/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include constexpr int kMinLoopLimitValue = 1; constexpr int kNumPeaks = 3; /*! \brief Compute the length normalized correlation of two signals \sigX Pointer to signal 1 \sigY Pointer to signal 2 \len Length of signals \enableCrossCorr Flag to be set to 1 if cross-correlation is needed \return First value is vector of correlation peak indices Second value is vector of correlation peak values */ static std::pair, std::vector> correlation(const int16_t* sigX, const int16_t* sigY, int len, int16_t enableCrossCorr) { float maxCorrVal = 0.f, prevCorrVal = 0.f; int delay = 0, peakIndex = 0, flag = 0; int loopLim = (1 == enableCrossCorr) ? len : kMinLoopLimitValue; std::vector peakIndexVect(kNumPeaks, 0); std::vector peakValueVect(kNumPeaks, 0.f); for (int i = 0; i < loopLim; i++) { float corrVal = 0.f; for (int j = i; j < len; j++) { corrVal += (float)(sigX[j] * sigY[j - i]); } corrVal /= len - i; if (corrVal > maxCorrVal) { delay = i; maxCorrVal = corrVal; } // Correlation peaks are expected to be observed at equal intervals. The interval length is // expected to match with wave period. // The following block of code saves the first kNumPeaks number of peaks and the index at // which they occur. if (peakIndex < kNumPeaks) { if (corrVal > prevCorrVal) { peakIndexVect[peakIndex] = i; peakValueVect[peakIndex] = corrVal; flag = 0; } else if (0 == flag) { peakIndex++; flag = 1; } } if (peakIndex == kNumPeaks) break; prevCorrVal = corrVal; } return {peakIndexVect, peakValueVect}; } void printUsage() { printf("\nUsage: "); printf("\n correlation [enableCrossCorr]\n"); printf("\nwhere, \n is the first file name"); printf("\n is the second file name"); printf("\n [enableCrossCorr] is flag to set for cross-correlation (Default 1)\n\n"); } int main(int argc, const char* argv[]) { if (argc < 3) { printUsage(); return EXIT_FAILURE; } std::unique_ptr fInput1(fopen(argv[1], "rb"), &fclose); if (fInput1.get() == NULL) { printf("\nError: missing file %s\n", argv[1]); return EXIT_FAILURE; } std::unique_ptr fInput2(fopen(argv[2], "rb"), &fclose); if (fInput2.get() == NULL) { printf("\nError: missing file %s\n", argv[2]); return EXIT_FAILURE; } int16_t enableCrossCorr = (4 == argc) ? atoi(argv[3]) : 1; fseek(fInput1.get(), 0L, SEEK_END); unsigned int fileSize1 = ftell(fInput1.get()); rewind(fInput1.get()); fseek(fInput2.get(), 0L, SEEK_END); unsigned int fileSize2 = ftell(fInput2.get()); rewind(fInput2.get()); if (fileSize1 != fileSize2) { printf("\nError: File sizes different\n"); return EXIT_FAILURE; } size_t numFrames = fileSize1 / sizeof(int16_t); std::unique_ptr inBuffer1(new int16_t[numFrames]()); std::unique_ptr inBuffer2(new int16_t[numFrames]()); if (numFrames != fread(inBuffer1.get(), sizeof(int16_t), numFrames, fInput1.get())) { printf("\nError: Unable to read %zu samples from file %s\n", numFrames, argv[1]); return EXIT_FAILURE; } if (numFrames != fread(inBuffer2.get(), sizeof(int16_t), numFrames, fInput2.get())) { printf("\nError: Unable to read %zu samples from file %s\n", numFrames, argv[2]); return EXIT_FAILURE; } auto pairAutoCorr1 = correlation(inBuffer1.get(), inBuffer1.get(), numFrames, enableCrossCorr); auto pairAutoCorr2 = correlation(inBuffer2.get(), inBuffer2.get(), numFrames, enableCrossCorr); // Following code block checks pitch period difference between two input signals. They must // match as AGC applies only gain, no frequency related computation is done. bool pitchMatch = false; for (unsigned i = 0; i < pairAutoCorr1.first.size() - 1; i++) { if (pairAutoCorr1.first[i + 1] - pairAutoCorr1.first[i] != pairAutoCorr2.first[i + 1] - pairAutoCorr2.first[i]) { pitchMatch = false; break; } pitchMatch = true; } if (pitchMatch) { printf("Auto-correlation : Pitch matched\n"); } else { printf("Auto-correlation : Pitch mismatch\n"); return EXIT_FAILURE; } if (enableCrossCorr) { auto pairCrossCorr = correlation(inBuffer1.get(), inBuffer2.get(), numFrames, enableCrossCorr); // Since AGC applies only gain, the pitch information obtained from cross correlation data // of input and output is expected to be same as the input signal's pitch information. pitchMatch = false; for (unsigned i = 0; i < pairCrossCorr.first.size() - 1; i++) { if (pairAutoCorr1.first[i + 1] - pairAutoCorr1.first[i] != pairCrossCorr.first[i + 1] - pairCrossCorr.first[i]) { pitchMatch = false; break; } pitchMatch = true; } if (pitchMatch) { printf("Cross-correlation : Pitch matched for AGC\n"); if (pairAutoCorr1.second[0]) { printf("Expected gain : (maxCrossCorr / maxAutoCorr1) = %f\n", pairCrossCorr.second[0] / pairAutoCorr1.second[0]); } } else { printf("Cross-correlation : Pitch mismatch\n"); return EXIT_FAILURE; } } return EXIT_SUCCESS; }