataLocator_BufferQueue;

Struct representing a data locator for a buffer queue:

Field Description

locatorType Locator type, which must be SL_DATALOCATOR_BUFFERQUEUE for this
structure [see section 9.2.9].

numBuffers Number of buffers to allocate for buffer queue

OpenSL ES 1.0.1 Specification 427

9.1.11 SLDataLocator_MIDIBufferQueue
typedef struct SLDataLocator_MIDIBufferQueue {
 SLuint32 locatorType;
 SLuint32 tpqn;
 SLuint32 numBuffers;
} SLDataLocator_MIDIBufferQueue;

Struct representing a data locator for a MIDI buffer queue:

Field Description

locatorType Locator type, which must be SL_DATALOCATOR_MIDIBUFFERQUEUE for this
structure [see section 9.2.9].

tpqn MIDI ticks per quarter note (ticks per beat / pulses per quarter note).
Range is [0, 32767].

numBuffers Number of buffers to allocate for buffer queue

9.1.12 SLDataLocator_OutputMix
typedef struct SLDataLocator_OutputMix {
 SLuint32 locatorType;
 SLObjectItf outputMix;
} SLDataLocator_OutputMix;

Fields include:

Field Description

locatorType Locator type, which must be SL_DATALOCATOR_OUTPUTMIX for this
structure [see section 9.2.9].

outputMix The OutputMix object as retrieved from the engine.

9.1.13 SLDataLocator_URI
typedef struct SLDataLocator_URI_ {
 SLuint32 locatorType;
 SLchar * URI;
} SLDataLocator_URI;

Fields include:

Field Description

locatorType Locator type, which must always be SL_DATALOCATOR_URI for this
structure [see section 9.2.9].

URI URI expressed as a string.

428 OpenSL ES 1.0.1 Specification

9.1.14 SLDataSink
typedef struct SLDataSink_ {
 void *pLocator;
 void *pFormat;
} SLDataSink;

Fields include:

Field Description

pLocator Pointer to the specified data locator structure. This may point to any of the
following structures:

SLDataLocator_Address
SLDataLocator_IODevice
SLDataLocator_OutputMix
SLDataLocator_URI
SLDataLocator_BufferQueue
SLDataLocator_MIDIBufferQueue

The first field of each of these structures includes the 32 bit locatorType field,
which identifies the locator type (see SL_DATALOCATOR definitions in section
9.2.9) and hence the structure pointed to. The locator
SLDataLocator_OutputMix is used in the common case where a player’s
output should be directed to the default audio output mix.

pFormat A pointer to the specified format structure. This may point to any of the
following structures.

SLDataFormat_PCM
SLDataFormat_MIME

The first field of each of these structures includes the 32 bit formatType field,
which identifies the format type (SL_DATAFORMAT definitions [see section
9.2.8]) and hence the structure pointed to.

This parameter is ignored if pLocator is SLDataLocator_IODevice or
SLDataLocator_OutputMix.

OpenSL ES 1.0.1 Specification 429

9.1.15 SLDataSource
typedef struct SLDataSource_ {
 void *pLocator;
 void *pFormat;
} SLDataSource;

Fields include:

Field Description

pLocator Pointer to the specified data locator structure. This may point to any of the
following structures.

SLDataLocator_Address
SLDataLocator_BufferQueue
SLDataLocator_IODevice
SLDataLocator_MIDIBufferQueue
SLDataLocator_URI

The first field of each of these structure includes the 32 bit locatorType field,
which identifies the locator type (see SL_DATALOCATOR definitions) and hence
the structure pointed to.

pFormat A pointer to the specified format structure. This may point to any of the
following structures.

SLDataFormat_PCM
SLDataFormat_MIME

The first field of each of these structure includes the 32 bit formatType field,
which identifies the format type (SL_DATAFORMAT definitions) and hence the
structure pointed to.

This parameter is ignored if pLocator is SLDataLocator_IODevice.

430 OpenSL ES 1.0.1 Specification

9.1.16 SLEngineOption
typedef struct SLEngineOption_ {
 SLuint32 feature;
 SLuint32 data;
} SLEngineOption;

Structure used for specifying different options during engine creation:

Field Description

feature Feature identifier. See SL_ENGINEOPTION macros [see section 9.2.15].

data Value to use for feature.

9.1.17 SLEnvironmentalReverbSettings
typedef struct SLEnvironmentalReverbSettings_ {
 SLmillibel roomLevel;
 SLmillibel roomHFLevel;
 SLmillisecond decayTime;
 SLpermille decayHFRatio;
 SLmillibel reflectionsLevel;
 SLmillisecond reflectionsDelay;
 SLmillibel reverbLevel;
 SLmillisecond reverbDelay;
 SLpermille diffusion;
 SLpermille density;
} SLEnvironmentalReverbSettings;

This structure can store all the environmental reverb settings. The meaning of the
parameters is defined in the SLEnvironmentalReverbItf interface [see section 8.19].

Field Description

roomLevel Environment’s volume level in millibels. The valid range is
[SL_MILLIBEL_MIN, 0].

roomHFLevel High-frequency attenuation level in millibels. The valid range is
[SL_MILLIBEL_MIN, 0].

decayTime Decay time in milliseconds. The valid range is [100, 20000].

decayHFRatio Relative decay time at the high-frequency reference (5 kHz) using a
permille scale. The valid range is [100, 2000].

reflectionsLevel Early reflections attenuation level in millibels. The valid range is
[SL_MILLIBEL_MIN, 1000].

reflectionsDelay Early reflections delay length in milliseconds. The valid range is [0,
300].

reverbLevel Late reverb level in millibels. The valid range is [SL_MILLIBEL_MIN,
2000].

OpenSL ES 1.0.1 Specification 431

Field Description

reverbDelay Late reverb delay in milliseconds. The valid range is [0, 100].

diffusion Diffusion level expressed in permilles. The valid range is [0, 1000].

density Density level expressed in permilles. The valid range is [0, 1000].

9.1.18 SLHSL
typedef struct SLHSL_ {
 SLmillidegree hue;
 SLpermille saturation;
 SLpermille lightness;
} SLHSL;

SLHSL represents a color defined in terms of the HSL color space.

Field Description

hue Hue. Range is [0, 360000] in millidegrees. (Refers to the range between 0
and 360 degrees).

saturation Saturation of the color. Range is [0, 1000] in permille. (Refers to the range
between 0.0% and 100.0%).

lightness Lightness of the color. Range is [0, 1000] in permille. (Refers to the range
between 0.0% and 100.0%).

9.1.19 SLInterfaceID
typedef const struct SLInterfaceID_ {
 SLuint32 time_low;
 SLuint16 time_mid;
 SLuint16 time_hi_and_version;
 SLuint16 clock_seq;
 SLuint8 node[6];
} * SLInterfaceID;

The interface ID type.

Field Description

time_low Low field of the timestamp.

time_mid Middle field of the timestamp.

time_hi_and_version High field of the timestamp multiplexed with the version number.

clock_seq Clock sequence.

node Spatially unique node identifier.

432 OpenSL ES 1.0.1 Specification

9.1.20 SLLEDDescriptor
typedef struct SLLEDDescriptor_ {
 SLuint8 ledCount;
 SLuint8 primaryLED;
 SLuint32 colorMask;
} SLLEDDescriptor;

SLLEDDescriptor represents the capabilities of the LED array I/O Device.

Field Description

ledCount Number of LEDs in the array. Range is [1, 32].

primaryLED Index of the primary LED, which is the main status LED of the device. Range
is [0, ledCount-1].

colorMask Bitmask indicating which LEDs support color. Valid bits range from the least
significant bit, which indicates the first LED in the array, to bit ledCount–1,
which indicates the last LED in the array.

9.1.21 SLMetadataInfo
typedef struct SLMetadataInfo_ {
 SLuint32 size;
 SLuint32 encoding;
 SLchar langCountry[16];
 SLuint8 data[1];
} SLMetadataInfo;

SLMetadataInfo represents a key or a value from a metadata item key/value pair.

Field Description

size Size of the data in bytes. size must be greater than 0.

encoding Character encoding of the data.

langCountry Language / country code of the data (see note below).

data Key or value, as represented by the encoding.

The language / country code may be a language code, a language / country code, or a
country code. When specifying the code, note that a partially-specified code will match
fully-specified codes that match the part that is specified. For example, “en” will match
“en-us” and other “en” variants. Likewise, “us” will match “en-us” and other “us” variants.

Formatting of language codes and language / country codes is defined by IETF RFC 3066
[RFC3066] (which incorporates underlying ISO specifications 639 [ISO639] and 3166
[ISO3166] and a syntax). Formatting of country codes is defined by ISO 3166 [ISO3166].

OpenSL ES 1.0.1 Specification 433

9.1.22 SLVec3D
typedef struct SLVec3D_ {
 SLint32 x;
 SLint32 y;
 SLint32 z;
} SLVec3D;

This structure is used for representing coordinates in Cartesian form, see section 4.4.2.1.

Field Description

x x-axis coordinate.

y y-axis coordinate.

z z-axis coordinate.

9.1.23 SLVibraDescriptor
typedef struct SLVibraDescriptor_ {
 SLboolean supportsFrequency;
 SLboolean supportsIntensity;
 SLmilliHertz minFrequency;
 SLmilliHertz maxFrequency;
} SLVibraDescriptor;

SLVibraDescriptor represents the capabilities of the Vibra I/O device.

Field Description

supportsFrequency Boolean indicating whether the Vibra I/O device supports setting the
frequency of vibration.

supportsIntensity Boolean indicating whether the Vibra I/O device supports setting the
intensity of vibration.

minFrequency Minimum frequency supported by the Vibra I/O device. Range is [1,
SL_MILLIHERTZ_MAX]. If supportsFrequency is set to
SL_BOOLEAN_FALSE, this will be set to 0.

maxFrequency Maximum frequency supported by the Vibra I/O device. Range is
[minFrequency, SL_MILLIHERTZ_MAX]. If supportsFrequency is set
to SL_BOOLEAN_FALSE, this will be set to 0.

434 OpenSL ES 1.0.1 Specification

9.2 Macros

9.2.1 SL_AUDIOCODEC
#define SL_AUDIOCODEC_PCM ((SLuint32) 0x00000001)
#define SL_AUDIOCODEC_MP3 ((SLuint32) 0x00000002)
#define SL_AUDIOCODEC_AMR ((SLuint32) 0x00000003)
#define SL_AUDIOCODEC_AMRWB ((SLuint32) 0x00000004)
#define SL_AUDIOCODEC_AMRWBPLUS ((SLuint32) 0x00000005)
#define SL_AUDIOCODEC_AAC ((SLuint32) 0x00000006)
#define SL_AUDIOCODEC_WMA ((SLuint32) 0x00000007)
#define SL_AUDIOCODEC_REAL ((SLuint32) 0x00000008)
#define SL_AUDIOCODEC_VORBIS ((SLuint32) 0x00000009)

These macros are used for setting the audio encoding type.

Value Description

SL_AUDIOCODEC_PCM PCM audio data.

SL_AUDIOCODEC_MP3 MPEG Layer III encoder.

SL_AUDIOCODEC_AMR Adaptive Multi-Rate (AMR) speech encoder.

SL_AUDIOCODEC_AMRWB Adaptive Multi-Rate Wideband (AMR-WB) speech encoder.

SL_AUDIOCODEC_AMRWBPLUS Adaptive Multi-Rate Wideband Extended (AMR-WB+) speech
encoder.

SL_AUDIOCODEC_AAC MPEG4 Advanced Audio Coding.

SL_AUDIOCODEC_WMA Windows Media Audio.

SL_AUDIOCODEC_REAL Real Audio.

SL_AUDIOCODEC_VORBIS Vorbis Audio.

OpenSL ES 1.0.1 Specification 435

9.2.2 SL_AUDIOPROFILE and SL_AUDIOMODE

PCM Profiles and Modes

#define SL_AUDIOPROFILE_PCM ((SLuint32) 0x00000001)

The macros are used for defining the PCM audio profiles.

Value Description

SL_AUDIOPROFILE_PCM Default Profile for PCM encoded Audio

MP3 Profiles and Modes

#define SL_AUDIOPROFILE_MPEG1_L3 ((SLuint32) 0x00000001)
#define SL_AUDIOPROFILE_MPEG2_L3 ((SLuint32) 0x00000002)
#define SL_AUDIOPROFILE_MPEG25_L3 ((SLuint32) 0x00000003)

#define SL_AUDIOCHANMODE_MP3_MONO ((SLuint32) 0x00000001)
#define SL_AUDIOCHANMODE_MP3_STEREO ((SLuint32) 0x00000002)
#define SL_AUDIOCHANMODE_MP3_JOINTSTEREO ((SLuint32) 0x00000003)
#define SL_AUDIOCHANMODE_MP3_DUAL ((SLuint32) 0x00000004)

The macros are used for defining the MP3 audio profiles and modes.

Value Description

SL_AUDIOPROFILE_MPEG1_L2 MPEG-1 Layer III.

SL_AUDIOPROFILE_MPEG2_L3 MPEG-2 Layer III.

SL_AUDIOPROFILE_MPEG25_L3 MPEG-2.5 Layer III.

SL_AUDIOCHANMODE_MP3_MONO MP3 Mono mode.

SL_AUDIOCHANMODE_MP3_STEREO MP3 Stereo Mode.

SL_AUDIOCHANMODE_MP3_JOINTSTEREO MP3 Joint Stereo mode.

SL_AUDIOCHANMODE_MP3_DUAL MP3 Dual Stereo mode.

436 OpenSL ES 1.0.1 Specification

AMR Profiles and Modes

#define SL_AUDIOPROFILE_AMR ((SLuint32) 0x00000001)

#define SL_AUDIOSTREAMFORMAT_CONFORMANCE ((SLuint32) 0x00000001)
#define SL_AUDIOSTREAMFORMAT_IF1 ((SLuint32) 0x00000002)
#define SL_AUDIOSTREAMFORMAT_IF2 ((SLuint32) 0x00000003)
#define SL_AUDIOSTREAMFORMAT_FSF ((SLuint32) 0x00000004)
#define SL_AUDIOSTREAMFORMAT_RTPPAYLOAD ((SLuint32) 0x00000005)
#define SL_AUDIOSTREAMFORMAT_ITU ((SLuint32) 0x00000006)

The macros are used for defining the AMR audio profiles and modes.

Value Description

SL_AUDIOPROFILE_AMR Adaptive Multi-Rate audio codec.

SL_AUDIOSTREAMFORMAT_CONFORMANCE Standard test-sequence format.

SL_AUDIOSTREAMFORMAT_IF1 Interface format 1.

SL_AUDIOSTREAMFORMAT_IF2 Interface format 2.

SL_AUDIOSTREAMFORMAT_FSF File Storage format.

SL_AUDIOSTREAMFORMAT_RTPPAYLOAD RTP payload format.

SL_AUDIOSTREAMFORMAT_ITU ITU frame format.

AMR-WB Profiles and Modes

#define SL_AUDIOPROFILE_AMRWB ((SLuint32) 0x00000001)

The macros are used for defining the AMR-WB audio profiles.

Value Description

SL_AUDIOPROFILE_AMRWB Adaptive Multi-Rate - Wideband.

AMR-WB+ Profiles and Modes

#define SL_AUDIOPROFILE_AMRWBPLUS ((SLuint32) 0x00000001)

The macros are used for defining the AMR-WB+ audio profiles.

Value Description

SL_AUDIOPROFILE_AMRWBPLUS Extended Adaptive Multi-Rate – Wideband.

OpenSL ES 1.0.1 Specification 437

AAC Profiles and Modes

#define SL_AUDIOPROFILE_AAC_AAC ((SLuint32) 0x00000001)

#define SL_AUDIOMODE_AAC_MAIN ((SLuint32) 0x00000001)
#define SL_AUDIOMODE_AAC_LC ((SLuint32) 0x00000002)
#define SL_AUDIOMODE_AAC_SSR ((SLuint32) 0x00000003)
#define SL_AUDIOMODE_AAC_LTP ((SLuint32) 0x00000004)
#define SL_AUDIOMODE_AAC_HE ((SLuint32) 0x00000005)
#define SL_AUDIOMODE_AAC_SCALABLE ((SLuint32) 0x00000006)
#define SL_AUDIOMODE_AAC_ERLC ((SLuint32) 0x00000007)
#define SL_AUDIOMODE_AAC_LD ((SLuint32) 0x00000008)
#define SL_AUDIOMODE_AAC_HE_PS ((SLuint32) 0x00000009)
#define SL_AUDIOMODE_AAC_HE_MPS ((SLuint32) 0x0000000A)

#define SL_AUDIOSTREAMFORMAT_MP2ADTS ((SLuint32) 0x00000001)
#define SL_AUDIOSTREAMFORMAT_MP4ADTS ((SLuint32) 0x00000002)
#define SL_AUDIOSTREAMFORMAT_MP4LOAS ((SLuint32) 0x00000003)
#define SL_AUDIOSTREAMFORMAT_MP4LATM ((SLuint32) 0x00000004)
#define SL_AUDIOSTREAMFORMAT_ADIF ((SLuint32) 0x00000005)
#define SL_AUDIOSTREAMFORMAT_MP4FF ((SLuint32) 0x00000006)
#define SL_AUDIOSTREAMFORMAT_RAW ((SLuint32) 0x00000007)

The macros are used for defining the AAC audio profiles and modes.

Value Description

SL_AUDIOPROFILE_AAC_AAC Advanced Audio Coding.

SL_AUDIOMODE_AAC_MAIN AAC Main Profile.

SL_AUDIOMODE_AAC_LC AAC Low Complexity.

SL_AUDIOMODE_AAC_SSR AAC Scalable Sample Rate.

SL_AUDIOMODE_AAC_LTP ACC Long Term Prediction.

SL_AUDIOMODE_AAC_HE AAC High Efficiency.

SL_AUDIOMODE_AAC_SCALABLE AAC Scalable.

SL_AUDIOMODE_AAC_ERLC AAC Error Resilient LC.

SL_AUDIOMODE_AAC_LD AAC Low Delay.

SL_AUDIOMODE_AAC_HE_PS AAC High Efficiency with Parametric Stereo Coding.

SL_AUDIOMODE_AAC_HE_MPS AAC High Efficiency with MPEG Surround Coding.

SL_AUDIOSTREAMFORMAT_MP2ADTS MPEG-2 AAC Audio Data Transport Stream format.

SL_AUDIOSTREAMFORMAT_MP4ADTS MPEG-4 AAC Audio Data Transport Stream format.

SL_AUDIOSTREAMFORMAT_MP4LOAS Low Overhead Audio Stream format.

SL_AUDIOSTREAMFORMAT_MP4LATM Low Overhead Audio Transport Multiplex.

438 OpenSL ES 1.0.1 Specification

Value Description

SL_AUDIOSTREAMFORMAT_ADIF Audio Data Interchange Format.

SL_AUDIOSTREAMFORMAT_MP4FF AAC inside MPEG-4/ISO File Format.

SL_AUDIOSTREAMFORMAT_RAW AAC Raw Format (access units).

Windows Media Audio Profiles and Modes
#define SL_AUDIOPROFILE_WMA7 ((SLuint32) 0x00000001)
#define SL_AUDIOPROFILE_WMA8 ((SLuint32) 0x00000002)
#define SL_AUDIOPROFILE_WMA9 ((SLuint32) 0x00000003)
#define SL_AUDIOPROFILE_WMA10 ((SLuint32) 0x00000004)

#define SL_AUDIOMODE_WMA_LEVEL1 ((SLuint32) 0x00000001)
#define SL_AUDIOMODE_WMA_LEVEL2 ((SLuint32) 0x00000002)
#define SL_AUDIOMODE_WMA_LEVEL3 ((SLuint32) 0x00000003)
#define SL_AUDIOMODE_WMA_LEVEL4 ((SLuint32) 0x00000004)
#define SL_AUDIOMODE_WMAPRO_LEVELM0 ((SLuint32) 0x00000005)
#define SL_AUDIOMODE_WMAPRO_LEVELM1 ((SLuint32) 0x00000006)
#define SL_AUDIOMODE_WMAPRO_LEVELM2 ((SLuint32) 0x00000007)
#define SL_AUDIOMODE_WMAPRO_LEVELM3 ((SLuint32) 0x00000008)

The macros are used for defining the WMA audio profiles and modes.

Value Description

SL_AUDIOPROFILE_WMA7 Windows Media Audio Encoder V7.

SL_AUDIOPROFILE_WMA8 Windows Media Audio Encoder V8.

SL_AUDIOPROFILE_WMA9 Windows Media Audio Encoder V9.

SL_AUDIOPROFILE_WMA10 Windows Media Audio Encoder V10.

SL_AUDIOMODE_WMA_LEVEL1 WMA Level 1.

SL_AUDIOMODE_WMA_LEVEL2 WMA Level 2.

SL_AUDIOMODE_WMA_LEVEL3 WMA Level 3.

SL_AUDIOMODE_WMA_LEVEL3 WMA Level 4.

SL_AUDIOMODE_WMAPRO_LEVELM0 WMA Pro Level M0.

SL_AUDIOMODE_WMAPRO_LEVELM1 WMA Pro Level M1.

SL_AUDIOMODE_WMAPRO_LEVELM2 WMA Pro Level M2.

SL_AUDIOMODE_WMAPRO_LEVELM3 WMA Pro Level M3.

OpenSL ES 1.0.1 Specification 439

RealAudio Profiles and Levels
#define SL_AUDIOPROFILE_REALAUDIO ((SLuint32) 0x00000001)

#define SL_AUDIOMODE_REALAUDIO_G2 ((SLuint32) 0x00000001)
#define SL_AUDIOMODE_REALAUDIO_8 ((SLuint32) 0x00000002)
#define SL_AUDIOMODE_REALAUDIO_10 ((SLuint32) 0x00000003)
#define SL_AUDIOMODE_REALAUDIO_SURROUND ((SLuint32) 0x00000004)

The macros are used for defining the Real Audio audio profiles and modes.

Value Description

SL_AUDIOPROFILE_REALAUDIO RealAudio Encoder.

SL_AUDIOMODE_REALAUDIO_G2 RealAudio G2.

SL_AUDIOMODE_REALAUDIO_8 RealAudio 8.

SL_AUDIOMODE_REALAUDIO_10 RealAudio 10.

SL_AUDIOMODE_REALAUDIO_SURROUND RealAudio Surround.

440 OpenSL ES 1.0.1 Specification

Vorbis Profiles and Levels
#define SL_AUDIOPROFILE_VORBIS ((SLuint32) 0x00000001)
#define SL_AUDIOMODE_VORBIS ((SLuint32) 0x00000001)

The macros are used for defining the Vorbis audio profiles and modes.

Value Description

SL_AUDIOPROFILE_VORBIS Vorbis Encoder.

SL_AUDIOMODE_VORBIS Default mode for Vorbis encoded audio.

9.2.3 SLAPIENTRY
#define SLAPIENTRY <system dependent>

A system-dependent API entry point macro. This may be used to indicate the required
calling conventions for global functions.

9.2.4 SL_BOOLEAN
#define SL_BOOLEAN_FALSE ((SLboolean) 0x00000000)
#define SL_BOOLEAN_TRUE ((SLboolean) 0x00000001)

Canonical values for boolean type.

Value Description

SL_BOOLEAN_FALSE False value for SLboolean.

SL_BOOLEAN_TRUE True value for SLboolean.

9.2.5 SL_BYTEORDER
#define SL_BYTEORDER_BIGENDIAN ((SLuint32) 0x00000001)
#define SL_BYTEORDER_LITTLEENDIAN ((SLuint32) 0x00000002)

SL_BYTEORDER represents the byte order of a block of 16- or 32-bit data.

Value Description

SL_BYTEORDER_BIGENDIAN Big-endian data

SL_BYTEORDER_LITTLEENDIAN Little-endian data

OpenSL ES 1.0.1 Specification 441

9.2.6 SL_CHARACTERENCODING
#define SL_CHARACTERENCODING_UNKNOWN ((SLuint32) 0x00000000)
#define SL_CHARACTERENCODING_BINARY ((SLuint32) 0x00000001)
#define SL_CHARACTERENCODING_ASCII ((SLuint32) 0x00000002)
#define SL_CHARACTERENCODING_BIG5 ((SLuint32) 0x00000003)
#define SL_CHARACTERENCODING_CODEPAGE1252 ((SLuint32) 0x00000004)
#define SL_CHARACTERENCODING_GB2312 ((SLuint32) 0x00000005)
#define SL_CHARACTERENCODING_HZGB2312 ((SLuint32) 0x00000006)
#define SL_CHARACTERENCODING_GB12345 ((SLuint32) 0x00000007)
#define SL_CHARACTERENCODING_GB18030 ((SLuint32) 0x00000008)
#define SL_CHARACTERENCODING_GBK ((SLuint32) 0x00000009)
#define SL_CHARACTERENCODING_IMAPUTF7 ((SLuint32) 0x0000000A)
#define SL_CHARACTERENCODING_ISO2022JP ((SLuint32) 0x0000000B)
#define SL_CHARACTERENCODING_ISO2022JP1 ((SLuint32) 0x0000000B)
#define SL_CHARACTERENCODING_ISO88591 ((SLuint32) 0x0000000C)
#define SL_CHARACTERENCODING_ISO885910 ((SLuint32) 0x0000000D)
#define SL_CHARACTERENCODING_ISO885913 ((SLuint32) 0x0000000E)
#define SL_CHARACTERENCODING_ISO885914 ((SLuint32) 0x0000000F)
#define SL_CHARACTERENCODING_ISO885915 ((SLuint32) 0x00000010)
#define SL_CHARACTERENCODING_ISO88592 ((SLuint32) 0x00000011)
#define SL_CHARACTERENCODING_ISO88593 ((SLuint32) 0x00000012)
#define SL_CHARACTERENCODING_ISO88594 ((SLuint32) 0x00000013)
#define SL_CHARACTERENCODING_ISO88595 ((SLuint32) 0x00000014)
#define SL_CHARACTERENCODING_ISO88596 ((SLuint32) 0x00000015)
#define SL_CHARACTERENCODING_ISO88597 ((SLuint32) 0x00000016)
#define SL_CHARACTERENCODING_ISO88598 ((SLuint32) 0x00000017)
#define SL_CHARACTERENCODING_ISO88599 ((SLuint32) 0x00000018)
#define SL_CHARACTERENCODING_ISOEUCJP ((SLuint32) 0x00000019)
#define SL_CHARACTERENCODING_SHIFTJIS ((SLuint32) 0x0000001A)
#define SL_CHARACTERENCODING_SMS7BIT ((SLuint32) 0x0000001B)
#define SL_CHARACTERENCODING_UTF7 ((SLuint32) 0x0000001C)
#define SL_CHARACTERENCODING_UTF8 ((SLuint32) 0x0000001D)
#define SL_CHARACTERENCODING_JAVACONFORMANTUTF8 ((SLuint32) 0x0000001E)
#define SL_CHARACTERENCODING_UTF16BE ((SLuint32) 0x0000001F)
#define SL_CHARACTERENCODING_UTF16LE ((SLuint32) 0x00000020)

SL_CHARACTERENCODING represents a character encoding for metadata keys and values.

442 OpenSL ES 1.0.1 Specification

Value Description

SL_CHARACTERENCODING_UNKNOWN Unknown character encoding.

SL_CHARACTERENCODING_BINARY Binary data.

SL_CHARACTERENCODING_ASCII ASCII.

SL_CHARACTERENCODING_BIG5 Big 5.

SL_CHARACTERENCODING_CODEPAGE1252 Microsoft Code Page 1252.

SL_CHARACTERENCODING_GB2312 GB 2312 (Chinese).

SL_CHARACTERENCODING_HZGB2312 HZ GB 2312 (Chinese).

SL_CHARACTERENCODING_GB12345 GB 12345 (Chinese).

