/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "../dispatcher/InputDispatcher.h" #include #include #include #include #include #include #include #include #include #include using android::base::StringPrintf; using android::gui::FocusRequest; using android::gui::TouchOcclusionMode; using android::gui::WindowInfo; using android::gui::WindowInfoHandle; using android::os::InputEventInjectionResult; using android::os::InputEventInjectionSync; using namespace android::flag_operators; namespace android::inputdispatcher { // An arbitrary time value. static const nsecs_t ARBITRARY_TIME = 1234; // An arbitrary device id. static const int32_t DEVICE_ID = 1; // An arbitrary display id. static constexpr int32_t DISPLAY_ID = ADISPLAY_ID_DEFAULT; static constexpr int32_t SECOND_DISPLAY_ID = 1; // An arbitrary injector pid / uid pair that has permission to inject events. static const int32_t INJECTOR_PID = 999; static const int32_t INJECTOR_UID = 1001; // An arbitrary pid of the gesture monitor window static constexpr int32_t MONITOR_PID = 2001; struct PointF { float x; float y; }; /** * Return a DOWN key event with KEYCODE_A. */ static KeyEvent getTestKeyEvent() { KeyEvent event; event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE, INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0, ARBITRARY_TIME, ARBITRARY_TIME); return event; } // --- FakeInputDispatcherPolicy --- class FakeInputDispatcherPolicy : public InputDispatcherPolicyInterface { InputDispatcherConfiguration mConfig; protected: virtual ~FakeInputDispatcherPolicy() {} public: FakeInputDispatcherPolicy() {} void assertFilterInputEventWasCalled(const NotifyKeyArgs& args) { assertFilterInputEventWasCalled(AINPUT_EVENT_TYPE_KEY, args.eventTime, args.action, args.displayId); } void assertFilterInputEventWasCalled(const NotifyMotionArgs& args) { assertFilterInputEventWasCalled(AINPUT_EVENT_TYPE_MOTION, args.eventTime, args.action, args.displayId); } void assertFilterInputEventWasNotCalled() { std::scoped_lock lock(mLock); ASSERT_EQ(nullptr, mFilteredEvent); } void assertNotifyConfigurationChangedWasCalled(nsecs_t when) { std::scoped_lock lock(mLock); ASSERT_TRUE(mConfigurationChangedTime) << "Timed out waiting for configuration changed call"; ASSERT_EQ(*mConfigurationChangedTime, when); mConfigurationChangedTime = std::nullopt; } void assertNotifySwitchWasCalled(const NotifySwitchArgs& args) { std::scoped_lock lock(mLock); ASSERT_TRUE(mLastNotifySwitch); // We do not check id because it is not exposed to the policy EXPECT_EQ(args.eventTime, mLastNotifySwitch->eventTime); EXPECT_EQ(args.policyFlags, mLastNotifySwitch->policyFlags); EXPECT_EQ(args.switchValues, mLastNotifySwitch->switchValues); EXPECT_EQ(args.switchMask, mLastNotifySwitch->switchMask); mLastNotifySwitch = std::nullopt; } void assertOnPointerDownEquals(const sp& touchedToken) { std::scoped_lock lock(mLock); ASSERT_EQ(touchedToken, mOnPointerDownToken); mOnPointerDownToken.clear(); } void assertOnPointerDownWasNotCalled() { std::scoped_lock lock(mLock); ASSERT_TRUE(mOnPointerDownToken == nullptr) << "Expected onPointerDownOutsideFocus to not have been called"; } // This function must be called soon after the expected ANR timer starts, // because we are also checking how much time has passed. void assertNotifyNoFocusedWindowAnrWasCalled( std::chrono::nanoseconds timeout, const std::shared_ptr& expectedApplication) { std::shared_ptr application; { // acquire lock std::unique_lock lock(mLock); android::base::ScopedLockAssertion assumeLocked(mLock); ASSERT_NO_FATAL_FAILURE( application = getAnrTokenLockedInterruptible(timeout, mAnrApplications, lock)); } // release lock ASSERT_EQ(expectedApplication, application); } void assertNotifyWindowUnresponsiveWasCalled(std::chrono::nanoseconds timeout, const sp& expectedConnectionToken) { sp connectionToken = getUnresponsiveWindowToken(timeout); ASSERT_EQ(expectedConnectionToken, connectionToken); } void assertNotifyWindowResponsiveWasCalled(const sp& expectedConnectionToken) { sp connectionToken = getResponsiveWindowToken(); ASSERT_EQ(expectedConnectionToken, connectionToken); } void