SL_CHARACTERENCODING_GB18030 GB 18030 (Chinese).

SL_CHARACTERENCODING_GBK GBK (CP936) (Chinese).

SL_CHARACTERENCODING_ISO2022JP ISO-2022-JP (Japanese).

SL_CHARACTERENCODING_ISO2022JP1 ISO-2022-JP-1 (Japanese).

SL_CHARACTERENCODING_ISO88591 ISO-8859-1 (Latin-1).

SL_CHARACTERENCODING_ISO88592 ISO-8859-1 (Latin-2).

SL_CHARACTERENCODING_ISO88593 ISO-8859-1 (Latin-3).

SL_CHARACTERENCODING_ISO88594 ISO-8859-1 (Latin-4).

SL_CHARACTERENCODING_ISO88595 ISO-8859-1 (Latin/Cyrillic).

SL_CHARACTERENCODING_ISO88596 ISO-8859-1 (Latin/Arabic).

SL_CHARACTERENCODING_ISO88597 ISO-8859-1 (Latin/Greek).

SL_CHARACTERENCODING_ISO88598 ISO-8859-1 (Latin/Hebrew).

SL_CHARACTERENCODING_ISO88599 ISO-8859-1 (Latin-5).

SL_CHARACTERENCODING_ISO885910 ISO-8859-1 (Latin-6).

SL_CHARACTERENCODING_ISO885913 ISO-8859-1 (Latin-7).

SL_CHARACTERENCODING_ISO885914 ISO-8859-1 (Latin-8).

SL_CHARACTERENCODING_ISO885915 ISO-8859-1 (Latin-9).

SL_CHARACTERENCODING_ISOEUCJP ISO EUC-JP.

SL_CHARACTERENCODING_SHIFTJIS Shift-JIS (Japanese).

SL_CHARACTERENCODING_SMS7BIT SMS 7-bit.

SL_CHARACTERENCODING_UTF7 Unicode UTF-7.

SL_CHARACTERENCODING_IMAPUTF7 Unicode UTF-7 per IETF RFC 2060.

SL_CHARACTERENCODING_UTF8 Unicode UTF-8.

SL_CHARACTERENCODING_JAVACONFORMANTUTF8 Unicode UTF-8 (Java Conformant).

OpenSL ES 1.0.1 Specification 443

Value Description

SL_CHARACTERENCODING_UTF16BE Unicode UTF-16 (Big Endian).

SL_CHARACTERENCODING_UTF16LE Unicode UTF-16 (Little Endian).

9.2.7 SL_CONTAINERTYPE
#define SL_CONTAINERTYPE_UNSPECIFIED ((SLuint32) 0x00000001)
#define SL_CONTAINERTYPE_RAW ((SLuint32) 0x00000002)
#define SL_CONTAINERTYPE_ASF ((SLuint32) 0x00000003)
#define SL_CONTAINERTYPE_AVI ((SLuint32) 0x00000004)
#define SL_CONTAINERTYPE_BMP ((SLuint32) 0x00000005)
#define SL_CONTAINERTYPE_JPG ((SLuint32) 0x00000006)
#define SL_CONTAINERTYPE_JPG2000 ((SLuint32) 0x00000007)
#define SL_CONTAINERTYPE_M4A ((SLuint32) 0x00000008)
#define SL_CONTAINERTYPE_MP3 ((SLuint32) 0x00000009)
#define SL_CONTAINERTYPE_MP4 ((SLuint32) 0x0000000A)
#define SL_CONTAINERTYPE_MPEG_ES ((SLuint32) 0x0000000B)
#define SL_CONTAINERTYPE_MPEG_PS ((SLuint32) 0x0000000C)
#define SL_CONTAINERTYPE_MPEG_TS ((SLuint32) 0x0000000D)
#define SL_CONTAINERTYPE_QT ((SLuint32) 0x0000000E)
#define SL_CONTAINERTYPE_WAV ((SLuint32) 0x0000000F)
#define SL_CONTAINERTYPE_XMF_0 ((SLuint32) 0x00000010)
#define SL_CONTAINERTYPE_XMF_1 ((SLuint32) 0x00000011)
#define SL_CONTAINERTYPE_XMF_2 ((SLuint32) 0x00000012)
#define SL_CONTAINERTYPE_XMF_3 ((SLuint32) 0x00000013)
#define SL_CONTAINERTYPE_XMF_GENERIC ((SLuint32) 0x00000014)
#define SL_CONTAINERTYPE_AMR ((SLuint32) 0x00000015)
#define SL_CONTAINERTYPE_AAC ((SLuint32) 0x00000016)
#define SL_CONTAINERTYPE_3GPP ((SLuint32) 0x00000017)
#define SL_CONTAINERTYPE_3GA ((SLuint32) 0x00000018)
#define SL_CONTAINERTYPE_RM ((SLuint32) 0x00000019)
#define SL_CONTAINERTYPE_DMF ((SLuint32) 0x0000001A)
#define SL_CONTAINERTYPE_SMF ((SLuint32) 0x0000001B)
#define SL_CONTAINERTYPE_MOBILE_DLS ((SLuint32) 0x0000001C)
#define SL_CONTAINERTYPE_OGG ((SLuint32) 0x0000001D)

SL_CONTAINERTYPE represents the container type of the data source or sink.

Value Description

SL_CONTAINERTYPE_UNSPECIFIED The container type is not specified.

SL_CONTAINERTYPE_RAW There is no container. Content is in raw form.

SL_CONTAINERTYPE_ASF The container type is ASF.

SL_CONTAINERTYPE_AVI The container type is AVI.

SL_CONTAINERTYPE_BMP The container type is BMP.

444 OpenSL ES 1.0.1 Specification

Value Description

SL_CONTAINERTYPE_JPG The container type is JPEG.

SL_CONTAINERTYPE_JPG2000 The container type is JPEG 2000.

SL_CONTAINERTYPE_M4A The container type is M4A.

SL_CONTAINERTYPE_MP3 The container type is MP3.

SL_CONTAINERTYPE_MP4 The container type is MP4.

SL_CONTAINERTYPE_MPEG_ES The container type is MPEG Elementary
Stream.

SL_CONTAINERTYPE_MPEG_PS The container type is MPEG Program Stream.

SL_CONTAINERTYPE_MPEG_TS The container type is MPEG Transport Stream.

SL_CONTAINERTYPE_QT The container type is QuickTime.

SL_CONTAINERTYPE_WAV The container type is WAV.

SL_CONTAINERTYPE_XMF_0 The container type is XMF Type 0.

SL_CONTAINERTYPE_XMF_1 The container type is XMF Type 1.

SL_CONTAINERTYPE_XMF_2 The container type is Mobile XMF (XMF Type
2).

SL_CONTAINERTYPE_XMF_3 The container type is Mobile XMF with Audio
Clips (XMF Type 3).

SL_CONTAINERTYPE_XMF_GENERIC The container type is the XMF Meta File
Format (no particular XMF File Type)

SL_CONTAINERTYPE_AMR This container type is the file storage format
variant of AMR (the magic number in the
header can be used to disambiguate between
AMR-NB and AMR-WB).

SL_CONTAINERTYPE_AAC This container type is for ADIF and ADTS
variants of AAC. This refers to AAC in .aac
files.

SL_CONTAINERTYPE_3GPP The container type is 3GPP.

SL_CONTAINERTYPE_3GA This container type is an audio-only variant of
the 3GPP format, mainly used in 3G phones.

SL_CONTAINERTYPE_RM This container type is Real Media.

SL_CONTAINERTYPE_DMF This container type is Divx media format.

SL_CONTAINERTYPE_SMF This container type is a standard MIDI file
(SMF) [SP-MIDI].

SL_CONTAINERTYPE_MOBILE_DLS This container type is a Mobile DLS file
[mDLS].

SL_CONTAINERTYPE_OGG This container type is OGG.

OpenSL ES 1.0.1 Specification 445

9.2.8 SL_DATAFORMAT
#define SL_DATAFORMAT_MIME ((SLuint32) 0x00000001)
#define SL_DATAFORMAT_PCM ((SLuint32) 0x00000002)
#define SL_DATAFORMAT_RESERVED3 ((SLuint32) 0x00000003)

These values represent the possible data locators:

Value Description

SL_DATAFORMAT_MIME Data format is the specified as a MIME type.

SL_DATAFORMAT_PCM Data format is PCM.

SL_DATAFORMAT_RESERVED3 Reserved value.

9.2.9 SL_DATALOCATOR
#define SL_DATALOCATOR_URI ((SLuint32) 0x00000001)
#define SL_DATALOCATOR_ADDRESS ((SLuint32) 0x00000002)
#define SL_DATALOCATOR_IODEVICE ((SLuint32) 0x00000003)
#define SL_DATALOCATOR_OUTPUTMIX ((SLuint32) 0x00000004)
#define SL_DATALOCATOR_RESERVED5 ((SLuint32) 0x00000005)
#define SL_DATALOCATOR_BUFFERQUEUE ((SLuint32) 0x00000006)
#define SL_DATALOCATOR_MIDIBUFFERQUEUE ((SLuint32) 0x00000007)
#define SL_DATALOCATOR_RESERVED8 ((SLuint32) 0x00000008)

These values represent the possible data locators.

Value Description

SL_DATALOCATOR_URI Data resides at the specified URI.

SL_DATALOCATOR_ADDRESS Data is stored at the specified memory-mapped
address.

SL_DATALOCATOR_IODEVICE Data will be generated or consumed by the specified
IO device. Note: for audio output use the output mix.

SL_DATALOCATOR_OUTPUTMIX Data will be consumed by the specified audio output
mix.

SL_DATALOCATOR_RESERVED5 Reserved value.

SL_DATALOCATOR_BUFFERQUEUE Identifier for an SLDataLocator_BufferQueue.

SL_DATALOCATOR_MIDIBUFFERQUEUE Identifier for an SLDataLocator_MIDIBufferQueue.

SL_DATALOCATOR_RESERVED8 Reserved value.

446 OpenSL ES 1.0.1 Specification

9.2.10 SL_DEFAULTDEVICEID
#define SL_DEFAULTDEVICEID_AUDIOINPUT ((SLuint32) 0xFFFFFFFF)
#define SL_DEFAULTDEVICEID_AUDIOOUTPUT ((SLuint32) 0xFFFFFFFE)
#define SL_DEFAULTDEVICEID_LED ((SLuint32) 0xFFFFFFFD)
#define SL_DEFAULTDEVICEID_VIBRA ((SLuint32) 0xFFFFFFFC)
#define SL_DEFAULTDEVICEID_RESERVED1 ((SLuint32) 0xFFFFFFFB)

This macro may be used with any method that manipulates device IDs.

Value Description

SL_DEFAULTDEVICEID_AUDIOINPUT Identifier denoting the set of input devices that
the implementation receives audio from by
default.

SL_DEFAULTDEVICEID_AUDIOOUTPUT Identifier denoting the set of output devices that
the implementation sends audio to by default.

SL_DEFAULTDEVICEID_LED Identifier denoting default LED array device.

SL_DEFAULTDEVICEID_VIBRA Identifier denoting default vibra device.

SL_DEFAULTDEVICEID_RESERVED1 Reserved value.

9.2.11 SL_DEVICECONNECTION
#define SL_DEVCONNECTION_INTEGRATED ((SLint16) 0x0001)
#define SL_DEVCONNECTION_ATTACHED_WIRED ((SLint16) 0x0100)
#define SL_DEVCONNECTION_ATTACHED_WIRELESS ((SLint16) 0x0200)
#define SL_DEVCONNECTION_NETWORK ((SLint16) 0x0400)

These macros list the various types of I/O device connections possible. These connections
are mutually exclusive for a given I/O device.

Value Description

SL_DEVCONNECTION_INTEGRATED I/O device is integrated onto the system (that is,
for example, mobile phone and, music player).

SL_DEVCONNECTION_ATTACHED_WIRED I/O device is connected to the system via a wired
connection. Additional macros might be added if
more granularity is needed for each wired
connection (such as USB, proprietary).

SL_DEVCONNECTION_ATTACHED_WIRELE
SS

I/O device is connected to the system via a
wireless connection. Additional macros might be
added if more granularity is needed for each
wireless connection (such as Bluetooth).

OpenSL ES 1.0.1 Specification 447

Value Description

SL_DEVCONNECTION_NETWORK I/O device is connected to the system via some
kind of network connection (either wired or
wireless). This is different from the above
connections (such as Bluetooth headset or wired
accessory) in the sense that this connection could
be to a remote device that could be quite distant
geographically (unlike a Bluetooth headset or a
wired headset that are in close proximity to the
system). Also, a network connection implies going
through some kind of network routing
infrastructure that is not covered by the attached
macros above. A Bluetooth headset or a wired
headset represents a peer-to-peer connection,
whereas a network connection does not. Examples
of such network audio I/O devices include remote
content servers that feed audio input to the
system or a remote media renderer that plays out
audio from the system, transmitted to it across a
network.

9.2.12 SL_DEVICELOCATION
#define SL_DEVLOCATION_HANDSET ((SLuint16) 0x0001)
#define SL_DEVLOCATION_HEADSET ((SLuint16) 0x0002)
#define SL_DEVLOCATION_CARKIT ((SLuint16) 0x0003)
#define SL_DEVLOCATION_DOCK ((SLuint16) 0x0004)
#define SL_DEVLOCATION_REMOTE ((SLuint16) 0x0005)

These macros list the location of the I/O device.

Value Description

SL_DEVLOCATION_HANDSET I/O device is on the handset.

SL_DEVLOCATION_HEADSET I/O device is on a headset.

SL_DEVLOCATION_CARKIT I/O device is on a carkit.

SL_DEVLOCATION_DOCK I/O device is on a dock.

SL_DEVLOCATION_REMOTE I/O device is in a remote location, most likely connected via
some kind of a network.

Although it might seem like SL_DEVLOCATION_REMOTE is redundant since it is currently used
with only SL_DEVCONNECTION_NETWORK, it is needed since none of the other device location
macros fit a device whose connection type is SL_DEVCONNECTION_NETWORK.

448 OpenSL ES 1.0.1 Specification

9.2.13 SL_DEVICESCOPE
#define SL_DEVSCOPE_UNKNOWN ((SLuint16) 0x0001)
#define SL_DEVSCOPE_ENVIRONMENT ((SLuint16) 0x0002)
#define SL_DEVSCOPE_USER ((SLuint16) 0x0003)

These macros list the scope of the I/O device with respect to the end user. These macros
help the application to make routing decisions based on the type of content (such as
audio) being rendered. For example, telephony downlink will always default to a “user”
audio output device unless specifically changed by the user.

Value Description

SL_DEVSCOPE_UNKNOWN I/O device can have either a user scope or an environment
scope or an as-yet-undefined scope.

Good examples of audio I/O devices with such a scope would
be line-in and line-out jacks. It is difficult to tell what types of
devices will be plugged into these jacks. I/O devices
connected via a network connection also fall into this
category.

SL_DEVSCOPE_ENVIRONMENT I/O device allows environmental (public) input or playback of
content (such as audio). For example, an integrated
loudspeaker is an “environmental” audio output device, since
audio rendered to it can be heard by multiple people.
Similarly, a microphone that can accept audio from multiple
people is an “environmental” audio input device.

SL_DEVSCOPE_USER I/O device allows input from or playback of content (such as
audio) to a single user. For example, an earpiece speaker is a
single-user audio output device since audio rendered to it can
be heard only by one person. Similarly, the integrated
microphone on a mobile phone is a single-user input device –
it accepts input from just one person.

OpenSL ES 1.0.1 Specification 449

9.2.14 SL_DYNAMIC_ITF
#define SL_DYNAMIC_ITF_EVENT_RUNTIME_ERROR \
 ((SLuint32) 0x00000001)
#define SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION \
 ((SLuint32) 0x00000002)
#define SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST \
 ((SLuint32) 0x00000003)
#define SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANENTLY \
 ((SLuint32) 0x00000004)
#define SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE \
 ((SLuint32) 0x00000005)

These values are used for identifying events used for dynamic interface management.

Value Description

SL_DYNAMIC_ITF_EVENT_RUNTIME_ERROR Runtime error.

SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION An asynchronous operation has
terminated.

SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST Resources have been stolen from the
dynamically managed interface,
causing it to become suspended.

SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANE
NTLY

Resources have been stolen from the
dynamically managed interface,
causing it to become unrecoverable.

SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE Resources have become available,
which may enable the dynamically
managed interface to resume.

450 OpenSL ES 1.0.1 Specification

9.2.15 SL_ENGINEOPTION
#define SL_ENGINEOPTION_THREADSAFE ((SLuint32) 0x00000001)
#define SL_ENGINEOPTION_LOSSOFCONTROL ((SLuint32) 0x00000002)

Engine object creation options (see section 6.1).

Value Description

SL_ENGINEOPTION_THREADSAFE Thread safe engine creation option used with
SLEngineOption structure [see section 9.1.16]. If the
data field of the SLEngineOption structure is set to
SL_BOOLEAN_TRUE, the engine object is created in
thread-safe mode. Otherwise the engine object is
created a non-thread-safe mode [see section 4.1.1].

SL_ENGINEOPTION_LOSSOFCONTROL Global loss-of-control setting used with
SLEngineOption structure [see section 9.1.16]. If the
data field of the SLEngineOption structure is set to
SL_BOOLEAN_TRUE, the engine object allows loss-of-
control notifications to occur on interfaces. Otherwise,
none of the interfaces exhibits loss-of-control
behavior.

This flag defaults to SL_BOOLEAN_FALSE if it is not
explicitly turned on during engine creation.

This global setting is best suited for applications that
are interested in coarse-grained loss-of-control
functionality - either it is allowed for that instance of
the engine object or not.

See SLObjectItf for details on loss-of-control.

9.2.16 SL_EQUALIZER
#define SL_EQUALIZER_UNDEFINED ((SLuint16) 0xFFFF)

This value is used when equalizer setting is not defined.

Value Description

SL_EQUALIZER_UNDEFINED The setting is not defined.

OpenSL ES 1.0.1 Specification 451

9.2.17 SL_I3DL2 Environmental Reverb Presets
#define SL_I3DL2_ENVIRONMENT_PRESET_DEFAULT \
 { SL_MILLIBEL_MIN, 0, 1000, 500, SL_MILLIBEL_MIN, 20,
SL_MILLIBEL_MIN, 40, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_GENERIC \
 { -1000, -100, 1490, 830, -2602, 7, 200, 11, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PADDEDCELL \
 { -1000,-6000, 170, 100, -1204, 1, 207, 2, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_ROOM \
 { -1000, -454, 400, 830, -1646, 2, 53, 3, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_BATHROOM \
 { -1000,-1200, 1490, 540, -370, 7, 1030, 11, 1000, 600 }
#define SL_I3DL2_ENVIRONMENT_PRESET_LIVINGROOM \
 { -1000,-6000, 500, 100, -1376, 3, -1104, 4, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_STONEROOM \
 { -1000, -300, 2310, 640, -711, 12, 83, 17, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_AUDITORIUM \
 { -1000, -476, 4320, 590, -789, 20, -289, 30, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CONCERTHALL \
 { -1000, -500, 3920, 700, -1230, 20, -2, 29, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CAVE \
 { -1000, 0, 2910, 1300, -602, 15, -302, 22, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_ARENA \
 { -1000, -698, 7240, 330, -1166, 20, 16, 30, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_HANGAR \
 { -1000,-1000, 10050, 230, -602, 20, 198, 30, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CARPETEDHALLWAY \
 { -1000,-4000, 300, 100, -1831, 2, -1630, 30, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_HALLWAY \
 { -1000, -300, 1490, 590, -1219, 7, 441, 11, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_STONECORRIDOR \
 { -1000, -237, 2700, 790, -1214, 13, 395, 20, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_ALLEY \
 { -1000, -270, 1490, 860, -1204, 7, -4, 11, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_FOREST \
 { -1000,-3300, 1490, 540, -2560, 162, -613, 88, 790,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CITY \
 { -1000, -800, 1490, 670, -2273, 7, -2217, 11, 500,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_MOUNTAINS \
 { -1000,-2500, 1490, 210, -2780, 300, -2014, 100, 270,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_QUARRY \
 { -1000,-1000, 1490, 830, SL_MILLIBEL_MIN, 61, 500, 25, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PLAIN \
 { -1000,-2000, 1490, 500, -2466, 179, -2514, 100, 210,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PARKINGLOT \
 { -1000, 0, 1650, 1500, -1363, 8, -1153, 12, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_SEWERPIPE \
 { -1000,-1000, 2810, 140, 429, 14, 648, 21, 800, 600 }
#define SL_I3DL2_ENVIRONMENT_PRESET_UNDERWATER \
 { -1000,-4000, 1490, 100, -449, 7, 1700, 11, 1000,1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_SMALLROOM \
 { -1000,-600, 1100, 830, -400, 5, 500, 10, 1000, 1000 }

452 OpenSL ES 1.0.1 Specification

#define SL_I3DL2_ENVIRONMENT_PRESET_MEDIUMROOM \
 { -1000,-600, 1300, 830, -1000, 20, -200, 20, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_LARGEROOM \
 { -1000,-600, 1500, 830, -1600, 5, -1000, 40, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_MEDIUMHALL \
 { -1000,-600, 1800, 700, -1300, 15, -800, 30, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_LARGEHALL \
 { -1000,-600, 1800, 700, -2000, 30, -1400, 60, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PLATE \
 { -1000,-200, 1300, 900, 0, 2, 0, 10, 1000, 750 }

These macros are pre-defined sets of properties that are equivalent to those defined in the
I3DL2 [I3DL2] help headers. These can be used for filling in the
SLEnvironmentalReverbSettings structure [see section 9.1.17].

Value Description

SL_I3DL2_ENVIRONMENT_PRESET_DEFAULT Default environment, with no reverb.

SL_I3DL2_ENVIRONMENT_PRESET_GENERIC Generic environment.

SL_I3DL2_ENVIRONMENT_PRESET_PADDEDCELL Padded cell environment.

SL_I3DL2_ENVIRONMENT_PRESET_ROOM Room environment.

SL_I3DL2_ENVIRONMENT_PRESET_BATHROOM Bathroom environment.

SL_I3DL2_ENVIRONMENT_PRESET_LIVINGROOM Living room environment.

SL_I3DL2_ENVIRONMENT_PRESET_STONEROOM Stone room environment.

SL_I3DL2_ENVIRONMENT_PRESET_AUDITORIUM Auditorium environment.

SL_I3DL2_ENVIRONMENT_PRESET_CONCERTHALL Concert hall environment.

SL_I3DL2_ENVIRONMENT_PRESET_CAVE Cave environment.

SL_I3DL2_ENVIRONMENT_PRESET_ARENA Arena environment.

SL_I3DL2_ENVIRONMENT_PRESET_HANGAR Hangar environment.

SL_I3DL2_ENVIRONMENT_PRESET_CARPETEDHALLWAY Carpeted hallway environment.

SL_I3DL2_ENVIRONMENT_PRESET_HALLWAY Hallway environment.

SL_I3DL2_ENVIRONMENT_PRESET_STONECORRIDOR Stone corridor environment.

SL_I3DL2_ENVIRONMENT_PRESET_ALLEY Alley environment.

SL_I3DL2_ENVIRONMENT_PRESET_FOREST Forest environment.

SL_I3DL2_ENVIRONMENT_PRESET_CITY City environment.

SL_I3DL2_ENVIRONMENT_PRESET_MOUNTAINS Mountains environment.

SL_I3DL2_ENVIRONMENT_PRESET_QUARRY Quarry environment.

SL_I3DL2_ENVIRONMENT_PRESET_PLAIN Plain environment.

SL_I3DL2_ENVIRONMENT_PRESET_PARKINGLOT Parking lot environment.

OpenSL ES 1.0.1 Specification 453

Value Description

SL_I3DL2_ENVIRONMENT_PRESET_SEWERPIPE Sewer pipe environment.

SL_I3DL2_ENVIRONMENT_PRESET_UNDERWATER Underwater environment.

SL_I3DL2_ENVIRONMENT_PRESET_SMALLROOM Small room environment.

SL_I3DL2_ENVIRONMENT_PRESET_MEDIUMROOM Medium room environment.

SL_I3DL2_ENVIRONMENT_PRESET_LARGEROOM Large room environment.

SL_I3DL2_ENVIRONMENT_PRESET_MEDIUMHALL Medium hall environment.

SL_I3DL2_ENVIRONMENT_PRESET_LARGEHALL Large hall environment.

SL_I3DL2_ENVIRONMENT_PRESET_PLATE Plate environment.

9.2.18 SL_IODEVICE
#define SL_IODEVICE_AUDIOINPUT ((SLuint32) 0x00000001)
#define SL_IODEVICE_LEDARRAY ((SLuint32) 0x00000002)
#define SL_IODEVICE_VIBRA ((SLuint32) 0x00000003)
#define SL_IODEVICE_RESERVED4 ((SLuint32) 0x00000004)
#define SL_IODEVICE_RESERVED5 ((SLuint32) 0x00000005)

These macros are used when creating I/O device data sources and sinks.

Value Description

SL_IODEVICE_AUDIOINPUT Device for audio input such as microphone or line-in.

SL_IODEVICE_LEDARRAY Device for LED arrays.

SL_IODEVICE_VIBRA Device for vibrators.

SL_IODEVICE_RESERVED4 Reserved.

SL_IODEVICE_RESERVED5 Reserved.

9.2.19 SL_METADATA_FILTER
#define SL_METADATA_FILTER_KEY ((SLuint8) 0x01)
#define SL_METADATA_FILTER_LANG ((SLuint8) 0x02)
#define SL_METADATA_FILTER_ENCODING ((SLuint8) 0x04)

Bit-masks for metadata filtering criteria.

Value Description

SL_METADATA_FILTER_KEY Enable filtering by key.

SL_METADATA_FILTER_LANG Enable filtering by language / country code.

SL_METADATA_FILTER_ENCODING Enable filtering by value encoding.

454 OpenSL ES 1.0.1 Specification

9.2.20 SL_METADATATRAVERSALMODE
#define SL_METADATATRAVERSALMODE_ALL ((SLuint32) 0x00000001)
#define SL_METADATATRAVERSALMODE_NODE ((SLuint32) 0x00000002)

SL_METADATATRAVERSALMODE represents a method of traversing metadata within a file.

Value Description

SL_METADATATRAVERSALMODE_ALL Search the file linearly without considering its logical
organization.

SL_METADATATRAVERSALMODE_NODE Search by individual nodes, boxes, chunks, etc. within
a file. (This is the default mode, with the default
active node being the root node.)

9.2.21 SL_MIDIMESSAGETYPE
#define SL_MIDIMESSAGETYPE_NOTE_ON_OFF ((SLuint32) 0x00000001)
#define SL_MIDIMESSAGETYPE_POLY_PRESSURE ((SLuint32) 0x00000002)
#define SL_MIDIMESSAGETYPE_CONTROL_CHANGE ((SLuint32) 0x00000003)
#define SL_MIDIMESSAGETYPE_PROGRAM_CHANGE ((SLuint32) 0x00000004)
#define SL_MIDIMESSAGETYPE_CHANNEL_PRESSURE ((SLuint32) 0x00000005)
#define SL_MIDIMESSAGETYPE_PITCH_BEND ((SLuint32) 0x00000006)
#define SL_MIDIMESSAGETYPE_SYSTEM_MESSAGE ((SLuint32) 0x00000007)

SL_MIDIMESSAGETYPE is used for filtering MIDI messages

Value Description

SL_MIDIMESSAGETYPE_NOTE_ON_OFF Note On / Note Off messages (status bytes 8n
/ 9n)

SL_MIDIMESSAGETYPE_POLY_PRESSURE Polyphonic key pressure / Aftertouch messages
(status byte An)

SL_MIDIMESSAGETYPE_CONTROL_CHANGE Control change messages (status byte Bn)

SL_MIDIMESSAGETYPE_PROGRAM_CHANGE Program change messages (status byte Cn)

SL_MIDIMESSAGETYPE_CHANNEL_PRESSURE Channel pressure / Aftertouch messages
(status byte Dn)

SL_MIDIMESSAGETYPE_PITCH_BEND Pitch bend change messages (status byte En)

SL_MIDIMESSAGETYPE_SYSTEM_MESSAGE System messages, including System Exclusive,
System Common, and System Real Time
(status byte Fn)

OpenSL ES 1.0.1 Specification 455

9.2.22 SL_MILLIBEL
#define SL_MILLIBEL_MAX ((SLmillibel) 0x7FFF)
#define SL_MILLIBEL_MIN ((SLmillibel) (-SL_MILLIBEL_MAX-1))

Limit values for millibel units.

Value Description

SL_MILLIBEL_MAX Maximum volume level.

SL_MILLIBEL_MIN Minimum volume level. This volume may be treated as silence in some
implementations.

9.2.23 SL_MILLIHERTZ_MAX
#define SL_MILLIHERTZ_MAX ((SLmilliHertz) 0xFFFFFFFF)

Limit value for milliHertz unit.

Value Description

SL_MILLIHERTZ_MAX A macro for representing the maximum possible frequency.

9.2.24 SL_MILLIMETER_MAX
#define SL_MILLIMETER_MAX ((SLmillimeter) 0x7FFFFFFF)

Limit value for millimeter unit.

Value Description

SL_MILLIMETER_MAX A macro for representing the maximum possible positive distance.

9.2.25 SL_NODE_PARENT
#define SL_NODE_PARENT ((SLuint32) 0xFFFFFFFF)

SL_NODE_PARENT is used by SLMetadataTraversalItf::SetActiveNode to set the current
scope to the node’s parent.

Value Description

SL_NODE_PARENT Used for setting the active parent node.

456 OpenSL ES 1.0.1 Specification

9.2.26 SL_NODETYPE
#define SL_NODETYPE_UNSPECIFIED ((SLuint32) 0x00000001)
#define SL_NODETYPE_AUDIO ((SLuint32) 0x00000002)
#define SL_NODETYPE_VIDEO ((SLuint32) 0x00000003)
#define SL_NODETYPE_IMAGE ((SLuint32) 0x00000004)

SL_NODETYPE represents the type of a node.

Value Description

SL_NODETYPE_UNSPECIFIED Unspecified node type.

SL_NODETYPE_AUDIO Audio node.

SL_NODETYPE_VIDEO Video node.

SL_NODETYPE_IMAGE Image node.

OpenSL ES 1.0.1 Specification 457

9.2.27 SL_OBJECT_EVENT
#define SL_OBJECT_EVENT_RUNTIME_ERROR ((SLuint32) 0x00000001)
#define SL_OBJECT_EVENT_ASYNC_TERMINATION ((SLuint32) 0x00000002)
#define SL_OBJECT_EVENT_RESOURCES_LOST ((SLuint32) 0x00000003)
#define SL_OBJECT_EVENT_RESOURCES_AVAILABLE ((SLuint32) 0x00000004)
#define SL_OBJECT_EVENT_ITF_CONTROL_TAKEN ((SLuint32) 0x00000005)
#define SL_OBJECT_EVENT_ITF_CONTROL_RETURNED ((SLuint32) 0x00000006)
#define SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED ((SLuint32) 0x00000007)

The macros identify the various event notifications that an object may emit.

Value Description

SL_OBJECT_EVENT_RUNTIME_ERROR Runtime error.

SL_OBJECT_EVENT_ASYNC_TERMINATION An asynchronous operation has terminated.

SL_OBJECT_EVENT_RESOURCES_LOST Resources have been stolen from the object,
causing it to become unrealized or
suspended.

SL_OBJECT_EVENT_RESOURCES_AVAILABLE Resources have become available, which may
enable the object to recover.

SL_OBJECT_EVENT_ITF_CONTROL_TAKEN An interface has lost control.

This event cannot be followed by another
SL_OBJECT_EVENT_ITF_CONTROL_TAKEN event
(for the interface in question).

SL_OBJECT_EVENT_ITF_CONTROL_RETURNED Control was returned to an interface.

This event cannot be followed by another
SL_OBJECT_EVENT_ITF_CONTROL_RETURNED
event (for the interface in question).

SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED Some of the parameters of the interface in
question were changed by other entity. (If
the application wants to know the new
values, it should use getters.)

This event can only occur (for the interface in
question) between
SL_OBJECT_EVENT_ITF_CONTROL_TAKEN and
SL_OBJECT_EVENT_ITF_CONTROL_RETURNED
events.

458 OpenSL ES 1.0.1 Specification

9.2.28 SL_OBJECT_STATE
#define SL_OBJECT_STATE_UNREALIZED ((SLuint32) 0x00000001)
#define SL_OBJECT_STATE_REALIZED ((SLuint32) 0x00000002)
#define SL_OBJECT_STATE_SUSPENDED ((SLuint32) 0x00000003)

These macros are used to identify the object states.

Value Description

SL_OBJECT_STATE_UNREALIZED Unrealized state.

SL_OBJECT_STATE_REALIZED Realized state.

SL_OBJECT_STATE_SUSPENDED Suspended state.

9.2.29 SL_OBJECTID
#define SL_OBJECTID_ENGINE ((SLuint32) 0x00001001)
#define SL_OBJECTID_LEDDEVICE ((SLuint32) 0x00001002)
#define SL_OBJECTID_VIBRADEVICE ((SLuint32) 0x00001003)
#define SL_OBJECTID_AUDIOPLAYER ((SLuint32) 0x00001004)
#define SL_OBJECTID_AUDIORECORDER ((SLuint32) 0x00001005)
#define SL_OBJECTID_MIDIPLAYER ((SLuint32) 0x00001006)
#define SL_OBJECTID_LISTENER ((SLuint32) 0x00001007)
#define SL_OBJECTID_3DGROUP ((SLuint32) 0x00001008)
#define SL_OBJECTID_OUTPUTMIX ((SLuint32) 0x00001009)
#define SL_OBJECTID_METADATAEXTRACTOR ((SLuint32) 0x0000100A)

These macros are the object type identifiers use while querying for the supported
interfaces.

Value Description

SL_OBJECTID_ENGINE Engine Object ID.

SL_OBJECTID_LEDDEVICE LED Device Object ID.

SL_OBJECTID_VIBRADEVICE Vibra Device Object ID.

SL_OBJECTID_AUDIOPLAYER Audio Player Object ID.

SL_OBJECTID_MIDIPLAYER MIDI Player Object ID.

SL_OBJECTID_LISTENER Listener Object ID.

SL_OBJECTID_3DGROUP 3D Group Object ID.

SL_OBJECTID_OUTPUTMIX Output Mix Object ID.

SL_OBJECTID_METADATAEXTRACTOR Metadata Extractor Object ID.

OpenSL ES 1.0.1 Specification 459

9.2.30 SL_PCMSAMPLEFORMAT
#define SL_PCMSAMPLEFORMAT_FIXED_8 ((SLuint16) 0x0008)
#define SL_PCMSAMPLEFORMAT_FIXED_16 ((SLuint16) 0x0010)
#define SL_PCMSAMPLEFORMAT_FIXED_20 ((SLuint16) 0x0014)
#define SL_PCMSAMPLEFORMAT_FIXED_24 ((SLuint16) 0x0018)
#define SL_PCMSAMPLEFORMAT_FIXED_28 ((SLuint16) 0x001C)
#define SL_PCMSAMPLEFORMAT_FIXED_32 ((SLuint16) 0x0020)

These macros list the various sample formats that are possible on audio input and output
devices.

Value Description

SL_PCMSAMPLEFORMAT_FIXED_8 Fixed-point 8-bit samples in 8-bit container.

SL_PCMSAMPLEFORMAT_FIXED_16 Fixed-point 16-bit samples in 16 bit container.

SL_PCMSAMPLEFORMAT_FIXED_20 Fixed-point 20-bit samples in 32 bit container left-
justified.

SL_PCMSAMPLEFORMAT_FIXED_24 Fixed-point 24-bit samples in 32 bit container left-
justified.

SL_PCMSAMPLEFORMAT_FIXED_28 Fixed-point 28-bit samples in 32 bit container left-
justified.

SL_PCMSAMPLEFORMAT_FIXED_32 Fixed-point 32-bit samples in 32 bit container left-
justified.

9.2.31 SL_PLAYEVENT
#define SL_PLAYEVENT_HEADATEND ((SLuint32) 0x00000001)
#define SL_PLAYEVENT_HEADATMARKER ((SLuint32) 0x00000002)
#define SL_PLAYEVENT_HEADATNEWPOS ((SLuint32) 0x00000004)
#define SL_PLAYEVENT_HEADMOVING ((SLuint32) 0x00000008)
#define SL_PLAYEVENT_HEADSTALLED ((SLuint32) 0x00000010)

These values represent the possible play events.

Value Description

SL_PLAYEVENT_HEADATEND Playback head is at the end of the current content and the
player has paused.

SL_PLAYEVENT_HEADATMARKER Playback head is at the specified marker position.

SL_PLAYEVENT_HEADATNEWPOS Playback head is at a new position (period between
notifications is specified in by application).

SL_PLAYEVENT_HEADMOVING Playback head has begun to move.

SL_PLAYEVENT_HEADSTALLED Playback head has temporarily stopped moving.

460 OpenSL ES 1.0.1 Specification

9.2.32 SL_PLAYSTATE
#define SL_PLAYSTATE_STOPPED ((SLuint32) 0x00000001)
#define SL_PLAYSTATE_PAUSED ((SLuint32) 0x00000002)
#define SL_PLAYSTATE_PLAYING ((SLuint32) 0x00000003)

These values represent the playback state of an object

Value Description

SL_PLAYSTATE_STOPPED Player is stopped. The playback head is forced to the beginning
of the content and is not trying to move.

SL_PLAYSTATE_PAUSED Player is paused. The playback head may be anywhere within the
content but is not trying to move.

SL_PLAYSTATE_PLAYING Player is playing. The playback head may be anywhere within the
content and is trying to move.

9.2.33 SL_PREFETCHEVENT
#define SL_PREFETCHEVENT_STATUSCHANGE ((SLuint32) 0x00000001)
#define SL_PREFETCHEVENT_FILLLEVELCHANGE ((SLuint32) 0x00000002)

These values represent the possible prefetch related events.

Value Description

SL_PREFETCHEVENT_STATUSCHANGE Prefetch status has changed.

SL_PREFETCHEVENT_FILLLEVELCHANGE Prefetch fill level has changed.

9.2.34 SL_PREFETCHSTATUS
#define SL_PREFETCHSTATUS_UNDERFLOW ((SLuint32) 0x00000001)
#define SL_PREFETCHSTATUS_SUFFICIENTDATA ((SLuint32) 0x00000002)
#define SL_PREFETCHSTATUS_OVERFLOW ((SLuint32) 0x00000003)

These values represent the possible status of a player’s prefetching operation.

Value Description

SL_PREFETCHSTATUS_UNDERFLOW Playback is suffering due to data starvation.

SL_PREFETCHSTATUS_SUFFICIENTDATA Playback is not suffering due to data starvation or
spillover.

SL_PREFETCHSTATUS_OVERFLOW Playback is suffering due to data spillover.

OpenSL ES 1.0.1 Specification 461

9.2.35 SL_PRIORITY
#define SL_PRIORITY_LOWEST ((SLint32) (-0x7FFFFFFF-1))
#define SL_PRIORITY_VERYLOW ((SLint32) -0x60000000)
#define SL_PRIORITY_LOW ((SLint32) -0x40000000)
#define SL_PRIORITY_BELOWNORMAL ((SLint32) -0x20000000)
#define SL_PRIORITY_NORMAL ((SLint32) 0x00000000)
#define SL_PRIORITY_ABOVENORMAL ((SLint32) 0x20000000)
#define SL_PRIORITY_HIGH ((SLint32) 0x40000000)
#define SL_PRIORITY_VERYHIGH ((SLint32) 0x60000000)
#define SL_PRIORITY_HIGHEST ((SLint32) 0x7FFFFFFF)

Convenient macros representing various different priority levels, for use with the
SetPriority method.

Value Description

SL_PRIORITY_LOWEST The lowest specifiable priority.

SL_PRIORITY_VERYLOW Very low priority.

SL_PRIORITY_LOW Low priority.

SL_PRIORITY_BELOWNORMAL Below normal priority.

SL_PRIORITY_NORMAL Normal priority given to objects.

SL_PRIORITY_ABOVENORMAL Above normal priority.

SL_PRIORITY_HIGH High priority.

SL_PRIORITY_VERYHIGH Very high priority.

SL_PRIORITY_HIGHEST Highest specifiable priority.

9.2.36 SL_PROFILES
#define SL_PROFILES_PHONE ((SLuint16) 0x0001)
#define SL_PROFILES_MUSIC ((SLuint16) 0x0002)
#define SL_PROFILES_GAME ((SLuint16) 0x0004)

These macros list the 3 profiles of the OpenSL ES API.

Value Description

SL_PROFILES_PHONE Phone profile of OpenSL ES (see section 2.3 for a detailed
description of all three profiles)

SL_PROFILES_MUSIC Music profile of OpenSL ES.

SL_PROFILES_GAME Game profile of OpenSL ES.

462 OpenSL ES 1.0.1 Specification

9.2.37 SL_RATECONTROLMODE
#define SL_RATECONTROLMODE_CONSTANTBITRATE ((SLuint32) 0x00000001)
#define SL_RATECONTROLMODE_VARIABLEBITRATE ((SLuint32) 0x00000002)

These defines are used to set the rate control mode.

Value Description

SL_RATECONTROLMODE_CONSTANTBITRATE Constant bitrate mode.

SL_RATECONTROLMODE_VARIABLEBITRATE Variable bitrate mode.

9.2.38 SL_RATEPROP
#define SL_RATEPROP_RESERVED1 ((SLuint32) 0x00000001)
#define SL_RATEPROP_RESERVED2 ((SLuint32) 0x00000002)
#define SL_RATEPROP_SILENTAUDIO ((SLuint32) 0x00000100)
#define SL_RATEPROP_STAGGEREDAUDIO ((SLuint32) 0x00000200)
#define SL_RATEPROP_NOPITCHCORAUDIO ((SLuint32) 0x00000400)
#define SL_RATEPROP_PITCHCORAUDIO ((SLuint32) 0x00000800)

These values represent the rate-related properties of an object.

Value Description

SL_RATEPROP_RESERVED1 Reserved.

SL_RATEPROP_RESERVED2 Reserved.

SL_RATEPROP_SILENTAUDIO Silences audio output. This property accommodates
limitations of rewind and high speed fast-forward.

SL_RATEPROP_STAGGEREDAUDIO Plays small chunks of audio at 1x forward, skipping
segments of audio between chunks. The progression of
the playback head between chunks obeys the direction
and speed implied by the current rate. This property
accommodates limitations of rewind and high speed fast
forward.

SL_RATEPROP_NOPITCHCORAUDIO Plays audio at the current rate, but without pitch
correction.

SL_RATEPROP_PITCHCORAUDIO Plays audio at the current rate, but with pitch correction.

OpenSL ES 1.0.1 Specification 463

9.2.39 SL_RECORDEVENT
#define SL_RECORDEVENT_HEADATLIMIT ((SLuint32) 0x00000001)
#define SL_RECORDEVENT_HEADATMARKER ((SLuint32) 0x00000002)
#define SL_RECORDEVENT_HEADATNEWPOS ((SLuint32) 0x00000004)
#define SL_RECORDEVENT_HEADMOVING ((SLuint32) 0x00000008)
#define SL_RECORDEVENT_HEADSTALLED ((SLuint32) 0x00000010)
#define SL_RECORDEVENT_BUFFER_FULL ((SLuint32) 0x00000020)

These values represent the possible play events.

Value Description

SL_RECORDEVENT_HEADATLIMIT Recording head is at the specified duration limit and the
recorder has stopped.

SL_RECORDEVENT_HEADATMARKER Recording head is at the specified marker position.

SL_RECORDEVENT_HEADATNEWPOS Recording head is at a new position. (Period between
notifications is specified by application.)

SL_RECORDEVENT_HEADMOVING Recording head has begun to move.

SL_RECORDEVENT_HEADSTALLED Recording head has temporarily stopped moving.

SL_RECORDEVENT_BUFFER_FULL Recording has reached the end of the memory buffer
(i.e. SLDataLocator_Address).

When the recorder is unable to write any more data (for
example, when the memory buffer it is writing to is full)
the recorder transitions to the SL_RECORDSTATE_STOPPED
state.

This event will not be posted when recording to a file.

9.2.40 SL_RECORDSTATE
#define SL_RECORDSTATE_STOPPED ((SLuint32) 0x00000001)
#define SL_RECORDSTATE_PAUSED ((SLuint32) 0x00000002)
#define SL_RECORDSTATE_RECORDING ((SLuint32) 0x00000003)

These values represent the recording state of an object.

Value Description

SL_RECORDSTATE_STOPPED Recorder is stopped. The destination is closed

SL_RECORDSTATE_PAUSED Recorder is stopped. The destination is open but
not receiving captured content.

SL_RECORDSTATE_RECORDING Recorder is recording. The destination is open and
receiving captured content.

464 OpenSL ES 1.0.1 Specification

9.2.41 SL_REVERBPRESET
#define SL_REVERBPRESET_NONE ((Sluint16) 0x0000)
#define SL_REVERBPRESET_SMALLROOM ((SLuint16) 0x0001)
#define SL_REVERBPRESET_MEDIUMROOM ((SLuint16) 0x0002)
#define SL_REVERBPRESET_LARGEROOM ((SLuint16) 0x0003)
#define SL_REVERBPRESET_MEDIUMHALL ((Sluint16) 0x0004)
#define SL_REVERBPRESET_LARGEHALL ((SLuint16) 0x0005)
#define SL_REVERBPRESET_PLATE ((SLuint16) 0x0006)

These macros define the reverb presets supported by the SLPresetReverbItf interface.
These presets are based on the music presets in I3DL2 guidelines [I3DL2].

Value Description

SL_REVERBPRESET_NONE No reverb of reflections.

SL_REVERBPRESET_SMALLROOM Reverb preset representing a small room less than five
meters in length.

SL_REVERBPRESET_MEDIUMROOM Reverb preset representing a medium room with a length
of ten meters or less.

SL_REVERBPRESET_LARGEROOM Reverb preset representing a large-sized room suitable
for live performances.

SL_REVERBPRESET_MEDIUMHALL Reverb preset representing a medium-sized hall.

SL_REVERBPRESET_LARGEHALL Reverb preset representing a large-sized hall suitable for
a full orchestra.

SL_REVERBPRESET_PLATE Reverb preset representing a synthesis of the traditional
plate reverb.

9.2.42 SL_RESULT
#define SL_RESULT_SUCCESS ((SLuint32) 0x00000000)
#define SL_RESULT_PRECONDITIONS_VIOLATED ((SLuint32) 0x00000001)
#define SL_RESULT_PARAMETER_INVALID ((SLuint32) 0x00000002)
#define SL_RESULT_MEMORY_FAILURE ((SLuint32) 0x00000003)
#define SL_RESULT_RESOURCE_ERROR ((SLuint32) 0x00000004)
#define SL_RESULT_RESOURCE_LOST ((SLuint32) 0x00000005)
#define SL_RESULT_IO_ERROR ((SLuint32) 0x00000006)
#define SL_RESULT_BUFFER_INSUFFICIENT ((SLuint32) 0x00000007)
#define SL_RESULT_CONTENT_CORRUPTED ((SLuint32) 0x00000008)
#define SL_RESULT_CONTENT_UNSUPPORTED ((SLuint32) 0x00000009)
#define SL_RESULT_CONTENT_NOT_FOUND ((SLuint32) 0x0000000A)
#define SL_RESULT_PERMISSION_DENIED ((SLuint32) 0x0000000B)
#define SL_RESULT_FEATURE_UNSUPPORTED ((SLuint32) 0x0000000C)
#define SL_RESULT_INTERNAL_ERROR ((SLuint32) 0x0000000D)
#define SL_RESULT_UNKNOWN_ERROR ((SLuint32) 0x0000000E)
#define SL_RESULT_OPERATION_ABORTED ((SLuint32) 0x0000000F)
#define SL_RESULT_CONTROL_LOST ((SLuint32) 0x00000010)

OpenSL ES 1.0.1 Specification 465

The SL_RESULT values are described.

Value Description

SL_RESULT_SUCCESS Success.

SL_RESULT_PRECONDITIONS_VIOLATED Use of the method violates a pre-condition (not
including invalid parameters). The pre-conditions
are defined in the method specifications.

SL_RESULT_PARAMETER_INVALID An invalid parameter has been detected. In case of
parameters passed by pointer (such as the self-
parameters) – if the pointer is corrupt, an
implementation’s behavior is undefined. However,
it is recommended that implementations at least
check for NULL-pointers.

SL_RESULT_MEMORY_FAILURE The method was unable to allocate or release
memory.

SL_RESULT_RESOURCE_ERROR Operation failed due to a lack of resources (usually
a result of object realization).

SL_RESULT_RESOURCE_LOST Operation ignored, since object is in Unrealized or
Suspended state.

SL_RESULT_IO_ERROR Failure due to an I/O error (file or other I/O
device).

SL_RESULT_BUFFER_INSUFFICIENT One or more of the buffers passed to the method
is too small to service the request.

SL_RESULT_CONTENT_CORRUPTED Failure due to corrupted content (also applies for
malformed MIDI messages sent
programmatically).

SL_RESULT_CONTENT_UNSUPPORTED Failure due to an unsupported content format
(such as unsupported codec).

SL_RESULT_CONTENT_NOT_FOUND Failed to retrieve content (for example, file not
found).

SL_RESULT_PERMISSION_DENIED Failure due to violation of DRM, user permissions,
policies, etc.

SL_RESULT_FEATURE_UNSUPPORTED Failure due to an unsupported feature. This occurs
when trying to access unsupported extensions.

SL_RESULT_INTERNAL_ERROR Failure due to an (unrecoverable) internal error.

SL_RESULT_UNKNOWN_ERROR Catch-all error, including system errors. Should
never be returned when any of the above errors
apply.

SL_RESULT_OPERATION_ABORTED Operation was aborted as a result of a user
request.

466 OpenSL ES 1.0.1 Specification

Value Description

SL_RESULT_CONTROL_LOST Another entity is now controlling the interface and
it cannot be controlled by this application
currently. slObjectCallback can be used for
monitoring this behavior: this error code can only
occur between
SL_OBJECT_EVENT_ITF_CONTROL_TAKEN and
SL_OBJECT_EVENT_ITF_CONTROL_RETURNED events.

9.2.43 SL_ROLLOFFMODEL
#define SL_ROLLOFFMODEL_EXPONENTIAL ((SLuint32) 0x00000000)
#define SL_ROLLOFFMODEL_LINEAR ((SLuint32) 0x00000001)

These two macros define the two supported distance models: exponential and linear. The
exponential distance model most closely models real-life, with an exponential decay due to
distance from the listener. The linear distance model offers an alternative rolloff, in which
the rate of attenuation is linearly proportional to the distance from the listener.

Value Description

SL_ROLLOFFMODEL_EXPONENTIAL Exponential distance rolloff model.

SL_ROLLOFFMODEL_LINEAR Linear distance rolloff model.

9.2.44 SL_SAMPLINGRATE
#define SL_SAMPLINGRATE_8 ((SLuint32) 8000000)
#define SL_SAMPLINGRATE_11_025 ((SLuint32) 11025000)
#define SL_SAMPLINGRATE_12 ((SLuint32) 12000000)
#define SL_SAMPLINGRATE_16 ((SLuint32) 16000000)
#define SL_SAMPLINGRATE_22_05 ((SLuint32) 22050000)
#define SL_SAMPLINGRATE_24 ((SLuint32) 24000000)
#define SL_SAMPLINGRATE_32 ((SLuint32) 32000000)
#define SL_SAMPLINGRATE_44_1 ((SLuint32) 44100000)
#define SL_SAMPLINGRATE_48 ((SLuint32) 48000000)
#define SL_SAMPLINGRATE_64 ((SLuint32) 64000000)
#define SL_SAMPLINGRATE_88_2 ((SLuint32) 88200000)
#define SL_SAMPLINGRATE_96 ((SLuint32) 96000000)
#define SL_SAMPLINGRATE_192 ((SLuint32) 192000000)

These macros specify the commonly used sampling rates (in milliHertz) supported by most
audio I/O devices.

Value Description

SL_SAMPLINGRATE_8 8 kHz sampling rate.

SL_SAMPLINGRATE_11_025 11.025 kHz sampling rate.

SL_SAMPLINGRATE_12 12 kHz sampling rate.

OpenSL ES 1.0.1 Specification 467

Value Description

SL_SAMPLINGRATE_16 16 kHz sampling rate.

SL_SAMPLINGRATE_22_05 22.05 kHz sampling rate.

SL_SAMPLINGRATE_24 24 kHz sampling rate.

SL_SAMPLINGRATE_32 32 kHz sampling rate.

SL_SAMPLINGRATE_44_1 44.1 kHz sampling rate.

SL_SAMPLINGRATE_48 48 kHz sampling rate.

SL_SAMPLINGRATE_64 64 kHz sampling rate.

SL_SAMPLINGRATE_88_2 88.2 kHz sampling rate.

SL_SAMPLINGRATE_96 96 kHz sampling rate.

SL_SAMPLINGRATE_192 192 kHz sampling rate.

9.2.45 SL_SEEKMODE
#define SL_SEEKMODE_FAST ((SLuint32) 0x0001)
#define SL_SEEKMODE_ACCURATE ((SLuint32) 0x0002)

These values represent seek modes.

The nature of encoded content and of the API implementation may imply tradeoffs
between the accuracy and speed of a seek operation. Seek modes afford the application a
means to specify which characteristic, accuracy or speed, should be preferred.

Value Description

SL_SEEKMODE_FAST Prefer the speed of a seek over the accuracy of
a seek. Upon a SetPosition() call, the
implementation minimizes latency potentially at
the expense of accuracy; effective playback
head position may vary slightly from the
requested position

SL_SEEKMODE_ACCURATE Prefer the accuracy of a seek over the speed of
a seek. Upon a SetPosition() call, the
implementation minimizes the distance between
the effective playback head position and the
requested position, potentially at the price of
higher latency.

468 OpenSL ES 1.0.1 Specification

9.2.46 SL_SPEAKER
#define SL_SPEAKER_FRONT_LEFT ((SLuint32) 0x00000001)
#define SL_SPEAKER_FRONT_RIGHT ((SLuint32) 0x00000002)
#define SL_SPEAKER_FRONT_CENTER ((SLuint32) 0x00000004)
#define SL_SPEAKER_LOW_FREQUENCY ((SLuint32) 0x00000008)
#define SL_SPEAKER_BACK_LEFT ((SLuint32) 0x00000010)
#define SL_SPEAKER_BACK_RIGHT ((SLuint32) 0x00000020)
#define SL_SPEAKER_FRONT_LEFT_OF_CENTER ((SLuint32) 0x00000040)
#define SL_SPEAKER_FRONT_RIGHT_OF_CENTER ((SLuint32) 0x00000080)
#define SL_SPEAKER_BACK_CENTER ((SLuint32) 0x00000100)
#define SL_SPEAKER_SIDE_LEFT ((SLuint32) 0x00000200)
#define SL_SPEAKER_SIDE_RIGHT ((SLuint32) 0x00000400)
#define SL_SPEAKER_TOP_CENTER ((SLuint32) 0x00000800)
#define SL_SPEAKER_TOP_FRONT_LEFT ((SLuint32) 0x00001000)
#define SL_SPEAKER_TOP_FRONT_CENTER ((SLuint32) 0x00002000)
#define SL_SPEAKER_TOP_FRONT_RIGHT ((SLuint32) 0x00004000)
#define SL_SPEAKER_TOP_BACK_LEFT ((SLuint32) 0x00008000)
#define SL_SPEAKER_TOP_BACK_CENTER ((SLuint32) 0x00010000)
#define SL_SPEAKER_TOP_BACK_RIGHT ((SLuint32) 0x00020000)

Speaker location macros used when specifying a channel mask.