assertNotifyMonitorUnresponsiveWasCalled(std::chrono::nanoseconds timeout) { int32_t pid = getUnresponsiveMonitorPid(timeout); ASSERT_EQ(MONITOR_PID, pid); } void assertNotifyMonitorResponsiveWasCalled() { int32_t pid = getResponsiveMonitorPid(); ASSERT_EQ(MONITOR_PID, pid); } sp getUnresponsiveWindowToken(std::chrono::nanoseconds timeout) { std::unique_lock lock(mLock); android::base::ScopedLockAssertion assumeLocked(mLock); return getAnrTokenLockedInterruptible(timeout, mAnrWindowTokens, lock); } sp getResponsiveWindowToken() { std::unique_lock lock(mLock); android::base::ScopedLockAssertion assumeLocked(mLock); return getAnrTokenLockedInterruptible(0s, mResponsiveWindowTokens, lock); } int32_t getUnresponsiveMonitorPid(std::chrono::nanoseconds timeout) { std::unique_lock lock(mLock); android::base::ScopedLockAssertion assumeLocked(mLock); return getAnrTokenLockedInterruptible(timeout, mAnrMonitorPids, lock); } int32_t getResponsiveMonitorPid() { std::unique_lock lock(mLock); android::base::ScopedLockAssertion assumeLocked(mLock); return getAnrTokenLockedInterruptible(0s, mResponsiveMonitorPids, lock); } // All three ANR-related callbacks behave the same way, so we use this generic function to wait // for a specific container to become non-empty. When the container is non-empty, return the // first entry from the container and erase it. template T getAnrTokenLockedInterruptible(std::chrono::nanoseconds timeout, std::queue& storage, std::unique_lock& lock) REQUIRES(mLock) { const std::chrono::time_point start = std::chrono::steady_clock::now(); std::chrono::duration timeToWait = timeout + 100ms; // provide some slack // If there is an ANR, Dispatcher won't be idle because there are still events // in the waitQueue that we need to check on. So we can't wait for dispatcher to be idle // before checking if ANR was called. // Since dispatcher is not guaranteed to call notifyNoFocusedWindowAnr right away, we need // to provide it some time to act. 100ms seems reasonable. mNotifyAnr.wait_for(lock, timeToWait, [&storage]() REQUIRES(mLock) { return !storage.empty(); }); const std::chrono::duration waited = std::chrono::steady_clock::now() - start; if (storage.empty()) { ADD_FAILURE() << "Did not receive the ANR callback"; return {}; } // Ensure that the ANR didn't get raised too early. We can't be too strict here because // the dispatcher started counting before this function was called if (std::chrono::abs(timeout - waited) > 100ms) { ADD_FAILURE() << "ANR was raised too early or too late. Expected " << std::chrono::duration_cast(timeout).count() << "ms, but waited " << std::chrono::duration_cast(waited).count() << "ms instead"; } T token = storage.front(); storage.pop(); return token; } void assertNotifyAnrWasNotCalled() { std::scoped_lock lock(mLock); ASSERT_TRUE(mAnrApplications.empty()); ASSERT_TRUE(mAnrWindowTokens.empty()); ASSERT_TRUE(mAnrMonitorPids.empty()); ASSERT_TRUE(mResponsiveWindowTokens.empty()) << "ANR was not called, but please also consume the 'connection is responsive' " "signal"; ASSERT_TRUE(mResponsiveMonitorPids.empty()) << "Monitor ANR was not called, but please also consume the 'monitor is responsive'" " signal"; } void setKeyRepeatConfiguration(nsecs_t timeout, nsecs_t delay) { mConfig.keyRepeatTimeout = timeout; mConfig.keyRepeatDelay = delay; } PointerCaptureRequest assertSetPointerCaptureCalled(bool enabled) { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); if (!mPointerCaptureChangedCondition.wait_for(lock, 100ms, [this, enabled]() REQUIRES(mLock) { return mPointerCaptureRequest->enable == enabled; })) { ADD_FAILURE() << "Timed out waiting for setPointerCapture(" << enabled << ") to be called."; return {}; } auto request = *mPointerCaptureRequest; mPointerCaptureRequest.reset(); return request; } void assertSetPointerCaptureNotCalled() { std::unique_lock lock(mLock); base::ScopedLockAssertion assumeLocked(mLock); if (mPointerCaptureChangedCondition.wait_for(lock, 100ms) != std::cv_status::timeout) { FAIL() << "Expected setPointerCapture(request) to not be called, but was