Value Description

SL_SPEAKER_FRONT_LEFT Front left speaker channel.

SL_SPEAKER_FRONT_RIGHT Front right speaker channel.

SL_SPEAKER_FRONT_CENTER Front center speaker channel.

SL_SPEAKER_LOW_FREQUENCY Low frequency effects (LFE) speaker channel.

SL_SPEAKER_BACK_LEFT Rear left speaker channel.

SL_SPEAKER_BACK_RIGHT Rear right speaker channel.

SL_SPEAKER_FRONT_LEFT_OF_CENTER Front left-of-center speaker channel.

SL_SPEAKER_FRONT_RIGHT_OF_CENTER Front right-of-center speaker channel.

SL_SPEAKER_BACK_CENTER Rear center speaker channel.

SL_SPEAKER_SIDE_LEFT Side left speaker channel.

SL_SPEAKER_SIDE_RIGHT Side right speaker channel.

SL_SPEAKER_TOP_CENTER Top center speaker channel.

SL_SPEAKER_TOP_FRONT_LEFT Top front left speaker channel.

SL_SPEAKER_TOP_FRONT_CENTER Top front center speaker channel.

SL_SPEAKER_TOP_FRONT_RIGHT Top front right speaker channel.

SL_SPEAKER_TOP_BACK_LEFT Top rear left speaker channel.

SL_SPEAKER_TOP_BACK_CENTER Top rear center speaker channel.

OpenSL ES 1.0.1 Specification 469

Value Description

SL_SPEAKER_TOP_BACK_RIGHT Top rear right speaker channel.

9.2.47 SL_TIME
#define SL_TIME_UNKNOWN ((SLuint32) 0xFFFFFFFF)

These values are reserved for special designations of playback time that cannot be
represented using the normal numeric range.

Value Description

SL_TIME_UNKNOWN The time is unknown (e.g duration of content in a broadcast stream)

9.2.48 SL_VOICETYPE
#define SL_VOICETYPE_2D_AUDIO ((SLuint16) 0x0001)
#define SL_VOICETYPE_MIDI ((SLuint16) 0x0002)
#define SL_VOICETYPE_3D_AUDIO ((SLuint16) 0x0004)
#define SL_VOICETYPE_3D_MIDIOUTPUT ((SLuint16) 0x0008)

These macros list the types of “voices” supported by the system (and not the number of
voices of each type).

Value Description

SL_VOICETYPE_2D_AUDIO 2D voices (normal non-3D sampled audio
voices). Effectively refers to the mixer inputs
supported by the system.

SL_VOICETYPE_MIDI MIDI voices. Refers to MIDI polyphony.

SL_VOICETYPE_3D_AUDIO 3D voices (3D sampled audio).

SL_VOICETYPE_3D_MIDIOUTPUT MIDI synthesizer output that can be 3D
spatialized.

470 OpenSL ES 1.0.1 Specification

PART 3: APPENDICES

OpenSL ES 1.0.1 Specification 471

Appendix A: References
DLS2 Downloadable Sounds Level 2.1 Specification (RP-025/Amd1), MIDI

Manufacturers Association, Los Angeles, CA, USA, January 2001.

I3DL1 3D Audio Rendering and Evaluation Guidelines, 3D Working Group,
Interactive Audio Special Interest Group, MIDI Manufacturers Association,
Los Angeles, CA, June 9, 1998.

I3DL2 Interactive 3D Audio Rendering Guidelines, Level 2.0, 3D Working Group,
Interactive Audio Special Interest Group, MIDI Manufacturers Association,
Los Angeles, CA, September 20, 1999.

ISO31-11 Quantities and units – Part 11 : Mathematical signs and symbols for use in
the physical sciences and technology, ISO 31-11 :1992.

ISO639 Language codes, http://www.iso.org/iso/en/prods-
services/popstds/languagecodes.html, ISO 639.

ISO1000 SI units and recommendations for the use of their multiples and of certain
other units, ISO 1000:1992, 2003.

ISO3166 Country name codes, http://www.iso.org/iso/en/prods-
services/popstds/countrynamecodes.html, ISO 3166-1:2006

JSR135 JSR-135: Mobile Media API (http://www.jcp.org/en/jsr/detail?id=135).

mDLS Mobile DLS Specification, RP-041, MIDI Manufacturers Association, Los

Angeles, CA, USA, 2003.

MIDI The Complete MIDI 1.0 Detailed Specification, Document version 96.1,

MIDI Manufacturers Association, Los Angeles, CA, USA, 1996 (Contains

MIDI 1.0 Detailed Specification, MIDI Time Code, Standard MIDI Files

1.0, General MIDI System Level 1, MIDI Show Control 1.1, and MIDI

Machine Control)

MPEG1 ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3

“Coding of moving pictures and associated audio for digital storage media
at

up to about 1.5 Mbit/s, Part 3: Audio”, 1993

MPEG2 ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-3

“Information Technology - Generic Coding of Moving Pictures and

Associated Audio, Part 3: Audio”, 1998.

mXMF Mobile XMF Content Format Specification, RP-042. MIDI Manufacturers

Association, Los Angeles, CA, USA, September 2004.

OMXAL OpenMAX Application Layer Application Programming Interface
Specification, Version 1.0, The Khronos Group, 2009.

RFC3066 Tags for the Identifications of Languages,

http://www.midi.org/about-midi/dls/dls2spec.shtml
http://www.iasig.org/pubs/3dl1v1.pdf
http://www.iasig.org/pubs/3dl2v1a.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3653
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3653
http://www.iso.org/iso/en/prods-services/popstds/languagecodes.html
http://www.iso.org/iso/en/prods-services/popstds/languagecodes.html
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=5448&ICS1=1
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=5448&ICS1=1
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.jcp.org/en/jsr/detail?id=135
http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.midi.org/about-midi/gm/gminfo.shtml
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.khronos.org/files/openmax_al_1_0_specs.pdf
http://www.khronos.org/files/openmax_al_1_0_specs.pdf

472 OpenSL ES 1.0.1 Specification

http://tools.ietf.org/html/rfc3066, RFC-3066, IETF, 2001.

SP-MIDI Scalable Polyphony MIDI Specification (RP-034), MIDI Manufacturers
Association, Los Angeles, CA, USA, December 2001.

UUID Information Technology - Open Systems Interconnection - Procedures for
the operation of OSI Registration Authorities: Generation and Registration
of Universally Unique Identifiers (UUIDs) and their Use as ASN.1 Object
Identifier Components, ITU-T Rec. X.667 | ISO/IEC 9834-8, 2004

http://tools.ietf.org/html/rfc3066
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

OpenSL ES 1.0.1 Specification 473

Appendix B: Sample Code
The sample code provided in this appendix shows how to use different interfaces. These
code fragments are not necessarily complete. See Appendix C: for more complete
examples.

B.1 Audio Playback and recording

B.1.1 Buffer Queue
#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define SLEEP(x) /* Client system sleep function to sleep x milliseconds
would replace SLEEP macro */

#define MAX_NUMBER_INTERFACES 3
#define MAX_NUMBER_OUTPUT_DEVICES 6

/* Local storage for Audio data in 16 bit words */
#define AUDIO_DATA_STORAGE_SIZE 4096
/* Audio data buffer size in 16 bit words. 8 data segments are used in
this simple example */
#define AUDIO_DATA_BUFFER_SIZE 4096/8

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

/* Structure for passing information to callback function */
typedef struct CallbackCntxt_ {
 SLPlayItf playItf;
 SLint16* pDataBase; // Base adress of local audio data storage
 SLint16* pData; // Current adress of local audio data storage
 SLuint32 size;
} CallbackCntxt;

/* Local storage for Audio data */
SLint16 pcmData[AUDIO_DATA_STORAGE_SIZE];

/* Callback for Buffer Queue events */
void BufferQueueCallback(

474 OpenSL ES 1.0.1 Specification

 SLBufferQueueItf queueItf,
 void *pContext)
{
 SLresult res;
 CallbackCntxt *pCntxt = (CallbackCntxt*)pContext;
 if(pCntxt->pData < (pCntxt->pDataBase + pCntxt->size))
 {
 res = (*queueItf)->Enqueue(queueItf, (void*) pCntxt->pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 /* Increase data pointer by buffer size */
 pCntxt->pData += AUDIO_DATA_BUFFER_SIZE;
 }
}

/* Play some music from a buffer queue */
void TestPlayMusicBufferQueue(SLObjectItf sl)
{
 SLEngineItf EngineItf;

 SLint32 numOutputs = 0;
 SLuint32 deviceID = 0;

 SLresult res;

 SLDataSource audioSource;
 SLDataLocator_BufferQueue bufferQueue;
 SLDataFormat_PCM pcm;

 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

 SLObjectItf player;
 SLPlayItf playItf;
 SLBufferQueueItf bufferQueueItf;
 SLBufferQueueState state;

 SLObjectItf OutputMix;
 SLVolumeItf volumeItf;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Callback context for the buffer queue callback function */
 CallbackCntxt cntxt;

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
 CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */

OpenSL ES 1.0.1 Specification 475

 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 // Set arrays required[] and iidArray[] for VOLUME interface
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_VOLUME;
 // Create Output Mix object to be used by player
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
 iidArray, required); CheckErr(res);

 // Realizing the Output Mix object in synchronous mode.
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
 CheckErr(res);

 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME,
 (void*)&volumeItf); CheckErr(res);

 /* Setup the data source structure for the buffer queue */
 bufferQueue.locatorType = SL_DATALOCATOR_BUFFERQUEUE;
 bufferQueue.numBuffers = 4; /* Four buffers in our buffer queue */

 /* Setup the format of the content in the buffer queue */
 pcm.formatType = SL_DATAFORMAT_PCM;
 pcm.numChannels = 2;
 pcm.samplesPerSec = SL_SAMPLINGRATE_44_1;
 pcm.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
 pcm.containerSize = 16;
 pcm.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
 pcm.endianness = SL_BYTEORDER_LITTLEENDIAN;

 audioSource.pFormat = (void *)&pcm;
 audioSource.pLocator = (void *)&bufferQueue;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Initialize the context for Buffer queue callbacks */
 cntxt.pDataBase = (void*)&pcmData;
 cntxt.pData = cntxt.pDataBase;
 cntxt.size = sizeof(pcmData);

 /* Set arrays required[] and iidArray[] for SEEK interface
 (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_BUFFERQUEUE;

 /* Create the music player */

476 OpenSL ES 1.0.1 Specification

 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
 &audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get seek and play interfaces */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void*)&playItf);
 CheckErr(res);

 res = (*player)->GetInterface(player, SL_IID_BUFFERQUEUE,
 (void*)&bufferQueueItf); CheckErr(res);

 /* Setup to receive buffer queue event callbacks */
 res = (*bufferQueueItf)->RegisterCallback(bufferQueueItf,
 BufferQueueCallback, NULL); CheckErr(res);

 /* Before we start set volume to -3dB (-300mB) */
 res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);

 /* Enqueue a few buffers to get the ball rolling */
 res = (*bufferQueueItf)->Enqueue(bufferQueueItf, cntxt.pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 cntxt.pData += AUDIO_DATA_BUFFER_SIZE;

 res = (*bufferQueueItf)->Enqueue(bufferQueueItf, cntxt.pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 cntxt.pData += AUDIO_DATA_BUFFER_SIZE;

 res = (*bufferQueueItf)->Enqueue(bufferQueueItf, cntxt.pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 cntxt.pData += AUDIO_DATA_BUFFER_SIZE;

 /* Play the PCM samples using a buffer queue */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);

 /* Wait until the PCM data is done playing, the buffer queue callback
 will continue to queue buffers until the entire PCM data has been
 played. This is indicated by waiting for the count member of the
 SLBufferQueueState to go to zero.
 */
 res = (*bufferQueueItf)->GetState(bufferQueueItf, &state);
 CheckErr(res);

 while(state.count)
 {
 (*bufferQueueItf)->GetState(bufferQueueItf, &state);
 }

OpenSL ES 1.0.1 Specification 477

 /* Make sure player is stopped */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
 CheckErr(res);
 /* Destroy the player */
 (*player)->Destroy(player);
 /* Destroy Output Mix object */
 (*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

 SLEngineOption EngineOption[] = {
 (SLuint32) SL_ENGINEOPTION_THREADSAFE,
 (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
 CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestPlayMusicBufferQueue(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

B.1.2 Recording

Audio recorder example.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 5
#define MAX_NUMBER_INPUT_DEVICES 3
#define POSITION_UPDATE_PERIOD 1000 /* 1 sec */

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

void RecordEventCallback(SLRecordItf caller,
 void *pContext,

478 OpenSL ES 1.0.1 Specification

 SLuint32 recordevent)
{
 /* Callback code goes here */
}

/*
 * Test recording of audio from a microphone into a specified file
 */
void TestAudioRecording(SLObjectItf sl)
{
 SLObjectItf recorder;
 SLRecordItf recordItf;
 SLEngineItf EngineItf;
 SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
 SLAudioInputDescriptor AudioInputDescriptor;
 SLresult res;

 SLDataSource audioSource;
 SLDataLocator_IODevice locator_mic;
 SLDeviceVolumeItf devicevolumeItf;

 SLDataSink audioSink;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 SLuint32 InputDeviceIDs[MAX_NUMBER_INPUT_DEVICES];
 SLint32 numInputs = 0;
 SLboolean mic_available = SL_BOOLEAN_FALSE;
 SLuint32 mic_deviceID = 0;

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
CheckErr(res);

 /* Get the Audio IO DEVICE CAPABILITIES interface, which is also
implicit */
 res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES,
(void*)&AudioIODeviceCapabilitiesItf); CheckErr(res);
 numInputs = MAX_NUMBER_INPUT_DEVICES;

 res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioInputs(
AudioIODeviceCapabilitiesItf, &numInputs, InputDeviceIDs); CheckErr(res);

 /* Search for either earpiece microphone or headset microphone input
device - with a preference for the latter */
 for (i=0;i<numInputs; i++)
 {

OpenSL ES 1.0.1 Specification 479

 res = (*AudioIODeviceCapabilitiesItf)-
>QueryAudioInputCapabilities(AudioIODeviceCapabilitiesItf,
InputDeviceIDs[i], &AudioInputDescriptor); CheckErr(res);
 if((AudioInputDescriptor.deviceConnection ==
SL_DEVCONNECTION_ATTACHED_WIRED)&&
 (AudioInputDescriptor.deviceScope == SL_DEVSCOPE_USER)&&
 (AudioInputDescriptor.deviceLocation ==
SL_DEVLOCATION_HEADSET))
 {
 mic_deviceID = InputDeviceIDs[i];
 mic_available = SL_BOOLEAN_TRUE;
 break;
 }
 else if((AudioInputDescriptor.deviceConnection ==
SL_DEVCONNECTION_INTEGRATED)&&
 (AudioInputDescriptor.deviceScope ==
SL_DEVSCOPE_USER)&&
 (AudioInputDescriptor.deviceLocation ==
SL_DEVLOCATION_HANDSET))
 {
 mic_deviceID = InputDeviceIDs[i];
 mic_available = SL_BOOLEAN_TRUE;
 break;
 }
 }

 /* If neither of the preferred input audio devices is available, no
point in continuing */
 if (!mic_available) {
 /* Appropriate error message here */
 exit(1);
 }

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Get the optional DEVICE VOLUME interface from the engine */
 res = (*sl)->GetInterface(sl, SL_IID_DEVICEVOLUME,
(void*)&devicevolumeItf); CheckErr(res);

 /* Set recording volume of the microphone to -3 dB */
 res = (*devicevolumeItf)->SetVolume(devicevolumeItf, mic_deviceID, -
300); CheckErr(res);

 /* Setup the data source structure */
 locator_mic.locatorType = SL_DATALOCATOR_IODEVICE;
 locator_mic.deviceType = SL_IODEVICE_AUDIOINPUT;
 locator_mic.deviceID = mic_deviceID;
 locator_mic.device = NULL;

480 OpenSL ES 1.0.1 Specification

 audioSource.pLocator = (void *)&locator_mic;
 audioSource.pFormat = NULL;

 /* Setup the data sink structure */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = (SLchar *) "file:///recordsample.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;
 audioSink.pLocator = (void *)&uri;
 audioSink.pFormat = (void *)&mime;

 /* Create audio recorder */
 res = (*EngineItf)->CreateAudioRecorder(EngineItf, &recorder,
&audioSource, &audioSink, 0, iidArray, required); CheckErr(res);

 /* Realizing the recorder in synchronous mode. */
 res = (*recorder)->Realize(recorder, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get the RECORD interface - it is an implicit interface */
 res = (*recorder)->GetInterface(recorder, SL_IID_RECORD,
(void*)&recordItf); CheckErr(res);

 /* Setup to receive position event callbacks */
 res = (*recordItf)->RegisterCallback(recordItf, RecordEventCallback,
NULL);
 CheckErr(res);

 /* Set notifications to occur after every second - may be useful in
updating a recording progress bar */
 res = (*recordItf)->SetPositionUpdatePeriod(recordItf,
POSITION_UPDATE_PERIOD); CheckErr(res);
 res = (*recordItf)->SetCallbackEventsMask(recordItf,
SL_RECORDEVENT_HEADATNEWPOS); CheckErr(res);

 /* Set the duration of the recording - 30 seconds (30,000
milliseconds) */
 res = (*recordItf)->SetDurationLimit(recordItf, 30000); CheckErr(res);

 /* Record the audio */
 res = (*recordItf)-
>SetRecordState(recordItf,SL_RECORDSTATE_RECORDING);

 /* Destroy the recorder object */
 (*recorder)->Destroy(recorder);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

OpenSL ES 1.0.1 Specification 481

 /* Create OpenSL ES engine in thread-safe mode */
 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);

 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestAudioRecording(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

B.2 Dynamic Interface Management
/* Example callback for dynamic interface management events. *
 * See section 3.3 in the specification for information on *
 * what operations are allowed in callbacks. *
 * *
 * The following example consists of pseudo code and is not *
 * intended to be compiled. It is provided as a starting *
 * point for developing compilable code. */
void DIMCallback(SLDynamicInterfaceManagementItf caller,
 void *pContext,
 SLuint32 event,
 SLresult result,
 const SLInterfaceId iid)
{
 if(event==SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION) {
 if((iid == SL_IID_PRESETREVERB)){
 asyncRes=result;
 sem_post(&semDIM);
 }
 } else {
 event_post(eventQueue, {caller, pContext, event, result, iid});
 }
}

/* Example main event loop thread for handling DIM events */
void eventThread()
{
 SLresult res;
 while(...) /* Event loop */
 {
 event=event_read(eventQueue);
 switch(event.event) {
 case SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST:
 if((event.iid == SL_IID_PRESETREVERB)){
 presetReverbHasResources=SL_BOOLEAN_FALSE;

482 OpenSL ES 1.0.1 Specification

 }
 break;
 case SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANENTLY:
 if((event.iid == SL_IID_PRESETREVERB)) {
 presetReverbHasResources=SL_BOOLEAN_FALSE;
 /* Dynamically remove the PresetReverb interface from the
 * Output Mix object since this instance will not be
 * useful anymore. */
 res = (*(event.caller))->RemoveInterface(event.caller,
 SL_IID_PRESETREVERB); CheckErr(res);
 presetReverbIsRealized = SL_BOOLEAN_FALSE;
 }
 break;
 case SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE:
 if((event.iid == SL_IID_PRESETREVERB) && (presetReverbIsRealized))
{
 /* Dynamically resume the PresetReverb interface
 on the Output Mix object */
 res = (*(event.caller))->ResumeInterface(event.caller,
 SL_IID_PRESETREVERB); CheckErr(res);
 /* Wait until asynchronous call terminates */
 sem_wait(&semDIM);
 if (asyncRes == SL_RESULT_SUCCESS) {
 /* We got the resource */
 presetReverbHasResources=SL_BOOLEAN_TRUE;
 } else {
 /* Some other interface beat us to claiming the available
 resource, lets wait for a new event */
 presetReverbHasResources=SL_BOOLEAN_FALSE;
 }
 }
 break;
 default:
 break;
 }
 }
}

/* Example program using dynamic interface management interface. */
int sl_main()
{
 SLDynamicInterfaceManagementItf dynamicInterfaceManagementItf;
 /* ...
 Start event thread
 Create Output Mix object to be used by player */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
 iidArray, required); CheckErr(res);
 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
 CheckErr(res);
 /* Get the Dynamic Interface Management interface for the
 Output Mix object */

OpenSL ES 1.0.1 Specification 483

 res = (*OutputMix)->GetInterface(OutputMix,
 SL_IID_DYNAMICINTERFACEMANAGEMENT,
 (void*)&dynamicInterfaceManagementItf); CheckErr(res);
 /* Register DIM callback */
 res = (*dynamicInterfaceManagementItf)->
 RegisterCallback(dynamicInterfaceManagementItf, DIMCallback,
 NULL); CheckErr(res);
 while(...) /* main action loop */
 {
 switch(action) {
 case 'AddReverb':
 /* Add reverb if not already present and
 there are sufficient resources. */
 if (!presetReverbIsRealized) {
 /* We should stop playback first to increase
 chances of success.
 Dynamically add the PresetReverb interface
 to the Output Mix object */
 res = (*dynamicInterfaceManagementItf)->
 AddInterface(dynamicInterfaceManagementItf,
 SL_IID_PRESETREVERB); CheckErr(res);
 /* Wait until asynchronous call terminates */
 sem_wait(&semDIM);
 if (asyncRes == SL_RESULT_SUCCESS) {
 presetReverbHasResources = SL_BOOLEAN_TRUE;
 presetReverbIsRealized = SL_BOOLEAN_TRUE;
 /* Get PresetReverb interface */
 res = (*OutputMix)->GetInterface(OutputMix,
 SL_IID_PRESETREVERB, (void*)&PresetReverbItf);
 CheckErr(res);
 /* Setup PresetReverb for LARGE HALL */
 res = (*PresetReverbItf)->SetPreset(PresetReverbItf,
 SL_REVERBPRESET_LARGEHALL); CheckErr(res);
 } else if(asyncRes == SL_RESULT_RESOURCE_ERROR){
 /* Did not get resources now,
 will get callback when resources are available */
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 presetReverbIsRealized = SL_BOOLEAN_TRUE;
 } else {
 /* Did NOT successfully add presetReverb
 to the output mix object */
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 presetReverbIsRealized = SL_BOOLEAN_FALSE;
 }
 /* Start playback again. */
 }
 break;
 case 'RemoveReverb':
 /* Remove the Preset Reverb if present. */
 if (presetReverbIsRealized) {
 /* Dynamically remove the PresetReverb interface
 from the Output Mix object */
 presetReverbIsRealized = SL_BOOLEAN_FALSE;

484 OpenSL ES 1.0.1 Specification

 presetReverbHasResources = SL_BOOLEAN_FALSE;
 res = (*dynamicInterfaceManagementItf)->
 RemoveInterface(dynamicInterfaceManagementItf,
 SL_IID_PRESETREVERB); CheckErr(res);
 }
 break;
 }
 }
}

OpenSL ES 1.0.1 Specification 485

B.3 MIDI

B.3.1 Simple MIDI
Tests the basic load of a MIDI file from a standard locator.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

void TestMIDISimple(SLEngineItf eng, SLObjectItf outputMix)
{
 SLresult res;
 SLDataSource fileSrc;
 SLDataSource bankSrc;
 SLDataSink audOutSnk;
 SLObjectItf player;
 SLmillisecond dur;
 SLmillisecond pos;
 SLPlayItf playItf;

 SLDataLocator_URI fileLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file:///foo.mid" };
 SLDataFormat_MIME fileFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/x-midi", SL_CONTAINERTYPE_SMF };
 SLDataLocator_URI bankLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file:///foo.dls" };
 SLDataFormat_MIME bankFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/dls", SL_CONTAINERTYPE_MOBILE_DLS };
 SLDataLocator_OutputMix audOutLoc;

 const SLboolean required[2] = {SL_BOOLEAN_TRUE,
SL_BOOLEAN_FALSE};
 const SLInterfaceID iidArray[2] = {SL_IID_PLAY, SL_IID_VOLUME};

 res = (*eng)->CreateOutputMix(eng, &outputMix, 1, &iidArray[1],
&required[1]); CheckErr(res);

 res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);

 fileSrc.pFormat = &fileFmt;
 fileSrc.pLocator = &fileLoc;

486 OpenSL ES 1.0.1 Specification

 bankSrc.pFormat = &bankFmt;
 bankSrc.pLocator = &bankLoc;
 audOutLoc.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 audOutLoc.outputMix = outputMix;
 audOutSnk.pFormat = NULL;
 audOutSnk.pLocator = &audOutLoc;
 res = (*eng)->CreateMidiPlayer(eng, &player, &fileSrc, &bankSrc,
&audOutSnk, NULL, NULL, 1, iidArray, required); CheckErr(res);
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get the play interface, which was implicitly created on the
 MIDI player creation. */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);

 res = (*playItf)->GetDuration(playItf, &dur); CheckErr(res);
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 do
 {
 res = (*playItf)->GetPosition(playItf, &pos); CheckErr(res);
 } while(pos < dur);

 /* Destroy player */
 (*player)->Destroy(player);
}

B.3.2 MIDI Buffer Queue

Tests the MIDI buffer queue. This is in an OpenSL ES game context.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

void *queueData[8] = { (void *) 0x123, (void *) 0x234, (void *) 0x345,
(void *) 0x456, (void *) 0x567, (void *) 0x678, (void *) 0x789 };
SLuint32 index = 0;

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

void TestQueueCallback(SLBufferQueueItf caller, void *pContext)
{
 SLBufferQueueItf queueItf = (SLBufferQueueItf) pContext;

OpenSL ES 1.0.1 Specification 487

 SLresult res = (*queueItf)->Enqueue(queueItf, queueData[index++],
1024); CheckErr(res);
 index &= 0x7; /* force the queues to cycle */
}
void TestMIDIBufferQueue(SLEngineItf eng, SLObjectItf outputMix)
{
 SLresult res;
 SLDataSource midSrc;
 SLDataSource bnkSrc;
 SLDataSink audOutSnk;
 SLObjectItf player;
 SLPlayItf playItf;
 SLBufferQueueItf queueItf;

 SLDataLocator_MIDIBufferQueue midLoc;
 SLDataFormat_MIME midFmt;
 SLDataLocator_URI bankLoc;
 SLDataFormat_MIME bankFmt;
 SLDataLocator_OutputMix audOutLoc;

 const SLboolean required[3] = { SL_BOOLEAN_TRUE,
SL_BOOLEAN_TRUE ,SL_BOOLEAN_FALSE};
 const SLInterfaceID iidArray[3] = { SL_IID_PLAY,
SL_IID_BUFFERQUEUE ,SL_IID_VOLUME};

 res = (*eng)->CreateOutputMix(eng, &outputMix, 1, &iidArray[2],
&required[2]); CheckErr(res);
 res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Set up the MIDI buffer queue data source */
 midLoc.locatorType = SL_DATALOCATOR_MIDIBUFFERQUEUE;
 midLoc.tpqn = 96;
 midLoc.numBuffers = 3;
 midSrc.pLocator = &midLoc;
 midFmt.formatType = SL_DATAFORMAT_MIME;
 midFmt.mimeType = (SLchar *) "audio/sp-midi";
 midFmt.containerType = SL_CONTAINERTYPE_SMF;
 midSrc.pFormat = &midFmt;

 /* Set up the bank data source */
 bankLoc.locatorType = SL_DATALOCATOR_URI;
 bankLoc.URI = (SLchar *) "file:///foo.dls";
 bankFmt.formatType = SL_DATAFORMAT_MIME;
 bankFmt.mimeType = (SLchar *) "audio/dls";
 bankFmt.containerType = SL_CONTAINERTYPE_MOBILE_DLS;
 bnkSrc.pFormat = &bankFmt;
 bnkSrc.pLocator = &bankLoc;
 /* Set up the audio output data sink */
 audOutLoc.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 audOutLoc.outputMix = outputMix;
 audOutSnk.pFormat = NULL;
 audOutSnk.pLocator = &audOutLoc;

488 OpenSL ES 1.0.1 Specification

 /* Prepare and play the player */
 res = (*eng)->CreateMidiPlayer(eng, &player, &midSrc, &bnkSrc,
&audOutSnk, NULL, NULL, 2, iidArray, required); CheckErr(res);
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_BUFFERQUEUE, (void
*)&queueItf); CheckErr(res);

 res = (*queueItf)->RegisterCallback(queueItf, TestQueueCallback,
(void *)&queueItf); CheckErr(res);

 /* Enqueue three buffers */
 res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024);
CheckErr(res);
 res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024);
CheckErr(res);
 res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024);
CheckErr(res);

 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 {
 SLuint32 state = SL_PLAYSTATE_PLAYING;
 while(state == SL_PLAYSTATE_PLAYING)
 {
 res = (*playItf)->GetPlayState(playItf, &state);
CheckErr(res);
 }
 }
 /* Destroy player */
 (*player)->Destroy(player);
}

OpenSL ES 1.0.1 Specification 489

B.3.3 Advanced MIDI: MIDI messaging

Tests advanced features of the MIDI interfaces. This is in an OpenSL ES game context.

#include <stdio.h>
#include <memory.h>
#include <stdlib.h>

#include "OpenSLES.h"

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

void TestMetaEventCallback(SLMIDIMessageItf caller, void *pContext,
SLuint8 type, SLuint32 len, const SLuint8 *data, SLuint32 tick, SLuint16
track)
{
 if (pContext == (void *) 0x234 && *data++ == 0x02) /* check if it's a
copyright metadata item */
 {
 char str[256];
 SLuint8 stringLen = *data++;
 assert(stringLen == len - 2);
 memcpy(str, data, stringLen);
 printf("Copyright: %s from track %d at tick %d", str, track,
tick);
 }
}
void TestMIDIMessageCallback(SLMIDIMessageItf caller, void *pContext,
SLuint8 statusByte, SLuint32 length, const SLuint8 *data, SLuint32 tick,
SLuint16 track)
{
 if (pContext == (void *) 0x567 && statusByte >> 4 == 0xB)
 {
 if (statusByte >> 4 == 0xB)
 {
 printf("MIDI control change encountered at tick %d.
Channel %d; controller %d, value %d\n", tick, statusByte & 0xF0, data[0],
data[1]);
 }
 else if (statusByte >> 4 == 0xC)
 {
 printf("Program change encountered at tick %d. Channel %d;
program %d\n", tick, statusByte & 0xF0, data[0]);
 }

490 OpenSL ES 1.0.1 Specification

 else
 {
 printf("Error: unspecified MIDI event encountered in
TestMIDIMessageCallback\n");
 }
 }
}
void TestMIDIAdvanced(SLEngineItf eng, SLObjectItf outputMix)
{
 SLresult res;
 SLDataSource file;
 SLDataSource bank;
 SLDataSink audOutSnk;
 SLObjectItf player;
 SLuint32 dur; /* duration in ticks */
 SLuint16 tracks;
 const SLboolean required[7] = { SL_BOOLEAN_TRUE,
SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE,
SL_BOOLEAN_TRUE,SL_BOOLEAN_FALSE};
 const SLInterfaceID iidArray[7] = { SL_IID_PLAY, SL_IID_SEEK,
SL_IID_MIDIMESSAGE, SL_IID_MIDIMUTESOLO, SL_IID_MIDITEMPO,
SL_IID_MIDITIME , SL_IID_VOLUME};
 SLPlayItf playItf;
 SLSeekItf seekItf;
 SLMIDIMessageItf midMsgItf;
 SLMIDIMuteSoloItf midMuteSoloItf;
 SLMIDITempoItf midTempoItf;
 SLMIDITimeItf midTimeItf;
 SLDataLocator_OutputMix audOutLoc;

 SLDataLocator_URI fileLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file:///foo.mid" };
 SLDataFormat_MIME fileFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/x-midi", SL_CONTAINERTYPE_SMF };
 SLDataLocator_URI bankLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file:///foo.dls" };
 SLDataFormat_MIME bankFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/dls", SL_CONTAINERTYPE_MOBILE_DLS };
 res = (*eng)->CreateOutputMix(eng, &outputMix, 1, &iidArray[6],
&required[6]); CheckErr(res);
 res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 file.pFormat = &fileFmt;
 file.pLocator = &fileLoc;
 bank.pFormat = &bankFmt;
 bank.pLocator = &bankLoc;
 audOutLoc.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 audOutLoc.outputMix = outputMix;
 audOutSnk.pFormat = NULL;
 audOutSnk.pLocator = &audOutLoc;

OpenSL ES 1.0.1 Specification 491

 res = (*eng)->CreateMidiPlayer(eng, &player, &file, &bank,
&audOutSnk, NULL, NULL, 6, iidArray, required); CheckErr(res);
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);
 res = (*player)->GetInterface(player, iidArray[0], (void *)&playItf);
CheckErr(res);
 res = (*player)->GetInterface(player, iidArray[1], (void *)&seekItf);
CheckErr(res);
 res = (*player)->GetInterface(player, iidArray[2], (void
*)&midMsgItf); CheckErr(res);
 res = (*player)->GetInterface(player, iidArray[3], (void
*)&midMuteSoloItf); CheckErr(res);
 res = (*player)->GetInterface(player, iidArray[4], (void
*)&midTempoItf); CheckErr(res);
 res = (*player)->GetInterface(player, iidArray[5], (void
*)&midTimeItf); CheckErr(res);

 /* Set tempo to 140 BPM */
 res = (*midTempoItf)->SetMicrosecondsPerQuarterNote(midTempoItf,
428571); CheckErr(res);
 {
 /* Set channel volume on channel 3 to 96 */
 SLuint8 msg[3] = { 0xB0 | 0x02, 0x07, 0x60 };
 res = (*midMsgItf)->SendMessage(midMsgItf, msg, 3);
CheckErr(res);
 }
 {
 /* Set pitch bend sensitivity on channel 1 to +/- 1 semitone */
 SLuint8 msg[12] = { 0xB0 | 0x00, 0x65, 0x00,
 /* RPN ID MSB (controller 101, data 0) */
 0xB0 | 0x00, 0x64, 0x00,
 /* RPN ID LSB (controller 100, data 0) */
 0xB0 | 0x00, 0x06, 0x01,
 /* RPN data MSB (controller 6, data 1) */
 0xB0 | 0x00, 0x26, 0x00 };
 /* RPN data LSB (controller 38, data 0) */
 res = (*midMsgItf)->SendMessage(midMsgItf, msg, 12);
CheckErr(res);
 }
 /* Set/enable looping for arbitrary tick values (assume end <
duration) */
 res = (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0, 100);
CheckErr(res);

 /* Override loop points using MIDI tick precision */
 res = (*midTimeItf)->SetLoopPoints(midTimeItf, 1000, 6000);
CheckErr(res);
 /* Set a meta-event callback for the function TestMetaEventCallback
*/
 res = (*midMsgItf)->RegisterMetaEventCallback(midMsgItf,
TestMetaEventCallback, (void*) 0x234); CheckErr(res);

 /* Set a MIDI event callback for the function TestMIDIMessageCallback
*/

492 OpenSL ES 1.0.1 Specification

 res = (*midMsgItf)->RegisterMIDIMessageCallback(midMsgItf,
TestMIDIMessageCallback, (void *) 0x456); CheckErr(res);
 res = (*midMsgItf)->AddMIDIMessageCallbackFilter(midMsgItf,
SL_MIDIMESSAGETYPE_CONTROL_CHANGE); CheckErr(res);
 res = (*midMsgItf)->AddMIDIMessageCallbackFilter(midMsgItf,
SL_MIDIMESSAGETYPE_PROGRAM_CHANGE); CheckErr(res);

 /* Mute track 3 */
 res = (*midMuteSoloItf)->GetTrackCount(midMuteSoloItf, &tracks);
CheckErr(res);
 if (tracks > 2)
 res = (*midMuteSoloItf)->SetTrackMute(midMuteSoloItf, 2,
SL_BOOLEAN_TRUE); CheckErr(res);

 /* Get duration of the MIDI file in milliseconds */
 res = (*midTimeItf)->GetDuration(midTimeItf, &dur); CheckErr(res);

 /* Play half the MIDI data (tick duration / 2) */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 {
 SLuint32 state;
 SLuint32 tickPos;
 do
 {
 SLEEP(100); /* sleep 100 ms */
 res = (*playItf)->GetPlayState(playItf, &state);
CheckErr(res);
 res = (*midTimeItf)->GetPosition(midTimeItf, &tickPos);
CheckErr(res);
 } while(tickPos < dur / 2 && state == SL_PLAYSTATE_PLAYING);
 }

 /* Destroy interfaces and player */
 (*player)->Destroy(player);
}

OpenSL ES 1.0.1 Specification 493

B.4 Metadata Extraction

B.4.1 Simple Metadata Extraction

Tests the basic features of metadata extraction.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

/*
 * Prints all ASCII metadata key-value pairs (from the root
 * of the media since MetadataTraversalItf is not used)
 */
void TestMetadataSimple(SLMetadataExtractionItf mdExtrItf)
{
 SLresult res;
 SLuint32 mdCount = 0;
 SLuint32 i;

 /* scan through the metadata items */
 res = (*mdExtrItf)->GetItemCount(mdExtrItf, &mdCount); CheckErr(res);
 for (i = 0; i < mdCount; ++i)
 {
 SLMetadataInfo *key = NULL;
 SLMetadataInfo *value = NULL;
 SLuint32 itemSize = 0;

 /* get the size of and malloc memory for the metadata item */
 res = (*mdExtrItf)->GetKeySize(mdExtrItf, i, &itemSize);
CheckErr(res);
 key = malloc(itemSize);
 if (key) /* no malloc error */
 {
 /* extract the key into the memory */
 res = (*mdExtrItf)->GetKey(mdExtrItf, i, itemSize, key);
CheckErr(res);
 if (key->encoding == SL_CHARACTERENCODING_ASCII)
 {

494 OpenSL ES 1.0.1 Specification

 res = (*mdExtrItf)->GetValueSize(mdExtrItf, i, &itemSize);
CheckErr(res);
 value = malloc(itemSize);
 if (value) /* no malloc error */
 {
 /* extract the value into the memory */
 res = (*mdExtrItf)->GetValue(mdExtrItf, i, itemSize,
value); CheckErr(res);
 if (value->encoding == SL_CHARACTERENCODING_ASCII)
 {
 printf("Item %d key: %s, value %s", i, key->data,
value->data);
 }
 free(value);
 }
 }
 free(key);
 }
 }
}

OpenSL ES 1.0.1 Specification 495

B.5 3D Audio

B.5.1 Simple 3D

An example showing how to create 3D source and spin it around the listener.

#include <stdio.h>
#include <stdlib.h>
/* Floating point routines sinf and cosf used in example - could be
replaced by fixed point code. */
#include <math.h>

#include "OpenSLES.h"

#define SLEEP(x) // Client system sleep function to sleep x
milliseconds would replace SLEEP macro

/***/

#define MAX_NUMBER_INTERFACES 2

#define CIRCLE_RADIUS 1000 /* 1.0 meters */
/* we move the source by this angle (in radians) at each step */
#define CIRCLE_STEP (float) (TWOPI / 180.0 / 2.0)

#define PI 3.1415926535f
#define TWOPI (2.0f * PI)

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

/* Play create a 3D source and spin it around the listener */
void TestSimple3D(SLObjectItf sl)
{
 SLEngineItf EngineItf;

 SLresult res;

 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;

496 OpenSL ES 1.0.1 Specification

 SLDataLocator_OutputMix locator_outputmix;

 SLObjectItf player;
 SLPlayItf playItf;
 SL3DLocationItf locationItf;

 SLObjectItf listener;

 SLObjectItf OutputMix;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Create Output Mix object to be used by player - no interfaces
required */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 0,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Create 3D listener - no interfaces requires as the listener will
remain stationary */
 res = (*EngineItf)->CreateListener(EngineItf, &listener, 0, iidArray,
required); CheckErr(res);

 /* Realizing the listener object in synchronous mode. */
 res = (*listener)->Realize(listener, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Setup the data source structure for the player */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = (SLchar *) "file:///buzzingbee.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;

 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

OpenSL ES 1.0.1 Specification 497

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for 3DLocationItf interface
(PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;

 /* Create the 3D player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
&audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get the play and 3D location interfaces */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void*)&playItf);
CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_3DLOCATION,
(void*)&locationItf); CheckErr(res);

 {
 SLVec3D coords;
 SLuint32 playState;

 float angle = 0.0f;

 /* Position the 3D source in front the listener */
 coords.x = (SLuint32)(CIRCLE_RADIUS * sinf(angle));
 coords.y = 0;
 coords.z = (SLuint32)(CIRCLE_RADIUS * cosf(angle));
 (*locationItf)->SetLocationCartesian(locationItf, &coords);
CheckErr(res);

 /* Start playing the 3D source (buzzing bee) */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);

 do
 {
 angle += CIRCLE_STEP;
 if(angle >= TWOPI)
 {
 angle = 0.0f;
 }

 /* move source in horizontal circle (clockwise direction) */
 coords.x = (SLuint32)(CIRCLE_RADIUS * sinf(angle));
 coords.z = (SLuint32)(CIRCLE_RADIUS * cosf(angle));

498 OpenSL ES 1.0.1 Specification

 (*locationItf)->SetLocationCartesian(locationItf, &coords);
CheckErr(res);

 SLEEP(10); // Sleep for 10ms
 res = (*playItf)->GetPlayState(playItf, &playState);
CheckErr(res);
 } while (playState != SL_PLAYSTATE_STOPPED);
 }

 /* Destroy the player */
 (*player)->Destroy(player);
 /* Destroy Output Mix object */
 (*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestSimple3D(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

B.5.2 Advanced 3D

Simple 3D game showing use of priorities and advanced 3D properties.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define SLEEP(x) /* Client system sleep function to sleep x
milliseconds would replace SLEEP macro */

/* External game engine data */

#define EVENT_GUNSHOT (int)0x00000001
#define EVENT_DEATH (int)0x00000002
#define EVENT_FOOTSTEP (int)0x00000003

#define OBJECT_LISTENER (int)0x00000001
#define OBJECT_GUNSHOT (int)0x00000002

OpenSL ES 1.0.1 Specification 499

#define OBJECT_SCREAM (int)0x00000003

/* External game engine functions */
extern int GAMEGetEvents(void);
extern void GAMEGetLocation(int object, int *x, int *y, int *z);

/***/

#define MAX_NUMBER_INTERFACES 4

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

void Create3DSource(SLEngineItf EngineItf, SLObjectItf OutputMix,
SLObjectItf *pPlayer, SLchar *fileName, SLuint32 priority)
{
 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;

 SLDataLocator_OutputMix locator_outputmix;

 SLresult res;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Setup the data source structure for the player */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = fileName;
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;
 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for 3DLocationItf,
 3DSourceItf, 3DDopplerItf, SeekItf interfaces (PlayItf is

500 OpenSL ES 1.0.1 Specification

 implicit).
 Not all interfaces are used by all players in this example - in a
 real application it is advisable to only request interfaces that
 are necessary. */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_3DSOURCE;
 required[2] = SL_BOOLEAN_FALSE; /* Create the player even if
Doppler unavailable */
 iidArray[2] = SL_IID_3DDOPPLER;
 iidArray[3] = SL_IID_SEEK;
 required[3] = SL_BOOLEAN_TRUE;

 /* Create the 3D player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, pPlayer,
&audioSource, &audioSink, 4, iidArray, required); CheckErr(res);

 {
 SLObjectItf player = *pPlayer;

 /* Set player's priority */
 res = (*player)->SetPriority(player, priority, SL_BOOLEAN_TRUE);
CheckErr(res);

 /* Realize the player in synchronously */
 res = (*player)->Realize(player, SL_BOOLEAN_TRUE);
 if (res == SL_RESULT_RESOURCE_ERROR)
 {
 /* Ignore resource errors, they're handled elsewhere. */
 }
 else
 {
 CheckErr(res);
 }
 }
}

/* Play create a 3D source and spin it around the listener */
void TestAdvanced3D(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SL3DCommitItf commitItf;

 SLresult res;

 SLObjectItf gunshot, scream, footstep, torch;
 SLPlayItf playItf;
 SL3DLocationItf locationItf;
 SL3DSourceItf sourceItf;
 SL3DDopplerItf dopplerItf;

 SLObjectItf listener;

OpenSL ES 1.0.1 Specification 501

 SLObjectItf OutputMix;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 SLuint32 state;
 int i;

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Get the commit interface and for efficiency reasons set into
deferred mode. */
 res = (*sl)->GetInterface(sl, SL_IID_3DCOMMIT, (void*)&commitItf);
CheckErr(res);
 (*commitItf)->SetDeferred(commitItf, SL_BOOLEAN_TRUE);

 /* Create Output Mix object to be used by player - no interfaces
required */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 0,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Create 3D listener. */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 res = (*EngineItf)->CreateListener(EngineItf, &listener, 1, iidArray,
required); CheckErr(res);

 /* Realizing the listener object in synchronous mode. */
 res = (*listener)->Realize(listener, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Create four players with differing priorities. Higher priorities
 are used for sound effects that must be heard by the game player,
 whereas lower priorities are assigned to sound effects that make
 the game sound better but are not required to appreciate
 the game. */
 Create3DSource(EngineItf, OutputMix, &gunshot, "gunshot.wav",
SL_PRIORITY_HIGH);
 Create3DSource(EngineItf, OutputMix, &scream, "scream.wav",
SL_PRIORITY_NORMAL);

502 OpenSL ES 1.0.1 Specification

 Create3DSource(EngineItf, OutputMix, &footstep, "footstep.wav",
SL_PRIORITY_NORMAL);
 Create3DSource(EngineItf, OutputMix, &torch, "torch.wav",
SL_PRIORITY_LOW);

 (*gunshot)->GetState(gunshot, &state);
 if (state == SL_OBJECT_STATE_REALIZED)
 {
 /* Set the gun shot's 3D source properties */
 res = (*gunshot)->GetInterface(gunshot, SL_IID_3DSOURCE,
(void*)&sourceItf); CheckErr(res);
 /* Set rolloff model to linear */
 (*sourceItf)->SetRolloffModel(sourceItf, SL_ROLLOFFMODEL_LINEAR);
CheckErr(res);
 /* Exaggerate the gunshot's rolloff */
 (*sourceItf)->SetRolloffFactor(sourceItf, 1500); CheckErr(res);
 /* Add Doppler to the gunshot, if possible */
 res = (*gunshot)->GetInterface(gunshot, SL_IID_3DDOPPLER,
(void*)&dopplerItf);
 if (res != SL_RESULT_SUCCESS)
 {
 /* Doppler not available - not crucial though */
 }
 else
 {
 SLVec3D vec;
 /* Exaggerate gunshot's Doppler */
 (*dopplerItf)->SetDopplerFactor(dopplerItf, 2000);
CheckErr(res);
 /* Set gunshot's velocity to move away from the listener */
 vec.x = 0; vec.y = 0; vec.z = -1000;
 (*dopplerItf)->SetVelocityCartesian(dopplerItf, &vec);
CheckErr(res);
 }
 }
 else
 {
 /* Exit - game isn't viable without gunshot */
 exit(1);
 }

 (*footstep)->GetState(footstep, &state);
 if (state == SL_OBJECT_STATE_REALIZED)
 {
 /* Set foot step's 3D source properties */
 res = (*footstep)->GetInterface(footstep, SL_IID_3DSOURCE,
(void*)&sourceItf); CheckErr(res);
 /* Set foot steps as head relative - as the listener moves, so
 do the foot steps. */
 res = (*sourceItf)->SetHeadRelative(sourceItf, SL_BOOLEAN_TRUE);
CheckErr(res);
 }
 else

OpenSL ES 1.0.1 Specification 503

 {
 /* Exit - game isn't viable without gunshot */
 exit(1);
 }

 (*torch)->GetState(torch, &state);
 if (state == SL_OBJECT_STATE_REALIZED)
 {
 SLVec3D vec;
 SLSeekItf seekItf;

 res = (*torch)->GetInterface(torch, SL_IID_PLAY, (void*)&playItf);
CheckErr(res);
 res = (*torch)->GetInterface(torch, SL_IID_3DLOCATION, (void
*)&locationItf); CheckErr(res);
 res = (*torch)->GetInterface(torch, SL_IID_SEEK, (void*)&seekItf);
CheckErr(res);

 /* Position the torch somewhere in 3D space */
 vec.x = 30000; vec.y = 0; vec.z = -26000;
 (*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

 /* Play torch constantly looping */
 (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0, SL_TIME_UNKNOWN);
CheckErr(res);
 /* Commit 3D settings before playing */
 (*commitItf)->Commit(commitItf);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 }
 else
 {
 /* Torch isn't available. Could try realizing again but torch sound
 effect isn't crucial to game play. */
 }

 /* Main game loop */
 {
 int dead = 0;

 while (!dead)
 {
 int gameEvent;
 SLVec3D vec;

 /* Handle game events */
 gameEvent = GAMEGetEvents();
 switch(gameEvent)
 {
 case EVENT_GUNSHOT:
 /* Fire gun shot */

504 OpenSL ES 1.0.1 Specification

 res = (*gunshot)->GetInterface(gunshot, SL_IID_PLAY, (void
*)&playItf); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 break;

 case EVENT_DEATH:
 /* Player has been shot, scream! */
 res = (*scream)->GetInterface(scream, SL_IID_PLAY, (void
*)&playItf); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 dead = !dead;
 break;

 case EVENT_FOOTSTEP:
 /* Play foot steps */
 res = (*footstep)->GetInterface(footstep, SL_IID_PLAY,
(void *)&playItf); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 break;
 }

 /* Update location of gun shot, scream and listener based on
 information from game engine. No need to update foot steps
 as they are head relative (i.e. move with the listener). */
 GAMEGetLocation(OBJECT_LISTENER, &vec.x, &vec.y, &vec.z);
 res = (*listener)->GetInterface(listener, SL_IID_3DLOCATION,
(void *)&locationItf); CheckErr(res);
 (*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

 GAMEGetLocation(OBJECT_GUNSHOT, &vec.x, &vec.y, &vec.z);
 res = (*gunshot)->GetInterface(gunshot, SL_IID_3DLOCATION, (void
*)&locationItf); CheckErr(res);
 (*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

 GAMEGetLocation(OBJECT_SCREAM, &vec.x, &vec.y, &vec.z);
 res = (*scream)->GetInterface(scream, SL_IID_3DLOCATION, (void
*)&locationItf); CheckErr(res);
 (*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

 /* Commit 3D settings otherwise 3D positions will not be
updated. */
 (*commitItf)->Commit(commitItf);

 SLEEP(10);
 }
 }

OpenSL ES 1.0.1 Specification 505

 /* Wait until scream finished before exiting */
 (*scream)->GetState(scream, &state);
 if (state == SL_OBJECT_STATE_REALIZED)
 {
 res = (*scream)->GetInterface(scream, SL_IID_PLAY, (void
*)&playItf); CheckErr(res);
 do
 {
 (*playItf)->GetPlayState(playItf, &state); CheckErr(res);
 SLEEP(10);
 } while (state == SL_PLAYSTATE_PLAYING);
 }

 /* Destroy the players */
 (*gunshot)->Destroy(gunshot);
 (*scream)->Destroy(scream);
 (*footstep)->Destroy(footstep);
 (*torch)->Destroy(torch);

 /* Destroy the listener object */
 (*listener)->Destroy(listener);

 /* Destroy Output Mix object */
 (*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 SLboolean required = SL_BOOLEAN_TRUE;
 SLInterfaceID iid = SL_IID_3DCOMMIT;

 /* Create an engine with the 3DCommit interface present */
 res = slCreateEngine(&sl, 1, EngineOption, 1, &iid, &required);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestAdvanced3D(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

506 OpenSL ES 1.0.1 Specification

B.6 Effects

B.6.1 Environmental Reverb

Creates a 3D scene with four sound sources constantly playing and background music. As
the listener moves between rooms the reverb environment changes.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define SLEEP(x) // Client system sleep function to sleep x
milliseconds would replace SLEEP macro

/***/

#define MAX_NUMBER_INTERFACES 3

/* Four static objects */
#define STATIC0_FILENAME "fireplace.wav"
#define STATIC0_RVB 0
#define STATIC1_FILENAME "fountain.wav"
#define STATIC1_RVB -300 /* Fountain has -3 dB reverb level */
#define STATIC2_FILENAME "anvil.wav"
#define STATIC2_RVB -300 /* Anvil has -3 dB reverb level */
#define STATIC3_FILENAME "clocktick.wav"
#define STATIC3_RVB -150 /* Clocktick has -1.5 dB reverb level
*/

/* Game engine objects */
#define OBJECT_LISTENER (int)0x00000001
#define OBJECT_STATIC0 (int)0x00000002
#define OBJECT_STATIC1 (int)0x00000003
#define OBJECT_STATIC2 (int)0x00000004
#define OBJECT_STATIC3 (int)0x00000005

/* Game engine rooms */
#define LOCATION_COURTYARD (int)0x00000001
#define LOCATION_GREATHALL (int)0x00000002
#define LOCATION_FRONTGARDEN (int)0x00000003
#define LOCATION_BEDROOM (int)0x00000004
#define LOCATION_EXIT (int)0x00000005
#define LOCATION_UNKNOWN (int)0xFFFFFFFF

/* External game engine functions */
extern void GAMEGetLocation(int object, int *x, int *y, int *z);
extern int GAMEGetListenerRoom(void);

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)

OpenSL ES 1.0.1 Specification 507

{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

/* Create a 3D source positioned at (x, y, z), with reverb level
reverbLevel. */
void Create3DSource(SLEngineItf EngineItf, SLObjectItf OutputMix,
 SLEnvironmentalReverbItf reverbItf,
 SLObjectItf *pPlayer,
 SLchar *fileName, SLint32 x, SLint32 y, SLint32 z,
 SLmillibel reverbLevel)
{
 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;

 SLDataLocator_OutputMix locator_outputmix;

 SL3DLocationItf locationItf;
 SLEffectSendItf effectSendItf;
 SLSeekItf seekItf;
 SLPlayItf playItf;

 SLresult res;

 SLVec3D coords;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Setup the data source structure for the player */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = fileName;
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;
 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for 3DLocationItf,
EffectSendItf, SeekItf interfaces (PlayItf is implicit). */

508 OpenSL ES 1.0.1 Specification

 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_EFFECTSEND;
 required[2] = SL_BOOLEAN_TRUE;
 iidArray[2] = SL_IID_SEEK;

 /* Create the 3D player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, pPlayer,
&audioSource, &audioSink, 3, iidArray, required); CheckErr(res);

 {
 SLObjectItf player = *pPlayer;

 /* Realize the player in synchronously */
 res = (*player)->Realize(player, SL_BOOLEAN_TRUE); CheckErr(res);

 /* Get the 3D location interfaces, set the 3D position */
 res = (*player)->GetInterface(player, SL_IID_3DLOCATION, (void
*)&locationItf); CheckErr(res);
 coords.x = x;
 coords.y = y;
 coords.z = z;
 res = (*locationItf)->SetLocationCartesian(locationItf, &coords);

 /* Get the effect send interface, set the reverb level for the
sound source */
 res = (*player)->GetInterface(player, SL_IID_EFFECTSEND, (void
*)&effectSendItf); CheckErr(res);
 (*effectSendItf)->EnableEffectSend(effectSendItf, &reverbItf,
SL_BOOLEAN_TRUE, reverbLevel);

 /* Get the seek interface and enable looping of the whole file */
 (*player)->GetInterface(player, SL_IID_SEEK, (void *)&seekItf);
CheckErr(res);
 (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0, SL_TIME_UNKNOWN);
CheckErr(res);

 /* Get the play interface and start playing. */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void
*)&playItf); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
 }
}

/* A listener moves around a scene that contains four
 sound sources. As the listener moves the reverb
 changes to adapt to the environment the listener is in.
 Music is also played in the background. */
void TestEnvironmentalReverb(SLObjectItf sl)
{
 SLEngineItf EngineItf;

OpenSL ES 1.0.1 Specification 509

 SLresult res;

 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

 SLObjectItf music;
 SLPlayItf playItf;

 SLObjectItf player[4];

 SLObjectItf listener;
 SL3DLocationItf listenerLocationItf;

 SLObjectItf OutputMix;
 SLEnvironmentalReverbItf reverbItf;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /**** OUTPUT MIX **************************************/
 /* Uses the default output device(s). */
 /* Includes environmental reverb auxiliary effect for */
 /* players requiring use of reverb (in this case the */
 /* anvil). */
 /**/

 /* Create Output Mix object to be used by player,
 requesting use of the environmental reverb
 interface. */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_ENVIRONMENTALREVERB;
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */

510 OpenSL ES 1.0.1 Specification

 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Get environment reverb interface. */
 res = (*OutputMix)->GetInterface(OutputMix,
SL_IID_ENVIRONMENTALREVERB, (void *)&reverbItf); CheckErr(res);

 /**** LISTENER **/
 /* Listener that we'll move around in response to */
 /* application events (e.g. d-pad movement). */
 /**/

 /* Create 3D listener */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 res = (*EngineItf)->CreateListener(EngineItf, &listener, 1, iidArray,
required); CheckErr(res);

 /* Realizing the listener object in synchronous mode. */
 res = (*listener)->Realize(listener, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get listener's location interface. */
 res = (*listener)->GetInterface(listener, SL_IID_3DLOCATION, (void
*)&listenerLocationItf); CheckErr(res);

 /**** BACKGROUND MUSIC ********************************/
 /* Music that's played in the background. */
 /**/

 /* Setup the data source structure for the background music */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = (SLchar *) "file:///backgroundmusic.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;
 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* The background music should be rendered in 2D so we do not
 request the 3DLocationItf interface.
 We also do not want the music to have reverb applied to it so
 we do not request the EffectSendItf interfaces (PlayItf is
implicit). */

 /* Create the music player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &music, &audioSource,
&audioSink, 0, iidArray, required); CheckErr(res);

OpenSL ES 1.0.1 Specification 511

 /* Realizing the player in synchronous mode. */
 res = (*music)->Realize(music, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Start playing music */
 res = (*music)->GetInterface(music, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);

 /**** OBJECTS ***/
 /* There are four looping sound sources positioned in */
 /* various places in the 3D scene (as determined by */
 /* the game engine), each included in the */
 /* environmental reverb. */
 /**/
 {
 SLint32 x, y, z;

 GAMEGetLocation(OBJECT_STATIC0, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[0],
STATIC0_FILENAME, x, y, z, STATIC0_RVB);

 GAMEGetLocation(OBJECT_STATIC1, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[1],
STATIC1_FILENAME, x, y, z, STATIC1_RVB);

 GAMEGetLocation(OBJECT_STATIC2, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[2],
STATIC2_FILENAME, x, y, z, STATIC2_RVB);

 GAMEGetLocation(OBJECT_STATIC3, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[3],
STATIC3_FILENAME, x, y, z, STATIC3_RVB);
 }

 /* Main loop */
 {
 int exit = 0;
 int oldEnvironment = LOCATION_UNKNOWN;

 while (!exit)
 {
 SLVec3D vec;
 int environment;

 /* Update location listener based on information from game
engine. */
 GAMEGetLocation(OBJECT_LISTENER, &vec.x, &vec.y, &vec.z);
 (*listenerLocationItf)-
>SetLocationCartesian(listenerLocationItf, &vec); CheckErr(res);

512 OpenSL ES 1.0.1 Specification

 /* Change the listener's environment based on the room the
listener is located in. */
 environment = GAMEGetListenerRoom();
 if (environment != oldEnvironment)
 {
 switch (environment)
 {
 case LOCATION_COURTYARD:
 {
 SLEnvironmentalReverbSettings rvbSettings =
SL_I3DL2_ENVIRONMENT_PRESET_QUARRY;
 (*reverbItf)-
>SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_GREATHALL:
 {
 SLEnvironmentalReverbSettings rvbSettings =
SL_I3DL2_ENVIRONMENT_PRESET_LARGEHALL;
 (*reverbItf)-
>SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_FRONTGARDEN:
 {
 SLEnvironmentalReverbSettings rvbSettings =
SL_I3DL2_ENVIRONMENT_PRESET_GENERIC;
 (*reverbItf)-
>SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_BEDROOM:
 {
 SLEnvironmentalReverbSettings rvbSettings =
SL_I3DL2_ENVIRONMENT_PRESET_SMALLROOM;
 (*reverbItf)-
>SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_EXIT:
 exit = 1;
 break;
 }
 oldEnvironment = environment;
 }

 SLEEP(10);
 }
 }

 /* Destroy the players */
 (*music)->Destroy(music);
 (*player[0])->Destroy(player[0]);

OpenSL ES 1.0.1 Specification 513

 (*player[1])->Destroy(player[1]);
 (*player[2])->Destroy(player[2]);
 (*player[3])->Destroy(player[3]);

 /* Destroy the listener object */
 (*listener)->Destroy(listener);

 /* Destroy Output Mix object */
 (*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestEnvironmentalReverb(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

B.6.2 Equalizer

This example shows the OpenSL ES part of an interactive equalizer GUI.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 5

/* Global variables. (Should be local in real application.) */
SLObjectItf engine; /* OpenSL ES Engine */
SLObjectItf player;
SLObjectItf outputMix;
SLPlayItf playItf;
SLEqualizerItf equalizerItf;

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {

514 OpenSL ES 1.0.1 Specification

 // Debug printing to be placed here
 exit(1);
 }
}

/*
 * Draws single EQ band to the screen. Called by drawEQDisplay
 */
void drawEQBand(int minFreq, int maxFreq, int level)
{
 /* insert drawing routines here for single EQ band
 (use GetBandLevelRange and screen height to map the level to screen
y-coordinate) */
}

/*
 * Called when the display is repainted.
 */
void drawEQDisplay()
{
 SLuint16 numBands;
 SLmillibel bandLevel, minLevel, maxLevel;
 SLmilliHertz minFreq, maxFreq;
 int band;

 SLresult res;

 res = (*equalizerItf)->GetNumberOfBands(equalizerItf, &numBands);
CheckErr(res);
 res = (*equalizerItf)->GetBandLevelRange(equalizerItf, &minLevel,
&maxLevel); CheckErr(res);

 for(band = 0; band<numBands; band++)
 {
 res = (*equalizerItf)->GetBandFreqRange(equalizerItf,
(SLint16)band, &minFreq, &maxFreq); CheckErr(res);
 res = (*equalizerItf)->GetBandLevel(equalizerItf, (SLint16)band,
&bandLevel); CheckErr(res);
 drawEQBand(minFreq, maxFreq, bandLevel);
 }
}

/*
 * Initializes the OpenSL ES engine and start the playback of
 * some music from a file and draw the graphical equalizer
 */
void init()
{
 SLEngineItf EngineItf;

 SLresult res;

 SLDataSource audioSource;

OpenSL ES 1.0.1 Specification 515

 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

 SLVolumeItf volumeItf;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 /* Create OpenSL ES */
 res = slCreateEngine(&engine, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*engine)->Realize(engine, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get the SL Engine Interface which is implicit*/
 res = (*engine)->GetInterface(engine, SL_IID_ENGINE, (void
*)&EngineItf); CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Set arrays required[] and iidArray[] for VOLUME and EQUALIZER
interfaces */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_VOLUME;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_EQUALIZER;

 /* Create Output Mix object to be used by player */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &outputMix, 2,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Get play and equalizer interface */
 res = (*outputMix)->GetInterface(outputMix, SL_IID_VOLUME, (void
*)&volumeItf); CheckErr(res);

516 OpenSL ES 1.0.1 Specification

 res = (*outputMix)->GetInterface(outputMix, SL_IID_EQUALIZER, (void
*)&equalizerItf); CheckErr(res);

 /* Setup the data source structure */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = (SLchar *) "file:///music.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;

 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = outputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for no interfaces (PlayItf is
implicit) */
 required[0] = SL_BOOLEAN_FALSE;
 iidArray[0] = SL_IID_NULL;
 required[1] = SL_BOOLEAN_FALSE;
 iidArray[1] = SL_IID_NULL;

 /* Create the music player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
&audioSource, &audioSink, 0, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get the play interface */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);

 /* Before we start set volume to -3dB (-300mB) and enable equalizer */
 res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);
 res = (*equalizerItf)->SetEnabled(equalizerItf, SL_BOOLEAN_TRUE);
CheckErr(res);

 /* Play the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);

 /* Draw the graphical EQ */
 drawEQDisplay();
}

/**
 * Shuts down the OpenSL ES engine.
 */

OpenSL ES 1.0.1 Specification 517

void destroy()
{
 SLresult res;

 /* Stop the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
CheckErr(res);
 /* Destroy the player */
 (*player)->Destroy(player);
 /* Destroy Output Mix object */
 (*outputMix)->Destroy(outputMix);

 /* Shutdown OpenSL ES */
 (*engine)->Destroy(engine);
}

/*
 * Called by UI when user increases or decreases a band level.
 */
void setBandLevel(SLint16 band, SLboolean increase)
{
 SLuint16 numBands;
 SLmillibel bandLevel, minLevel, maxLevel;

 SLresult res;

 res = (*equalizerItf)->GetNumberOfBands(equalizerItf, &numBands);
CheckErr(res);
 res = (*equalizerItf)->GetBandLevelRange(equalizerItf, &minLevel,
&maxLevel); CheckErr(res);

 if(band >= numBands) {
 /* Error. Insert debug print here. */
 exit(0);
 }

 res = (*equalizerItf)->GetBandLevel(equalizerItf, band, &bandLevel);
CheckErr(res);

 if(increase==SL_BOOLEAN_TRUE)
 {
 /* increase the level by 1 dB (100mB) if the max supported level is
not exceeded */
 bandLevel = bandLevel + 100;
 if(bandLevel < maxLevel)
 {
 res = (*equalizerItf)->SetBandLevel(equalizerItf, band,
bandLevel); CheckErr(res);
 drawEQDisplay();
 }
 } else /* increase==false */
 {

518 OpenSL ES 1.0.1 Specification

 /* decrease the level by 1 dB (100mB) if the min supported level is
not crossed */
 bandLevel = bandLevel - 100;
 if(bandLevel > minLevel)
 {
 res = (*equalizerItf)->SetBandLevel(equalizerItf, band,
bandLevel); CheckErr(res);
 drawEQDisplay();
 }
 }
}

OpenSL ES 1.0.1 Specification 519

B.7 IO Devices and capabilities

B.7.1 Engine capabilities

Engine Capabilities Example.

#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define MAX_NUMBER_LED_DEVICES 3
#define MAX_NUMBER_VIBRA_DEVICES 3
#define POSITION_UPDATE_PERIOD 1000 /* 1 sec */

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

/*
 * Test the querying of capabilities of an OpenSL ES engine
 */
void TestEngineCapabilities(SLObjectItf sl)
{
 SLEngineCapabilitiesItf EngineCapabilitiesItf;
 SLVibraDescriptor VibraDescriptor[MAX_NUMBER_VIBRA_DEVICES];
 SLLEDDescriptor LEDDescriptor[MAX_NUMBER_LED_DEVICES];

 SLresult res;

 SLuint32 i = 0, numLEDDevices = 0,
LEDDeviceID[MAX_NUMBER_LED_DEVICES];
 SLuint32 numVibraDevices = 0, VibraDeviceID[MAX_NUMBER_VIBRA_DEVICES];
 SLboolean isThreadSafe = SL_BOOLEAN_FALSE;

 SLint16 profilesSupported = 0;
 SLboolean isPhoneProfileSupported = SL_BOOLEAN_FALSE;
 SLboolean isMusicProfileSupported = SL_BOOLEAN_FALSE;
 SLboolean isGameProfileSupported = SL_BOOLEAN_FALSE;
 SLint16 numMIDISynthesizers = 0;

 SLint16 numMax2DVoices = 0, numFree2DVoices = 0;
 SLboolean isAbsoluteMax2D = SL_BOOLEAN_FALSE;

 SLint16 numMaxMIDIVoices = 0, numFreeMIDIVoices = 0;

520 OpenSL ES 1.0.1 Specification

 SLboolean isAbsoluteMaxMIDI = SL_BOOLEAN_FALSE;

 SLint16 numMax3DVoices = 0, numFree3DVoices = 0;
 SLboolean isAbsoluteMax3D = SL_BOOLEAN_FALSE;

 SLint16 numMax3DMidiVoices = 0, numFree3DMidiVoices = 0;
 SLboolean isAbsoluteMax3DMidi = SL_BOOLEAN_FALSE;

 SLint16 vMajor = 0, vMinor = 0, vStep = 0;

 /* Get the Engine Capabilities interface - an implicit interface */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINECAPABILITIES, (void
*)&EngineCapabilitiesItf); CheckErr(res);

 /* Query profile support */
 res = (*EngineCapabilitiesItf)->QuerySupportedProfiles(
EngineCapabilitiesItf, &profilesSupported); CheckErr(res);

 if (profilesSupported & SL_PROFILES_PHONE)
 isPhoneProfileSupported = SL_BOOLEAN_TRUE;
 if (profilesSupported & SL_PROFILES_MUSIC)
 isMusicProfileSupported = SL_BOOLEAN_TRUE;
 if (profilesSupported & SL_PROFILES_GAME)
 isGameProfileSupported = SL_BOOLEAN_TRUE;

 /* Query available voices for 2D audio */
 res = (*EngineCapabilitiesItf)->QueryAvailableVoices(
EngineCapabilitiesItf, SL_VOICETYPE_2D_AUDIO, &numMax2DVoices,
&isAbsoluteMax2D, &numFree2DVoices); CheckErr(res);

 /* Query available voices for MIDI. Note: MIDI is mandated only in the
PHONE and GAME profiles. */
 res = (*EngineCapabilitiesItf)->QueryAvailableVoices(
EngineCapabilitiesItf, SL_VOICETYPE_MIDI, &numMaxMIDIVoices,
&isAbsoluteMaxMIDI, &numFreeMIDIVoices); CheckErr(res);

 /* 3D audio functionality is mandated only in the game profile, so
might want to query for 3D voice types only if GAME profile is supported
*/
 if (isGameProfileSupported) {
 res = (*EngineCapabilitiesItf)->QueryAvailableVoices(
EngineCapabilitiesItf, SL_VOICETYPE_3D_AUDIO, &numMax3DVoices,
&isAbsoluteMax3D, &numFree3DVoices); CheckErr(res);
 res = (*EngineCapabilitiesItf)->QueryAvailableVoices(
EngineCapabilitiesItf, SL_VOICETYPE_3D_MIDIOUTPUT, &numMax3DMidiVoices,
&isAbsoluteMax3DMidi, &numFree3DMidiVoices); CheckErr(res);
 }

 /* Query number of MIDI synthesizers */
 res = (*EngineCapabilitiesItf)->QueryNumberOfMIDISynthesizers(
EngineCapabilitiesItf, &numMIDISynthesizers); CheckErr(res);

 /* Do something with MIDI synthesizer information */

OpenSL ES 1.0.1 Specification 521

 /* Query API version */
 res = (*EngineCapabilitiesItf)->QueryAPIVersion(
EngineCapabilitiesItf, &vMajor, &vMinor, &vStep); CheckErr(res);

 /* Do something with API version information */

 /* Query number of LED devices present in the system */
 res = (*EngineCapabilitiesItf)->QueryLEDCapabilities(
EngineCapabilitiesItf, &numLEDDevices, NULL, NULL); CheckErr(res);

 /* Get the capabilities of each LED device present */
 for(i=0; i< numLEDDevices; i++) {
 /* Retrieve the LEDdeviceID for each of the LED devices found on the
system */
 res = (*EngineCapabilitiesItf)->QueryLEDCapabilities(
EngineCapabilitiesItf, &i, &LEDDeviceID[i], NULL); CheckErr(res);
 /* Either the index i or the LEDdeviceID can be used to retrieve the
capabilities of each LED device; we choose to use the LEDDeviceID here */
 res = (*EngineCapabilitiesItf)->QueryLEDCapabilities(
EngineCapabilitiesItf, NULL, &LEDDeviceID[i], &LEDDescriptor[i]);
 CheckErr(res);
 }

 /* Query number of vibra devices present in the system */
 res = (*EngineCapabilitiesItf)->QueryVibraCapabilities(
EngineCapabilitiesItf, &numVibraDevices, NULL, NULL); CheckErr(res);

 /* Get the capabilities of each vibra device present */
 for(i=0;i< numVibraDevices; i++) {
 /* Retrieve the VibradeviceID for each of the Vibra devices found on
the system */
 res = (*EngineCapabilitiesItf)->QueryVibraCapabilities(
EngineCapabilitiesItf, &i, &VibraDeviceID[i], NULL); CheckErr(res);
 /* Either the index i or the VibraDeviceID can be used to retrieve the
capabilities of each Vibra device; we choose to use the VibraDeviceID
here */
 res = (*EngineCapabilitiesItf)->QueryVibraCapabilities(
EngineCapabilitiesItf, NULL, &VibraDeviceID[i], &VibraDescriptor[i]);
CheckErr(res);
 }

 /* Determine if implementation is thread safe */
 res = (*EngineCapabilitiesItf)->IsThreadSafe(EngineCapabilitiesItf,
&isThreadSafe); CheckErr(res);

 /* Do something with thread-safety information returned */
}

int sl_main(void)
{
 SLresult res;

522 OpenSL ES 1.0.1 Specification

 SLObjectItf sl;

 /* Create OpenSL ES engine in thread-safe mode */
 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);

 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestEngineCapabilities(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

OpenSL ES 1.0.1 Specification 523

Appendix C: Use Case Sample Code

C.1 Introduction
This appendix provides sample code illustrating how objects can be used together to
support one simple use case for each profile. A description of each use case is followed by
an object relationship diagram and sample code. The sample code shows how to use the
API and is for purposes of illustration only – it is not intended to provide realistic
application code. Specifically, the sample code uses getchar for purposes of illustration
only and includes limited error handling for the sake of clarity.

C.2 Music Profile
This example shows how the API is used in the following case:

Play some music from a file, adding/removing Reverb and enabling/disabling Stereo
Positioning when requested by a user. The application also receives music playback
progress indications via callbacks, so that a progress bar can be displayed for the user.
The resources for Reverb are added and removed dynamically to illustrate use of the
Dynamic Interface Management functionality.

C.2.1 Object Relationships

Figure 40: Object relationships

524 OpenSL ES 1.0.1 Specification

C.2.2 Example Code
#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 4
#define MAX_NUMBER_OUTPUT_DEVICES 6
#define POSITION_UPDATE_PERIOD 1000 /* 1 second */

/***/
/* Dummy semaphore and event related types, prototypes and defines */

typedef SLuint16 Sem_t; /* System semaphore type would replace Sem_t */
Sem_t semDIM;

void sem_post(Sem_t *pSemaphore)
{
 /* Implementation specific semaphore post */
}
void sem_wait(Sem_t *pSemaphore)
{
 /* Implementation specific semaphore wait */
}

#define MAX_NUMBER_EVENTS 50
void* eventQueue[MAX_NUMBER_EVENTS];

void event_post(void* eventQueue[], void* event)
{
 /* Implementation specific event post */
};

void* event_read(void* eventQueue[])
{
 void* result_p = NULL;
 /* Implementation specific event read */
 return result_p;
};

/***/

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

OpenSL ES 1.0.1 Specification 525

SLresult asyncRes; /* Global variable used to pass result back to
client */

void DIMCallback(SLDynamicInterfaceManagementItf caller,
 void *pContext,
 SLuint32 event,
 SLresult result,
 const SLInterfaceID iid)
{
 if(event==SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION)
 {
 if((iid == SL_IID_PRESETREVERB))
 {
 asyncRes=result; /* Better and safer to set member of
*pContext in context of client thread
 * but global variable used to pass
result back to client for simplicity */
 sem_post(&semDIM);
 }
 }
 else
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

typedef struct queue_playevent_t_ {
 SLPlayItf caller;
 void *pContext;
 SLuint32 playevent;
} queue_playevent_t;

/* Callback for position events */
void PlayEventCallback(SLPlayItf caller,
 void *pContext,
 SLuint32 playevent)
{
 queue_playevent_t queue_playevent={caller, pContext, playevent};
 event_post(eventQueue, (void*)&queue_playevent);
}

/* Example main event loop thread for handling Play events*/
void eventThread()
{
 queue_playevent_t* queue_playevent_p;
 while(1) /* Event loop */
 {
 queue_playevent_p=(queue_playevent_t*)event_read(eventQueue);
 switch(queue_playevent_p->playevent)
 {
 case SL_PLAYEVENT_HEADATNEWPOS:
 /* Advance progress bar by 1 second */

526 OpenSL ES 1.0.1 Specification

 break;
 default:
 break;
 }
 }
}

/* Play some music from a file, adding PresetReverb and changing stereo
position when requested as well as doing progress bar callbacks */
void TestPlayMusicStereoPositionAndReverb(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
 SLAudioOutputDescriptor AudioOutputDescriptor;

 SLuint32 OutputDeviceIDs[MAX_NUMBER_OUTPUT_DEVICES];
 SLint32 numOutputs = 0;
 SLboolean earpiece_available = SL_BOOLEAN_FALSE;
 SLboolean handsfree_speaker_available = SL_BOOLEAN_FALSE;
 SLboolean earpiece_or_handsfree_speaker_default = SL_BOOLEAN_FALSE;
 SLuint32 earpiece_deviceID = 0;
 SLuint32 handsfree_speaker_deviceID = 0;
 SLuint32 deviceID = 0;

 SLresult res;

 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

 SLObjectItf player;
 SLPlayItf playItf;
 SLSeekItf seekItf;
 SLEffectSendItf effectSendItf;

 SLObjectItf OutputMix;
 SLVolumeItf volumeItf;
 SLDynamicInterfaceManagementItf dynamicInterfaceManagementItf;

 int i;
 char c;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /*Get the SL Engine Interface which is implicit*/
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */

OpenSL ES 1.0.1 Specification 527

 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Get the Audio IO DEVICE CAPABILITIES interface */
 res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES, (void
*)&AudioIODeviceCapabilitiesItf); CheckErr(res);
 numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
 res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioOutputs(
AudioIODeviceCapabilitiesItf, &numOutputs, OutputDeviceIDs);
CheckErr(res);

 /* Search for phone earpiece output and phone speaker device */
 for (i=0;i<numOutputs; i++)
 {
 res = (*AudioIODeviceCapabilitiesItf)-
>QueryAudioOutputCapabilities(AudioIODeviceCapabilitiesItf,
OutputDeviceIDs[i], &AudioOutputDescriptor); CheckErr(res);
 if((AudioOutputDescriptor.deviceConnection ==
SL_DEVCONNECTION_INTEGRATED)&&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_USER)&&
 (AudioOutputDescriptor.deviceLocation ==
SL_DEVLOCATION_HANDSET))
 {
 earpiece_deviceID = OutputDeviceIDs[i];
 earpiece_available = SL_BOOLEAN_TRUE;
 }
 else if((AudioOutputDescriptor.deviceConnection ==
SL_DEVCONNECTION_INTEGRATED)&&
 (AudioOutputDescriptor.deviceScope ==
SL_DEVSCOPE_ENVIRONMENT)&&
 (AudioOutputDescriptor.deviceLocation ==
SL_DEVLOCATION_HANDSET))
 {
 handsfree_speaker_deviceID = OutputDeviceIDs[i];
 handsfree_speaker_available = SL_BOOLEAN_TRUE;
 }
 }

 numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
 res = (*AudioIODeviceCapabilitiesItf)-
>GetDefaultAudioDevices(AudioIODeviceCapabilitiesItf,
SL_DEFAULTDEVICEID_AUDIOOUTPUT, &numOutputs, OutputDeviceIDs);
CheckErr(res);
 /* Check whether Default Output devices include either earpiece or
phone speaker */
 for (i=0;i<numOutputs; i++)
 {
 if((OutputDeviceIDs[i] == earpiece_deviceID)||
 (OutputDeviceIDs[i] == handsfree_speaker_deviceID))
 {

528 OpenSL ES 1.0.1 Specification

 earpiece_or_handsfree_speaker_default = SL_BOOLEAN_TRUE;
 break;
 }
 }

 /* Expect earpiece or phone speaker to be set as default output device
*/
 if(!earpiece_or_handsfree_speaker_default)
 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Set arrays required[] and iidArray[] for VOLUME interface */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_VOLUME;
 /* Create Output Mix object to be used by player */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void
*)&volumeItf); CheckErr(res);

 /* Setup the data source structure */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = "file:///music.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;

 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for SEEK and EFFECTSEND
interface (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_SEEK;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_EFFECTSEND;

 /* Create the music player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
&audioSource, &audioSink, 2, iidArray, required); CheckErr(res);

OpenSL ES 1.0.1 Specification 529

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get seek, play and effect send interfaces */
 res = (*player)->GetInterface(player, SL_IID_SEEK, (void *)&seekItf);
CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_EFFECTSEND, (void
*)&effectSendItf); CheckErr(res);

 /* Setup to receive position event callbacks */
 res = (*playItf)->RegisterCallback(playItf, PlayEventCallback, NULL);
 CheckErr(res);

 res = (*playItf)->SetPositionUpdatePeriod(playItf,
POSITION_UPDATE_PERIOD); CheckErr(res);
 res = (*playItf)->SetCallbackEventsMask(playItf,
SL_PLAYEVENT_HEADATNEWPOS); CheckErr(res);

 /* Before we start set volume to -3dB (-300mB) */
 res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);

 /* Set Stereo Position to right channel but do not enable stereo
positioning */
 res = (*volumeItf)->SetStereoPosition(volumeItf, 1000); CheckErr(res);

 /* Get the Dynamic Interface Management interface for the Output Mix
object */
 res = (*OutputMix)->GetInterface(OutputMix,
SL_IID_DYNAMICINTERFACEMANAGEMENT, (void
*)&dynamicInterfaceManagementItf); CheckErr(res);
 /* Register DIM callback */
 res = (*dynamicInterfaceManagementItf)-
>RegisterCallback(dynamicInterfaceManagementItf, DIMCallback, NULL);
CheckErr(res);

 /* Play the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);

 while ((c = getchar()) != 'q')
 {
 SLuint32 playState;
 SLPresetReverbItf PresetReverbItf;

 SLmillibel Min = SL_MILLIBEL_MIN;
 SLmillibel Max = 0;
 SLmillisecond PositionMSec = 0;
 SLboolean PresetReverbRealized = SL_BOOLEAN_FALSE;

 switch(c)

530 OpenSL ES 1.0.1 Specification

 {
 case '1':
 /* Play the music - only do so if it's not already playing
though */
 res = (*playItf)->GetPlayState(playItf, &playState);
CheckErr(res);
 if (playState != SL_PLAYSTATE_PLAYING)
 {
 res = (*playItf)->SetPlayState(playItf,
SL_PLAYSTATE_PLAYING); CheckErr(res);
 }
 break;
 case '2':
 /* Pause the music - only do so if it is playing */
 res = (*playItf)->GetPlayState(playItf, &playState);
CheckErr(res);
 if (playState == SL_PLAYSTATE_PLAYING)
 {
 res = (*playItf)->SetPlayState(playItf,
SL_PLAYSTATE_PAUSED); CheckErr(res);
 }
 break;
 case '3':
 /* Enable Stereo Positioning */
 res = (*volumeItf)->EnableStereoPosition(volumeItf,
SL_BOOLEAN_TRUE); CheckErr(res);
 break;
 case '4':
 /* Disable Stereo Positioning */
 res = (*volumeItf)->EnableStereoPosition(volumeItf,
SL_BOOLEAN_FALSE); CheckErr(res);
 break;
 case '5':
 /* Add some Reverb if not already present and there are
sufficient resources. */
 if (!PresetReverbRealized)
 {
 res = (*playItf)->GetPosition(playItf, &PositionMSec);
CheckErr(res);
 res = (*playItf)->GetPlayState(playItf, &playState);
CheckErr(res);
 /* We need to stop the music first though. */
 res = (*playItf)->SetPlayState(playItf,
SL_PLAYSTATE_STOPPED); CheckErr(res);

 /* Dynamically add the PresetReverb interface to the
Output Mix object */
 res = (*dynamicInterfaceManagementItf)-
>AddInterface(dynamicInterfaceManagementItf, SL_IID_PRESETREVERB,
SL_BOOLEAN_FALSE); CheckErr(res);
 /* Wait until asynchronous call terminates */
 sem_wait(&semDIM);

OpenSL ES 1.0.1 Specification 531

 if (asyncRes == SL_RESULT_SUCCESS)
 {
 PresetReverbRealized = SL_BOOLEAN_TRUE;
 /* Get PresetReverb interface */
 res = (*OutputMix)->GetInterface(OutputMix,
SL_IID_PRESETREVERB, (void *)&PresetReverbItf); CheckErr(res);
 /* Setup PresetReverb for LARGE HALL */
 res = (*PresetReverbItf)->SetPreset(PresetReverbItf,
SL_REVERBPRESET_LARGEHALL); CheckErr(res);
 /* Enable the reverb effect and set the reverb level
for Audio Player at -3dB (-300mB) */
 res = (*effectSendItf)->EnableEffectSend(effectSendItf,
&PresetReverbItf, SL_BOOLEAN_TRUE, -300);
 }
 else
 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Set head to continue from position where it was stopped
*/
 res = (*seekItf)->SetPosition(seekItf, PositionMSec,
SL_SEEKMODE_FAST); CheckErr(res);
 /* Go back to state before stopped */
 res = (*playItf)->SetPlayState(playItf, playState);
CheckErr(res);
 }
 break;
 case '6':
 /* Remove the Preset Reverb if present. */
 if (PresetReverbRealized)
 {
 res = (*playItf)->GetPosition(playItf, &PositionMSec);
CheckErr(res);
 res = (*playItf)->GetPlayState(playItf, &playState);
CheckErr(res);
 /* We need to stop the music first though. */
 res = (*playItf)->SetPlayState(playItf,
SL_PLAYSTATE_STOPPED); CheckErr(res);

 /* Disable the reverb effect for Audio Player */
 res = (*effectSendItf)->EnableEffectSend(effectSendItf,
&PresetReverbItf, SL_BOOLEAN_FALSE, 0);

 /* Dynamically remove the PresetReverb interface from the
Output Mix object */
 res = (*dynamicInterfaceManagementItf)-
>RemoveInterface(dynamicInterfaceManagementItf, SL_IID_PRESETREVERB);
CheckErr(res);

 PresetReverbRealized = SL_BOOLEAN_FALSE;

532 OpenSL ES 1.0.1 Specification

 /* Set head to continue from position where it was stopped
*/
 res = (*seekItf)->SetPosition(seekItf, PositionMSec,
SL_SEEKMODE_FAST); CheckErr(res);
 /* Go back to state before stopped */
 res = (*playItf)->SetPlayState(playItf, playState);
CheckErr(res);
 }
 break;
 default:
 break;
 }
 }

 /* Stop the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
CheckErr(res);
 /* Destroy the player */
 (*player)->Destroy(player);
 /* Destroy Output Mix object */
 (*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;
 char c;

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 /* Simple test harness! */
 while ((c = getchar()) != 'q')
 {
 switch (c)
 {
 case '1':
 /* Create OpenSL ES */
 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestPlayMusicStereoPositionAndReverb(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 break;
 default:
 break;
 }
 }
 exit(0);
}

OpenSL ES 1.0.1 Specification 533

C.3 Phone Profile
This example shows how the API is used for the following case:

Listening to music on headset and incoming message alert requires MIDI to begin. Stop
music playing on headset after storing final music play position.

Assume the application knows there is insufficient resources to have a MIDI player in
existence at the same time as a Music player. So destroy the Music player and create a
new MIDI player to generate message alert from file, playing audio using a different
IODevice output (phone handsfree speaker).

When MIDI player has completed playing, destroy MIDI player and create music player to
continue playing on headset from where it stopped.

C.3.1 Object Relationships

534 OpenSL ES 1.0.1 Specification

Figure 41: Object relationships(2)

C.3.2 Example Code
#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 3
#define MAX_NUMBER_OUTPUT_DEVICES 6

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

/* Listening to music in headphones and incoming message alert requires
 MIDI to begin.
 Stop music playing in headphones after storing final music play
 position.
 New MIDI player created to generate message alert from file to
 different IODevice output (ring speaker).
 When MIDI player completed playing then destroy Midi player and
 create music player to continue play from where it stopped. */

void TestPhone(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
 SLAudioOutputDescriptor AudioOutputDescriptor;

 SLuint32 OutputDeviceIDs[MAX_NUMBER_OUTPUT_DEVICES];
 SLint32 numOutputs = 0;
 SLboolean headset_available = SL_BOOLEAN_FALSE;
 SLboolean handsfree_speaker_available = SL_BOOLEAN_FALSE;
 SLuint32 headset_deviceID = 0;
 SLuint32 handsfree_speaker_deviceID = 0;
 SLuint32 deviceID = 0;

 SLresult res;

 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

OpenSL ES 1.0.1 Specification 535

 SLObjectItf player;
 SLPlayItf playItf;
 SLSeekItf seekItf;

 SLObjectItf OutputMix;
 SLOutputMixItf outputMixItf;
 SLVolumeItf volumeItf;

 int i;
 char c;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 SLmillisecond DurationMsec = 0;

 /*Get the SL Engine Interface which is implicit*/
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Get the Audio IO DEVICE CAPABILITIES interface */
 res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES, (void
*)&AudioIODeviceCapabilitiesItf); CheckErr(res);
 numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
 res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioOutputs(
AudioIODeviceCapabilitiesItf, &numOutputs, OutputDeviceIDs);
CheckErr(res);

 /* Search for headset output and phone handsfree speaker device */
 for (i=0;i<numOutputs; i++)
 {
 res = (*AudioIODeviceCapabilitiesItf)-
>QueryAudioOutputCapabilities(AudioIODeviceCapabilitiesItf,
OutputDeviceIDs[i], &AudioOutputDescriptor); CheckErr(res);
 if((AudioOutputDescriptor.deviceConnection ==
SL_DEVCONNECTION_ATTACHED_WIRED)&&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_USER)&&
 (AudioOutputDescriptor.deviceLocation ==
SL_DEVLOCATION_HEADSET))
 {
 headset_deviceID = OutputDeviceIDs[i];
 headset_available = SL_BOOLEAN_TRUE;
 }

536 OpenSL ES 1.0.1 Specification

 else if((AudioOutputDescriptor.deviceConnection ==
SL_DEVCONNECTION_INTEGRATED)&&
 (AudioOutputDescriptor.deviceScope ==
SL_DEVSCOPE_ENVIRONMENT)&&
 (AudioOutputDescriptor.deviceLocation ==
SL_DEVLOCATION_HANDSET))
 {
 handsfree_speaker_deviceID = OutputDeviceIDs[i];
 handsfree_speaker_available = SL_BOOLEAN_TRUE;
 }
 }

 /* Expect both headset output and phone handsfree speaker to be
available */
 if(!(headset_available && handsfree_speaker_available))
 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Set arrays required[] and iidArray[] for VOLUME interface */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_VOLUME;

 /* Create Output Mix object to be used by player */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void
*)&volumeItf); CheckErr(res);

 /* Get Output Mix interface */
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_OUTPUTMIX, (void
*)&outputMixItf); CheckErr(res);
 /* Route output to headset */
 res = (*outputMixItf)->ReRoute(outputMixItf, 1, &headset_deviceID);
CheckErr(res);

 /* Setup the data source structure */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = "file:///music.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;

 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */

OpenSL ES 1.0.1 Specification 537

 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for SEEK interface (PlayItf is
implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_SEEK;

 /* Create the music player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
&audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get seek and play interfaces */
 res = (*player)->GetInterface(player, SL_IID_SEEK, (void *)&seekItf);
CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);

 /* Before we start set volume to -3dB (-300mB) */
 res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);

 /* Get duration of content */
 res = (*playItf)->GetDuration(playItf, &DurationMsec); CheckErr(res);
 if (DurationMsec != SL_TIME_UNKNOWN)
 {
 /* Enable looping of entire file */
 res = (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0,
DurationMsec); CheckErr(res);
 }
 else
 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Play the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);

 while ((c = getchar()) != 'q')
 {
 SLuint32 playState;
 SLmillisecond PositionMSec = 0;
 SLboolean MidiPlayed = SL_BOOLEAN_FALSE;

 switch(c)
 {
 case '1':

538 OpenSL ES 1.0.1 Specification

 /* Begin playing Midi ringtone if not already playing after
stopping and destroying music player */
 if (!MidiPlayed)
 {
 SLObjectItf Midi_player;
 SLPlayItf Midi_playItf;
 SLDataSource Midi_file;
 SLDataSource Midi_bank;

 SLDataLocator_URI Midi_fileLoc = { SL_DATALOCATOR_URI,
"file:///foo.mid"};
 SLDataFormat_MIME Midi_fileFmt = { SL_DATAFORMAT_MIME,
"audio/x-midi", SL_CONTAINERTYPE_SMF };
 SLDataLocator_URI Midi_bankLoc = { SL_DATALOCATOR_URI,
"file:///foo.dls"};
 SLDataFormat_MIME Midi_bankFmt = { SL_DATAFORMAT_MIME,
"audio/dls", SL_CONTAINERTYPE_MOBILE_DLS };

 SLmillisecond Midi_dur;
 SLmillisecond Midi_pos;

 res = (*playItf)->GetPosition(playItf, &PositionMSec);
CheckErr(res);
 res = (*playItf)->GetPlayState(playItf, &playState);
CheckErr(res);
 /* Stop the music. */
 res = (*playItf)->SetPlayState(playItf,
SL_PLAYSTATE_STOPPED); CheckErr(res);
 /* Delete the music player */
 (*player)->Destroy(player);

 Midi_file.pFormat = (void*)&Midi_fileFmt;
 Midi_file.pLocator = (void*)&Midi_fileLoc;
 Midi_bank.pFormat = (void*)&Midi_bankFmt;
 Midi_bank.pLocator = (void*)&Midi_bankLoc;

 /* Create the Midi player */
 res = (*EngineItf)->CreateMidiPlayer(EngineItf,
&Midi_player, &Midi_file, &Midi_bank, &audioSink, NULL, NULL, 0, NULL,
NULL); CheckErr(res);

 /* Realizing the Midi player object in synchronous mode.
*/
 res = (*Midi_player)->Realize(Midi_player,
SL_BOOLEAN_FALSE); CheckErr(res);
 res = (*Midi_player)->GetInterface(Midi_player,
SL_IID_PLAY, (void *)&Midi_playItf); CheckErr(res);
 res = (*Midi_playItf)->GetDuration(Midi_playItf,
&Midi_dur); CheckErr(res);

 /* Route output to handsfree speaker */

OpenSL ES 1.0.1 Specification 539

 res = (*outputMixItf)->ReRoute(outputMixItf, 1,
&handsfree_speaker_deviceID); CheckErr(res);

 res = (*Midi_playItf)->SetPlayState(Midi_playItf,
SL_PLAYSTATE_PLAYING); CheckErr(res);
 do
 {
 res = (*Midi_playItf)->GetPosition(Midi_playItf,
&Midi_pos); CheckErr(res);
 } while(Midi_pos < Midi_dur);

 MidiPlayed = SL_BOOLEAN_TRUE;

 /* Destroy Midi player */
 (*Midi_player)->Destroy(Midi_player);

 /* Create the music player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
&audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Get seek and play interfaces *
 res = (*player)->GetInterface(player, SL_IID_SEEK, (void
*)&seekItf); CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void
*)&playItf); CheckErr(res);

 /* Route output to headset *
 res = (*outputMixItf)->ReRoute(outputMixItf, 1,
&headset_deviceID); CheckErr(res);

 /* Set head to continue from position where it was stopped
*/
 res = (*seekItf)->SetPosition(seekItf, PositionMSec,
SL_SEEKMODE_FAST); CheckErr(res);
 /* Go back to state before stopped i.e. continue playing
music if not already at end of file */
 res = (*playItf)->SetPlayState(playItf, playState);
CheckErr(res);
 }
 break;

 }
 }

 /* Stop the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
CheckErr(res);
 /* Delete the player */
 (*player)->Destroy(player);

540 OpenSL ES 1.0.1 Specification

 /* Destroy Output Mix object */
 (*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;
 char c;

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 /* Simple test harness! */
 while ((c = getchar()) != 'q')
 {
 switch (c)
 {
 case '2':
 /* Create OpenSL ES */
 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. *
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestPhone(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 break;
 default:
 break;
 }
 }
 exit(0);
}

OpenSL ES 1.0.1 Specification 541

C.4 Game Profile
This example shows how the API is used in the following case:

There is a stationary 3D positioned Midi sound source, two PCM sound sources which are
the sounds of a car engine noise and siren moving at a speed of 50kph from left to right.
The Listener is stationary, looking forward.

C.4.1 Object Relationships

AudioPlayer

OutputMix

SLEngine

SLObjectItf
SLEngineItf

SLPrefetchStatusItf
SLObjectItf

SLObjectItf
SLOutputMixItf

OutputDevice

DataSource

Headset
Output
Device

DataSink

URI
(pcm1.
wav)

SL3DGroupingItf
SLEnvironmentalReverbItf

SLAudioIODeviceCapabilitiesItf

MidiPlayer

URI
(foo.mid
i)

DataSource

URI
(foo.dls) DataSource

SLObjectItf

SLPlayItf

creates

creates

creates

DataSink

SL3DLocation

SLEffectSendItf
SLPlayItf

AudioPlayer

SLPrefetchStatusItf
SLObjectItf

DataSourceURI
(pcm2.
wav)

SL3DGroupingItf
SLEffectSendItf

SLPlayItf

DataSink

creates
3DGroup

SLObjectItf
SL3DLocationItf

SL3DDopplerItf

creates Listener

creates

SLObjectItf
SL3DLocationItf

Member of
3D Group

Member of
3D Group

SLVolumeItf

SLSeekItf

SLSeekItf

SLEffectSendItf

542 OpenSL ES 1.0.1 Specification

Figure 42: Object relationships(3)

C.4.2 Example Code
#include <stdio.h>
#include <stdlib.h>

#include "OpenSLES.h"

#define SLEEP(x) /* Client system sleep function to sleep x
milliseconds would replace SLEEP macro */

#define MAX_NUMBER_INTERFACES 3
#define MAX_NUMBER_OUTPUT_DEVICES 6
#define CAR_SPEED_KPH 50 /* Speed of car is 50km/hour */
#define CAR_SPEED_MMPSEC CAR_SPEED_KPH*1000000/3600 /* Speed of car in
mm/second */

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

/* Stationary 3D positioned Midi , 2 PCM sources car engine noise and
siren moving fast from left to right,
 Listener stationary looking forward
*/
void TestGame(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
 SLAudioOutputDescriptor AudioOutputDescriptor;

 SLuint32 OutputDeviceIDs[MAX_NUMBER_OUTPUT_DEVICES];
 SLint32 numOutputs = 0;
 SLboolean headset_available = SL_BOOLEAN_FALSE;
 SLuint32 headset_deviceID = 0;
 SLuint32 deviceID = 0;

 SLresult res;

 SLObjectItf Midi_player;
 SLPlayItf Midi_playItf;
 SLEffectSendItf Midi_effectSendItf;
 SL3DLocationItf Midi_3DLocationItf;

 SLDataSource midSrc;
 SLDataSource bnkSrc;

OpenSL ES 1.0.1 Specification 543

 SLDataLocator_URI Midi_fileLoc = { SL_DATALOCATOR_URI,
"file:///foo.mid"};
 SLDataFormat_MIME Midi_fileFmt = { SL_DATAFORMAT_MIME, "audio/x-
midi", SL_CONTAINERTYPE_SMF };
 SLDataLocator_URI Midi_bankLoc = { SL_DATALOCATOR_URI,
"file:///foo.dls"};
 SLDataFormat_MIME Midi_bankFmt = { SL_DATAFORMAT_MIME, "audio/dls",
SL_CONTAINERTYPE_MOBILE_DLS };

 SLObjectItf Pcm1_player;
 SLObjectItf Pcm2_player;
 SLPlayItf Pcm1_playItf;
 SLPlayItf Pcm2_playItf;
 SLSeekItf Pcm1_seekItf;
 SLSeekItf Pcm2_seekItf;
 SLPrefetchStatusItf Pcm1_prefetchItf;
 SLPrefetchStatusItf Pcm2_prefetchItf;
 SL3DGroupingItf Pcm1_3DGroupingItf;
 SL3DGroupingItf Pcm2_3DGroupingItf;
 SLEffectSendItf Pcm1_effectSendItf;
 SLEffectSendItf Pcm2_effectSendItf;

 SLDataLocator_URI pcm1Loc = {SL_DATALOCATOR_URI,
"file:///pcm1.wav"};
 SLDataLocator_URI pcm2Loc = {SL_DATALOCATOR_URI,
"file:///pcm2.wav"};
 SLDataFormat_MIME pcmFormat = {SL_DATAFORMAT_MIME, "audio/x-wav",
SL_CONTAINERTYPE_WAV };
 SLDataSource pcm1Src;
 SLDataSource pcm2Src;

 SLObjectItf Pcm_3DGroup;
 SL3DLocationItf Pcm_3DLocationItf;
 SL3DDopplerItf Pcm_3DDopplerItf;
 SLVec3D Location = {-500000,5000,0}; /* 500 meters to the
left of origin, 5 meters in front of origin */
 SLVec3D Midi_Location = {5000,-3000,3000}; /* 5 meters to
the right of origin, 3 meters behind origin, 3 meters above origin */
 SLVec3D StartVelocity = {CAR_SPEED_MMPSEC,0,0};

 SLObjectItf GameListener;
 SL3DLocationItf Listener_3DLocationItf;

 SLVec3D Listener_Front ={0,0,-1000}; /* Vector for having
listener look forward */
 SLVec3D Listener_Above ={0,1000,0}; /* Vector for having
listener look forward */

 SLObjectItf OutputMix;
 SLVolumeItf volumeItf;
 SLOutputMixItf outputMixItf;
 SLEnvironmentalReverbItf EnvReverbItf;

544 OpenSL ES 1.0.1 Specification

 SLEnvironmentalReverbSettings ReverbSettings =
SL_I3DL2_ENVIRONMENT_PRESET_CITY;

 SLDataLocator_OutputMix locator_outputmix;
 SLDataSink audioSink;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];
 SLmillisecond MidiDurationMsec = 0;
 SLmillisecond PcmDurationMsec = 0;

 /* Get the SL Engine Interface which is implicit*/
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /* Get the Audio IO DEVICE CAPABILITIES interface */
 res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES, (void
*)&AudioIODeviceCapabilitiesItf); CheckErr(res);
 numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
 res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioOutputs(
AudioIODeviceCapabilitiesItf, &numOutputs, OutputDeviceIDs);
CheckErr(res);

 /* Search for headset output device */
 for (i=0;i<numOutputs; i++)
 {
 res = (*AudioIODeviceCapabilitiesItf)-
>QueryAudioOutputCapabilities(AudioIODeviceCapabilitiesItf,
OutputDeviceIDs[i], &AudioOutputDescriptor); CheckErr(res);
 if((AudioOutputDescriptor.deviceConnection ==
SL_DEVCONNECTION_ATTACHED_WIRED)&&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_USER)&&
 (AudioOutputDescriptor.deviceLocation ==
SL_DEVLOCATION_HEADSET))
 {
 headset_deviceID = OutputDeviceIDs[i];
 headset_available = SL_BOOLEAN_TRUE;
 break;
 }
 }

 /* Expect headset output to be available */
 if(!headset_available)

OpenSL ES 1.0.1 Specification 545

 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Set arrays required[] and iidArray[] for VOLUME and ENVIRONMENTAL
REVERB interface (OUTPUTMIX is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_VOLUME;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_ENVIRONMENTALREVERB;

 /* Create Output Mix object to be used by all players */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 2,
iidArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void
*)&volumeItf); CheckErr(res);

 /* Get the environmental reverb interface */
 res = (*OutputMix)->GetInterface(OutputMix,
SL_IID_ENVIRONMENTALREVERB, (void *)&EnvReverbItf); CheckErr(res);

 /* Set reverb environment to city. */
 res = (*EnvReverbItf)->SetEnvironmentalReverbProperties(EnvReverbItf,
&ReverbSettings); CheckErr(res);

 /* Get Output Mix interface */
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_OUTPUTMIX, (void
*)&outputMixItf); CheckErr(res);
 /* Route output to headset */
 res = (*outputMixItf)->ReRoute(outputMixItf, 1, &headset_deviceID);
CheckErr(res);

 /* Set up the MIDI data source */
 midSrc.pLocator = (void*)&Midi_fileLoc;
 midSrc.pFormat = (void*)&Midi_fileFmt;

 /* Set up the bank data source */
 bnkSrc.pLocator = (void*)&Midi_bankLoc;
 bnkSrc.pFormat = (void*)&Midi_bankFmt;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Create the Midi player */

546 OpenSL ES 1.0.1 Specification

 /* Set arrays required[] and iidArray[] for 3DLOCATION and EFFECTSEND
interfaces (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_EFFECTSEND;

 res = (*EngineItf)->CreateMidiPlayer(EngineItf, &Midi_player, &midSrc,
&bnkSrc, &audioSink, NULL, NULL, 2, iidArray, required); CheckErr(res);

 /* Realizing the Midi player object in synchronous mode. */
 res = (*Midi_player)->Realize(Midi_player, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Get playback, 3D location and effectsend interfaces
 for Midi player */
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_PLAY, (void
*)&Midi_playItf); CheckErr(res);
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_3DLOCATION,
(void *)&Midi_3DLocationItf); CheckErr(res);
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_EFFECTSEND,
(void *)&Midi_effectSendItf); CheckErr(res);

 /* Get duration of Midi content */
 res = (*Midi_playItf)->GetDuration(Midi_playItf, &MidiDurationMsec);
CheckErr(res);

 /* Set 3D location of Midi */
 res = (*Midi_3DLocationItf)->SetLocationCartesian(Midi_3DLocationItf,
&Midi_Location); CheckErr(res);

 /* Enable the reverb effect and set the reverb level for Midi Player
at -3dB (-300mB) */
 res = (*Midi_effectSendItf)->EnableEffectSend(Midi_effectSendItf,
&EnvReverbItf, SL_BOOLEAN_TRUE, -300);

 /* Setup the data source structures for pcm1 and pcm2 */
 pcm1Src.pLocator = (void *)&pcm1Loc;
 pcm2Src.pLocator = (void *)&pcm2Loc;
 pcm1Src.pFormat = (void *)&pcmFormat;
 pcm2Src.pFormat = (void *)&pcmFormat;

 /* Set arrays required[] and iidArray[] for PREFETCH, SEEK, 3DGROUPING
and EFFECTSEND interfaces (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_PREFETCHSTATUS;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_3DGROUPING;
 required[2] = SL_BOOLEAN_TRUE;
 iidArray[2] = SL_IID_SEEK;
 required[3] = SL_BOOLEAN_TRUE;
 iidArray[3] = SL_IID_EFFECTSEND;

OpenSL ES 1.0.1 Specification 547

 /* Create the pcm1 player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &Pcm1_player,
&pcm1Src, &audioSink, 4, iidArray, required); CheckErr(res);

 /* Realizing the pcm1 player in synchronous mode. */
 res = (*Pcm1_player)->Realize(Pcm1_player, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Get playback, prefetch, seek, 3D grouping and effect send
interfaces for Pcm1 player */
 res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_PLAY, (void
*)&Pcm1_playItf); CheckErr(res);
 res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_PREFETCHSTATUS,
(void *)&Pcm1_prefetchItf); CheckErr(res);
 res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_SEEK, (void
*)&Pcm1_seekItf); CheckErr(res);
 res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_3DGROUPING,
(void *)&Pcm1_3DGroupingItf); CheckErr(res);
 res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_EFFECTSEND,
(void *)&Pcm1_effectSendItf); CheckErr(res);

 /* Get duration of pcm1 content */
 res = (*Pcm1_playItf)->GetDuration(Pcm1_playItf, &PcmDurationMsec);
CheckErr(res);
 if (PcmDurationMsec != SL_TIME_UNKNOWN)
 {
 /* Enable looping of entire file */
 res = (*Pcm1_seekItf)->SetLoop(Pcm1_seekItf, SL_BOOLEAN_TRUE, 0,
PcmDurationMsec); CheckErr(res);
 }
 else
 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Enable the reverb effect and set the reverb level for Pcm1 Player
at -3dB (-300mB) */
 res = (*Pcm1_effectSendItf)->EnableEffectSend(Pcm1_effectSendItf,
&EnvReverbItf, SL_BOOLEAN_TRUE, -300);

 /* Create the pcm2 player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &Pcm2_player,
&pcm2Src, &audioSink, 4, iidArray, required); CheckErr(res);

 /* Realizing the pcm2 player in synchronous mode. */
 res = (*Pcm2_player)->Realize(Pcm2_player, SL_BOOLEAN_FALSE);
CheckErr(res);

 /* Get playback, prefetch, 3D grouping and effect send interfaces for
Pcm2 player */
 res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_PLAY, (void
*)&Pcm2_playItf); CheckErr(res);

548 OpenSL ES 1.0.1 Specification

 res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_PREFETCHSTATUS,
(void *)&Pcm2_prefetchItf); CheckErr(res);
 res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_SEEK, (void
*)&Pcm2_seekItf); CheckErr(res);
 res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_3DGROUPING,
(void *)&Pcm2_3DGroupingItf); CheckErr(res);
 res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_EFFECTSEND,
(void *)&Pcm2_effectSendItf); CheckErr(res);

 /* Get duration of pcm2 content */
 res = (*Pcm2_playItf)->GetDuration(Pcm2_playItf, &PcmDurationMsec);
CheckErr(res);
 if (PcmDurationMsec != SL_TIME_UNKNOWN)
 {
 /* Enable looping of entire file */
 res = (*Pcm2_seekItf)->SetLoop(Pcm2_seekItf, SL_BOOLEAN_TRUE, 0,
PcmDurationMsec); CheckErr(res);
 }
 else
 {
 /* Debug printing to be placed here */
 exit(1);
 }

 /* Enable the reverb effect and set the reverb level for Pcm2 Player
at -3dB (-300mB) */
 res = (*Pcm2_effectSendItf)->EnableEffectSend(Pcm2_effectSendItf,
&EnvReverbItf, SL_BOOLEAN_TRUE, -300);

 /* Set arrays required[] and iidArray[] for 3DDoppler interface
(3DLocation is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DDOPPLER;

 /* Create 3DGroup to be used for pcm1 and pcm2 */
 res = (*EngineItf)->Create3DGroup(EngineItf, &Pcm_3DGroup, 1,
iidArray, required); CheckErr(res);

 /* Realizing the 3DGroup in synchronous mode. */
 res = (*Pcm_3DGroup)->Realize(Pcm_3DGroup, SL_BOOLEAN_FALSE);
CheckErr(res);
 res = (*Pcm_3DGroup)->GetInterface(Pcm_3DGroup, SL_IID_3DLOCATION,
(void *)&Pcm_3DLocationItf); CheckErr(res);
 res = (*Pcm_3DGroup)->GetInterface(Pcm_3DGroup, SL_IID_3DDOPPLER,
(void *)&Pcm_3DDopplerItf); CheckErr(res);

 /* Add pcm1 and pcm2 players to 3DGroup */

 res = (*Pcm1_3DGroupingItf)->Set3DGroup(Pcm1_3DGroupingItf,
Pcm_3DGroup); CheckErr(res);
 res = (*Pcm2_3DGroupingItf)->Set3DGroup(Pcm2_3DGroupingItf,
Pcm_3DGroup); CheckErr(res);

OpenSL ES 1.0.1 Specification 549

 /* Set arrays required[] and iidArray[] for 3DDoppler interface
(3DLocation is implicit) *
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;

 /* Create Listener */
 res = (*EngineItf)->CreateListener(EngineItf, &GameListener, 1,
iidArray, required); CheckErr(res);

 /* Realizing the Listener in synchronous mode. */
 res = (*GameListener)->Realize(GameListener, SL_BOOLEAN_FALSE);
CheckErr(res);
 res = (*GameListener)->GetInterface(GameListener, SL_IID_3DLOCATION,
(void *)&Listener_3DLocationItf); CheckErr(res);

 /* Set 3D orientation of Listener to look forward - even though this
is the default */
 res = (*Listener_3DLocationItf)-
>SetOrientationVectors(Listener_3DLocationItf, &Listener_Front,
&Listener_Above); CheckErr(res);

 /* Set location of 3Dgroup */
 res = (*Pcm_3DLocationItf)->SetLocationCartesian(Pcm_3DLocationItf,
&Location); CheckErr(res);

 /* Set velocity of 3Dgroup */
 res = (*Pcm_3DDopplerItf)->SetVelocityCartesian(Pcm_3DDopplerItf,
&StartVelocity); CheckErr(res);

 /* Place pcm1 and pcm2 players into Paused state to start prefetch */

 res = (*Pcm1_playItf)->SetPlayState(Pcm1_playItf,
SL_PLAYSTATE_PAUSED); CheckErr(res);
 res = (*Pcm2_playItf)->SetPlayState(Pcm2_playItf,
SL_PLAYSTATE_PAUSED); CheckErr(res);

 /* Wait until prefetch buffer is full for both pcm1 and pcm2 players
*/
 {
 SLpermille Pcm1FillLevel = 0;
 SLpermille Pcm2FillLevel = 0;
 while((Pcm1FillLevel != 1000)||(Pcm2FillLevel != 1000))
 {
 res = (*Pcm1_prefetchItf)->GetFillLevel(Pcm1_prefetchItf,
&Pcm1FillLevel); CheckErr(res);
 res = (*Pcm2_prefetchItf)->GetFillLevel(Pcm2_prefetchItf,
&Pcm2FillLevel); CheckErr(res);
 }
 }

 /* Start all 3 players */
 res = (*Midi_playItf)->SetPlayState(Midi_playItf,
SL_PLAYSTATE_PLAYING); CheckErr(res);

550 OpenSL ES 1.0.1 Specification

 res = (*Pcm1_playItf)->SetPlayState(Pcm1_playItf,
SL_PLAYSTATE_PLAYING); CheckErr(res);
 res = (*Pcm2_playItf)->SetPlayState(Pcm2_playItf,
SL_PLAYSTATE_PLAYING); CheckErr(res);

 /* Move the location of the 3Dgroup each second to maintain a speed of
50km/hour in direction of x-axis */
 {
 SLmillisecond Midi_pos;
 SLint32 XaxisLocation = Location.x;
 do
 {
 SLEEP(1000); /* Delay 1000ms i.e. 1 second */

 XaxisLocation = Location.x + CAR_SPEED_MMPSEC;
 if(XaxisLocation <= 5000000) /* Continue moving car
sounds until 5km away */
 {
 Location.x = XaxisLocation;
 res = (*Pcm_3DLocationItf)-
>SetLocationCartesian(Pcm_3DLocationItf, &Location); CheckErr(res);
 }
 res = (*Midi_playItf)->GetPosition(Midi_playItf, &Midi_pos);
CheckErr(res);
 } while(Midi_pos < MidiDurationMsec); /* continue until Midi file
finishes */
 }

 /* Stop the PCM players */
 res = (*Pcm1_playItf)->SetPlayState(Pcm1_playItf,
SL_PLAYSTATE_STOPPED); CheckErr(res);
 res = (*Pcm2_playItf)->SetPlayState(Pcm2_playItf,
SL_PLAYSTATE_STOPPED); CheckErr(res);

 /* Remove pcm1 and pcm2 players from 3DGroup */
 res = (*Pcm1_3DGroupingItf)->Set3DGroup(Pcm1_3DGroupingItf, NULL);
CheckErr(res);
 res = (*Pcm2_3DGroupingItf)->Set3DGroup(Pcm2_3DGroupingItf, NULL);
CheckErr(res);

 /* Destroy the objects */
 (*Pcm_3DGroup)->Destroy(Pcm_3DGroup);
 (*GameListener)->Destroy(GameListener);
 (*Pcm2_player)->Destroy(Pcm2_player);
 (*Pcm1_player)->Destroy(Pcm1_player);
 (*Midi_player)->Destroy(Midi_player);
 (*OutputMix)->Destroy(OutputMix);

}

OpenSL ES 1.0.1 Specification 551

int sl_main(void)
{

 SLresult res;
 SLObjectItf sl;
 char c;

 SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 /* Simple test harness! */
 while ((c = getchar()) != 'q')
 {
 switch (c)
 {
 case '3':
 /* Create OpenSL ES */
 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestGame(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 break;
 default:
 break;
 }
 }

 exit(0);
}

OpenSL ES 1.0.1 Specification 552

Appendix D: Object-Interface Mapping
The following table describes the object-interface mapping per profile. It also shows mandated objects for each profile in its
second row.

Object Engine
Audio
Player

MIDI
player

Audio
recorder Listener 3D group

Output
mix Vibra

LED
Array

Metadata
Extractor

Interface P M G P M G P M G P M G P M G P M G P M G P M G P M G P M G

SLObjectItf

SLDynamicInterfaceManagementItf

SLEngineItf

SLEngineCapabilitiesItf

SLThreadSyncItf

SLAudioIODeviceCapabilitiesItf

SLAudioDecoderCapabilitiesItf

SLAudioEncoderCapabilitiesItf

SLLEDArrayItf

SLVibraItf

SLPlayItf

SLRecordItf

SLAudioEncoderItf

SLPrefetchStatusItf

SLSeekItf A A

SLPlaybackRateItf

SLRatePitchItf 1

SLPitchItf

OpenSL ES 1.0.1 Specification 553

Audio MIDI Audio Output LED Metadata
Extractor Object Engine Player player recorder Listener 3D group mix Vibra Array

Interface P M G P M G P M G P M G P M G P M G P M G P M G P M G P M G

SLVolumeItf B B B

SLMuteSoloItf 1

SLBufferQueueItf 2 2

SLMIDIMessageItf

SLMIDITimeItf C

SLMIDITempoItf

SLMIDIMuteSoloItf

SL3DCommitItf

SL3DGroupingItf

SL3DLocationItf

SL3DSourceItf

SL3DDopplerItf

SL3DMacroscopicItf

SLEffectSendItf

SLBassBoostItf

SLEqualizerItf

SLPresetReverbItf

SLEnvironmentalReverbItf

SLVirtualizerItf

SLMetadataExtractionItf

554 OpenSL ES 1.0.1 Specification

Audio MIDI Audio Output LED Metadata
Extractor Object Engine Player player recorder Listener 3D group mix Vibra Array

Interface P M G P M G P M G P M G P M G P M G P M G P M G P M G P M G

SLMetadataTraversalItf

SLVisualizationItf

SLOutputMixItf

SLDynamicSourceItf

SLDeviceVolumeItf

OpenSL ES 1.0.1 Specification 555

B. SetStereoPosition(), GetStereoPosition(), EnableStereoPosition() and IsEnabledStereoPosition() is not
mandated in this profile.

2. This interface is only mandated where the data source’s locator is a buffer queue (SLDataLocator_BufferQueue or
SLDataLocator_MIDIBufferQueue).

1. This interface mandated for all players excluding those with Java Tone Sequences (JTS) data sources.

Legend

P Object mandated in Phone profile

M Object mandated in Music profile

G Object mandated in Game profile

P Object optional in Phone profile

M Object optional in Music profile

G Object optional in Game profile

 Implicit and mandated interface

 Mandated (explicit) interface

1 Explicit interface mandated only in specifed circumstances, see comments.

A Mandated (explicit) interface with some optional methods, see comments.

 Applicable optional interfaces

A. Arbitary loop points are not mandated in this profile, only end-to-end looping is mandated.

C. SetLoopPoints() & GetLoopPoints() is not mandated in the profile.

Comments for explicit interfaces mandated only in specified circumstances:

Comments for mandated interfaces with some optional methods:

	PART 1: USER MANUAL
	1 Overview
	1.1 Purpose of this Document
	1.1.1 About the Khronos Group

	1.2 Scope
	1.3 Intended Audience
	1.4 A Brief History of OpenSL ES
	1.5 Relationship to OpenMAX AL 1.0
	1.6 Conventions Used
	1.6.1 Parameter Range Notation
	1.6.2 Format and Typographic Conventions

	1.7 Definition of Terms
	1.8 Acknowledgements

	2 Features and Profiles
	2.1 Motivation
	2.2 Profile Definition
	2.3 Profiles
	2.4 Optionality Rules of Features and Profiles
	2.5 Profile Notes
	2.6 Behavior for Unsupported Features

	3 Design Overview
	3.1 Object Model
	3.1.1 Objects and Interfaces
	3.1.2 Getters and Setters
	3.1.3 Representation in Code
	3.1.4 The SLObjectItf Interface
	3.1.5 The Engine Object and SLEngineItf Interface
	3.1.6 The Relationship Between Objects and Interfaces
	3.1.7 The SLDynamicInterfaceManagementItf Interface
	3.1.8 Resource Allocation

	3.2 Threading Model
	3.2.1 Mode of Operation
	3.2.2 Thread Safety

	3.3 Notifications
	3.4 Error Reporting
	3.5 Extensibility
	3.5.1 Principles
	3.5.2 Permitted Modifications to Physical Code
	3.5.3 Extending Supported Interface Types
	3.5.4 Extending Supported Object Types
	3.5.5 Extending Method Parameter Ranges
	3.5.6 Result Codes
	3.5.7 Interface ID Allocation Scheme
	3.5.8 Avoiding Naming Collisions

	4 Functional Overview
	4.1 Object Overview
	4.1.1 Engine Object
	4.1.1.1 Devices

	4.1.2 Media Objects
	4.1.2.1 Data Source and Sink Structures

	4.1.3 Metadata Extractor Object
	4.1.4 Audio Output Mix Object
	4.1.5 LED Array Control Object
	4.1.6 Vibration Control Object

	4.2 Sampled Audio
	4.2.1 Recommended Codec

	4.3 Playback of MIDI
	4.3.1 Support of Mobile DLS
	4.3.2 Programmatic Control of the MIDI Player

	4.4 3D Audio
	4.4.1 3D Sources
	4.4.1.1 3D Groups
	4.4.1.2 When is a Player Rendered in 3D?

	4.4.2 3D Parameters
	4.4.2.1 Coordinate System
	4.4.2.2 Precision
	4.4.2.3 Interactivity

	4.4.3 Levels of 3D Sources
	4.4.4 3D Positioning Multi-Channel Players
	4.4.4.1 3D and MIDI Players

	4.4.5 Object Relationships

	4.5 Effects
	4.5.1 Effects Architecture
	4.5.2 Bass Boost
	4.5.3 Equalization
	4.5.4 Virtualization
	4.5.5 Reverberation

	4.6 Example Use Cases
	4.6.1 Sampled Audio Playback
	4.6.2 MIDI Playback
	4.6.3 3D Audio
	4.6.4 Recording Audio
	4.6.5 Reading Metadata

	4.7 Minimum Requirements
	4.7.1 Phone Profile
	4.7.1.1 Use Case 1
	4.7.1.2 Use Case 2
	4.7.1.3 Use Case 3

	4.7.2 Music Profile
	4.7.2.1 Use Case 1

	4.7.3 Game Profile
	4.7.3.1 Use Case 1
	4.7.3.2 Use Case 2
	4.7.3.3 Use Case 3
	4.7.3.4 Use Case 4
	4.7.3.5 Use Case 5
	4.7.3.6 Use Case 6
	4.7.3.7 Use Case 7
	4.7.3.8 Use Case 8

	4.7.4 Data Sources

	PART 2: API RERERENCE
	5 Base Types and Units
	5.1 Standard Units
	5.2 Base Types

	6 Functions
	6.1 slCreateEngine Function
	slCreateEngine

	6.2 slQueryNumSupportedEngineInterfaces Function
	slQueryNumSupportedEngineInterfaces

	6.3 slQuerySupportedEngineInterfaces Function
	slQuerySupportedEngineInterfaces

	7 Object Definitions
	7.1 3D Group
	7.2 Audio Player
	7.3 Audio Recorder
	7.4 Engine Object
	7.5 LED Array I/O Device
	7.6 Listener Object
	7.7 Metadata Extractor Object
	7.8 MIDI Player Object
	7.9 Output Mix
	7.10 Vibra I/O Device

	8 Interface Definitions
	8.1 SL3DCommitItf
	Commit
	SetDeferred

	8.2 SL3DDopplerItf
	SetVelocityCartesian
	SetVelocitySpherical
	GetVelocityCartesian
	SetDopplerFactor
	GetDopplerFactor

	8.3 SL3DGroupingItf
	Set3DGroup
	Get3DGroup

	8.4 SL3DLocationItf
	SetLocationCartesian
	SetLocationSpherical
	Move
	GetLocationCartesian
	SetOrientationVectors
	SetOrientationAngles
	Rotate
	GetOrientationVectors

	8.5 SL3DMacroscopicItf
	SetSize
	GetSize
	SetOrientationAngles
	SetOrientationVectors
	Rotate
	GetOrientationVectors

	8.6 SL3DSourceItf
	SetHeadRelative
	GetHeadRelative
	SetRolloffDistances
	GetRolloffDistances
	SetRolloffMaxDistanceMute
	GetRolloffMaxDistanceMute
	SetRolloffFactor
	GetRolloffFactor
	SetRoomRolloffFactor
	GetRoomRolloffFactor
	SetRolloffModel
	GetRolloffModel
	SetCone
	GetCone

	8.7 SLAudioDecoderCapabilitiesItf
	GetAudioDecoders
	GetAudioDecoderCapabilities

	8.8 SLAudioEncoderItf
	SetEncoderSettings
	GetEncoderSettings

	8.9 SLAudioEncoderCapabilitiesItf
	GetAudioEncoders
	GetAudioEncoderCapabilities

	8.10 SLAudioIODeviceCapabilitiesItf
	slAvailableAudioInputsChangedCallback
	slAvailableAudioOutputsChangedCallback
	slDefaultDeviceIDMapChangedCallback
	GetAvailableAudioInputs
	QueryAudioInputCapabilities
	RegisterAvailableAudioInputsChangedCallback
	GetAvailableAudioOutputs
	QueryAudioOutputCapabilities
	RegisterAvailableAudioOutputsChangedCallback
	RegisterDefaultDeviceIDMapChangedCallback
	GetAssociatedAudioInputs
	GetAssociatedAudioOutputs
	GetDefaultAudioDevices
	QuerySampleFormatsSupported

	8.11 SLBassBoostItf
	SetEnabled
	IsEnabled
	SetStrength
	GetRoundedStrength
	IsStrengthSupported

	8.12 SLBufferQueueItf
	slBufferQueueCallback
	Enqueue
	Clear
	GetState
	RegisterCallback

	8.13 SLDeviceVolumeItf
	GetVolumeScale
	SetVolume
	GetVolume

	8.14 SLDynamicInterfaceManagementItf
	slDynamicInterfaceManagementCallback
	AddInterface
	RemoveInterface
	ResumeInterface
	RegisterCallback

	8.15 SLDynamicSourceItf
	SetSource

	8.16 SLEffectSendItf
	EnableEffectSend
	IsEnabled
	SetDirectLevel
	GetDirectLevel
	SetSendLevel
	GetSendLevel

	8.17 SLEngineItf
	CreateLEDDevice
	CreateVibraDevice
	CreateAudioPlayer
	CreateAudioRecorder
	CreateMidiPlayer
	CreateListener
	Create3DGroup
	CreateOutputMix
	CreateMetadataExtractor
	CreateExtensionObject
	QueryNumSupportedInterfaces
	QuerySupportedInterfaces
	QueryNumSupportedExtensions
	QuerySupportedExtension
	IsExtensionSupported

	8.18 SLEngineCapabilitiesItf
	QuerySupportedProfiles
	QueryAvailableVoices
	QueryNumberOfMIDISynthesizers
	QueryAPIVersion
	QueryLEDCapabilities
	QueryVibraCapabilities
	IsThreadSafe

	8.19 SLEnvironmentalReverbItf
	SetRoomLevel
	GetRoomLevel
	SetRoomHFLevel
	GetRoomHFLevel
	SetDecayTime
	GetDecayTime
	SetDecayHFRatio
	GetDecayHFRatio
	SetReflectionsLevel
	GetReflectionsLevel
	SetReflectionsDelay
	GetReflectionsDelay
	SetReverbLevel
	GetReverbLevel
	SetReverbDelay
	GetReverbDelay
	SetDiffusion
	GetDiffusion
	SetDensity
	GetDensity
	SetEnvironmentalReverbProperties
	GetEnvironmentalReverbProperties

	8.20 SLEqualizerItf
	SetEnabled
	IsEnabled
	GetNumberOfBands
	GetBandLevelRange
	SetBandLevel
	GetBandLevel
	GetCenterFreq
	GetBandFreqRange
	GetBand
	GetCurrentPreset
	UsePreset
	GetNumberOfPresets
	GetPresetName

	8.21 SLLEDArrayItf
	ActivateLEDArray
	IsLEDArrayActivated
	SetColor
	GetColor

	8.22 SLMetadataExtractionItf
	GetItemCount
	GetKeySize
	GetKey
	GetValueSize
	GetValue
	AddKeyFilter
	ClearKeyFilter

	8.23 SLMetadataTraversalItf
	SetMode
	GetChildCount
	GetChildMIMETypeSize
	GetChildInfo
	SetActiveNode

	8.24 SLMIDIMessageItf
	slMetaEventCallback
	slMIDIMessageCallback
	SendMessage
	RegisterMetaEventCallback
	RegisterMIDIMessageCallback
	AddMIDIMessageCallbackFilter
	ClearMIDIMessageCallbackFilter

	8.25 SLMIDIMuteSoloItf
	SetChannelMute
	GetChannelMute
	SetChannelSolo
	GetChannelSolo
	GetTrackCount
	SetTrackMute
	GetTrackMute
	SetTrackSolo
	GetTrackSolo

	8.26 SLMIDITempoItf
	SetTicksPerQuarterNote
	GetTicksPerQuarterNote
	SetMicrosecondsPerQuarterNote
	GetMicrosecondsPerQuarterNote

	8.27 SLMIDITimeItf
	GetDuration
	SetPosition
	GetPosition
	SetLoopPoints
	GetLoopPoints

	8.28 SLMuteSoloItf
	SetChannelMute
	GetChannelMute
	SetChannelSolo
	GetChannelSolo
	GetNumChannels

	8.29 SLObjectItf
	slObjectCallback
	Realize
	Resume
	GetState
	GetInterface
	RegisterCallback
	AbortAsyncOperation
	Destroy
	SetPriority
	GetPriority
	SetLossOfControllnterfaces

	8.30 SLOutputMixItf
	slMixDeviceChangeCallback
	GetDestinationOutputDeviceIDs
	RegisterDeviceChangeCallback
	ReRoute

	8.31 SLPitchItf
	SetPitch
	GetPitch
	GetPitchCapabilities

	8.32 SLPlayItf
	slPlayCallback
	SetPlayState
	GetPlayState
	GetDuration
	GetPosition
	RegisterCallback
	SetCallbackEventsMask
	GetCallbackEventsMask
	SetMarkerPosition
	ClearMarkerPosition
	GetMarkerPosition
	SetPositionUpdatePeriod
	GetPositionUpdatePeriod

	8.33 SLPlaybackRateItf
	SetRate
	GetRate
	SetPropertyConstraints
	GetProperties
	GetCapabilitiesOfRate
	GetRateRange

	8.34 SLPrefetchStatusItf
	slPrefetchCallback
	GetPrefetchStatus
	GetFillLevel
	RegisterCallback
	SetCallbackEventsMask
	GetCallbackEventsMask
	SetFillUpdatePeriod
	GetFillUpdatePeriod

	8.35 SLPresetReverbItf
	SetPreset
	GetPreset

	8.36 SLRatePitchItf
	SetRate
	GetRate
	GetRatePitchCapabilities

	8.37 SLRecordItf
	slRecordCallback
	SetRecordState
	GetRecordState
	SetDurationLimit
	GetPosition
	RegisterCallback
	SetCallbackEventsMask
	GetCallbackEventsMask
	SetMarkerPosition
	ClearMarkerPosition
	GetMarkerPosition
	SetPositionUpdatePeriod
	GetPositionUpdatePeriod

	8.38 SLSeekItf
	SetPosition
	SetLoop
	GetLoop

	8.39 SLThreadSyncItf
	EnterCriticalSection
	ExitCriticalSection

	8.40 SLVibraItf
	Vibrate
	IsVibrating
	SetFrequency
	GetFrequency
	SetIntensity
	GetIntensity

	8.41 SLVirtualizerItf
	SetEnabled
	IsEnabled
	SetStrength
	GetRoundedStrength
	IsStrengthSupported

	8.42 SLVisualizationtItf
	slVisualizationCallback
	RegisterVisualizationCallback
	GetMaxRate

	8.43 SLVolumeItf
	SetVolumeLevel
	GetVolumeLevel
	GetMaxVolumeLevel
	SetMute
	GetMute
	EnableStereoPosition
	IsEnabledStereoPosition
	SetStereoPosition
	GetStereoPosition

	9 Macros and Typedefs
	9.1 Structures
	9.1.1 SLAudioCodecDescriptor
	9.1.2 SLAudioEncoderSettings
	9.1.3 SLAudioInputDescriptor
	9.1.4 SLAudioOutputDescriptor
	9.1.5 SLBufferQueueState
	9.1.6 SLDataFormat_MIME
	9.1.7 SLDataFormat_PCM
	9.1.8 SLDataLocator_Address
	9.1.9 SLDataLocator_IODevice
	9.1.10 SLDataLocator_BufferQueue
	9.1.11 SLDataLocator_MIDIBufferQueue
	9.1.12 SLDataLocator_OutputMix
	9.1.13 SLDataLocator_URI
	9.1.14 SLDataSink
	9.1.15 SLDataSource
	9.1.16 SLEngineOption
	9.1.17 SLEnvironmentalReverbSettings
	9.1.18 SLHSL
	9.1.19 SLInterfaceID
	9.1.20 SLLEDDescriptor
	9.1.21 SLMetadataInfo
	9.1.22 SLVec3D
	9.1.23 SLVibraDescriptor

	9.2 Macros
	9.2.1 SL_AUDIOCODEC
	9.2.2 SL_AUDIOPROFILE and SL_AUDIOMODE
	9.2.3 SLAPIENTRY
	9.2.4 SL_BOOLEAN
	9.2.5 SL_BYTEORDER
	9.2.6 SL_CHARACTERENCODING
	9.2.7 SL_CONTAINERTYPE
	9.2.8 SL_DATAFORMAT
	9.2.9 SL_DATALOCATOR
	9.2.10 SL_DEFAULTDEVICEID
	9.2.11 SL_DEVICECONNECTION
	9.2.12 SL_DEVICELOCATION
	9.2.13 SL_DEVICESCOPE
	9.2.14 SL_DYNAMIC_ITF
	9.2.15 SL_ENGINEOPTION
	9.2.16 SL_EQUALIZER
	9.2.17 SL_I3DL2 Environmental Reverb Presets
	9.2.18 SL_IODEVICE
	9.2.19 SL_METADATA_FILTER
	9.2.20 SL_METADATATRAVERSALMODE
	9.2.21 SL_MIDIMESSAGETYPE
	9.2.22 SL_MILLIBEL
	9.2.23 SL_MILLIHERTZ_MAX
	9.2.24 SL_MILLIMETER_MAX
	9.2.25 SL_NODE_PARENT
	9.2.26 SL_NODETYPE
	9.2.27 SL_OBJECT_EVENT
	9.2.28 SL_OBJECT_STATE
	9.2.29 SL_OBJECTID
	9.2.30 SL_PCMSAMPLEFORMAT
	9.2.31 SL_PLAYEVENT
	9.2.32 SL_PLAYSTATE
	9.2.33 SL_PREFETCHEVENT
	9.2.34 SL_PREFETCHSTATUS
	9.2.35 SL_PRIORITY
	9.2.36 SL_PROFILES
	9.2.37 SL_RATECONTROLMODE
	9.2.38 SL_RATEPROP
	9.2.39 SL_RECORDEVENT
	9.2.40 SL_RECORDSTATE
	9.2.41 SL_REVERBPRESET
	9.2.42 SL_RESULT
	9.2.43 SL_ROLLOFFMODEL
	9.2.44 SL_SAMPLINGRATE
	9.2.45 SL_SEEKMODE
	9.2.46 SL_SPEAKER
	9.2.47 SL_TIME
	9.2.48 SL_VOICETYPE

	PART 3: APPENDICES
	Appendix A: References
	Appendix B: Sample Code
	B.1 Audio Playback and recording
	B.1.1 Buffer Queue
	B.1.2 Recording

	B.2 Dynamic Interface Management
	B.3 MIDI
	B.3.1 Simple MIDI
	B.3.2 MIDI Buffer Queue
	B.3.3 Advanced MIDI: MIDI messaging

	B.4 Metadata Extraction
	B.4.1 Simple Metadata Extraction

	B.5 3D Audio
	B.5.1 Simple 3D
	B.5.2 Advanced 3D

	B.6 Effects
	B.6.1 Environmental Reverb
	B.6.2 Equalizer

	B.7 IO Devices and capabilities
	B.7.1 Engine capabilities

	Appendix C: Use Case Sample Code
	C.1 Introduction
	C.2 Music Profile
	C.2.1 Object Relationships
	C.2.2 Example Code

	C.3 Phone Profile
	C.3.1 Object Relationships
	C.3.2 Example Code

	C.4 Game Profile
	C.4.1 Object Relationships
	C.4.2 Example Code

	Appendix D: Object-Interface Mapping