called. " "enabled = " << std::to_string(mPointerCaptureRequest->enable); } mPointerCaptureRequest.reset(); } void assertDropTargetEquals(const sp& targetToken) { std::scoped_lock lock(mLock); ASSERT_TRUE(mNotifyDropWindowWasCalled); ASSERT_EQ(targetToken, mDropTargetWindowToken); mNotifyDropWindowWasCalled = false; } private: std::mutex mLock; std::unique_ptr mFilteredEvent GUARDED_BY(mLock); std::optional mConfigurationChangedTime GUARDED_BY(mLock); sp mOnPointerDownToken GUARDED_BY(mLock); std::optional mLastNotifySwitch GUARDED_BY(mLock); std::condition_variable mPointerCaptureChangedCondition; std::optional mPointerCaptureRequest GUARDED_BY(mLock); // ANR handling std::queue> mAnrApplications GUARDED_BY(mLock); std::queue> mAnrWindowTokens GUARDED_BY(mLock); std::queue> mResponsiveWindowTokens GUARDED_BY(mLock); std::queue mAnrMonitorPids GUARDED_BY(mLock); std::queue mResponsiveMonitorPids GUARDED_BY(mLock); std::condition_variable mNotifyAnr; sp mDropTargetWindowToken GUARDED_BY(mLock); bool mNotifyDropWindowWasCalled GUARDED_BY(mLock) = false; void notifyConfigurationChanged(nsecs_t when) override { std::scoped_lock lock(mLock); mConfigurationChangedTime = when; } void notifyWindowUnresponsive(const sp& connectionToken, const std::string&) override { std::scoped_lock lock(mLock); mAnrWindowTokens.push(connectionToken); mNotifyAnr.notify_all(); } void notifyMonitorUnresponsive(int32_t pid, const std::string&) override { std::scoped_lock lock(mLock); mAnrMonitorPids.push(pid); mNotifyAnr.notify_all(); } void notifyWindowResponsive(const sp& connectionToken) override { std::scoped_lock lock(mLock); mResponsiveWindowTokens.push(connectionToken); mNotifyAnr.notify_all(); } void notifyMonitorResponsive(int32_t pid) override { std::scoped_lock lock(mLock); mResponsiveMonitorPids.push(pid); mNotifyAnr.notify_all(); } void notifyNoFocusedWindowAnr( const std::shared_ptr& applicationHandle) override { std::scoped_lock lock(mLock); mAnrApplications.push(applicationHandle); mNotifyAnr.notify_all(); } void notifyInputChannelBroken(const sp&) override {} void notifyFocusChanged(const sp&, const sp&) override {} void notifyUntrustedTouch(const std::string& obscuringPackage) override {} void notifySensorEvent(int32_t deviceId, InputDeviceSensorType sensorType, InputDeviceSensorAccuracy accuracy, nsecs_t timestamp, const std::vector& values) override {} void notifySensorAccuracy(int deviceId, InputDeviceSensorType sensorType, InputDeviceSensorAccuracy accuracy) override {} void notifyVibratorState(int32_t deviceId, bool isOn) override {} void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) override { *outConfig = mConfig; } bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) override { std::scoped_lock lock(mLock); switch (inputEvent->getType()) { case AINPUT_EVENT_TYPE_KEY: { const KeyEvent* keyEvent = static_cast(inputEvent); mFilteredEvent = std::make_unique(*keyEvent); break; } case AINPUT_EVENT_TYPE_MOTION: { const MotionEvent* motionEvent = static_cast(inputEvent); mFilteredEvent = std::make_unique(*motionEvent); break; } } return true; } void interceptKeyBeforeQueueing(const KeyEvent*, uint32_t&) override {} void interceptMotionBeforeQueueing(int32_t, nsecs_t, uint32_t&) override {} nsecs_t interceptKeyBeforeDispatching(const sp&, const KeyEvent*, uint32_t) override { return 0; } bool dispatchUnhandledKey(const sp&, const KeyEvent*, uint32_t, KeyEvent*) override { return false; } void notifySwitch(nsecs_t when, uint32_t switchValues, uint32_t switchMask, uint32_t policyFlags) override { std::scoped_lock lock(mLock); /** We simply reconstruct NotifySwitchArgs in policy because InputDispatcher is * essentially a passthrough for notifySwitch. */ mLastNotifySwitch = NotifySwitchArgs(1 /*id*/, when, policyFlags, switchValues, switchMask); } void pokeUserActivity(nsecs_t, int32_t, int32_t) override {} bool checkInjectEventsPermissionNonReentrant(int32_t pid, int32_t uid) override { return pid == INJECTOR_PID && uid == INJECTOR_UID; } void onPointerDownOutsideFocus(const sp& newToken) override { std::scoped_lock lock(mLock); mOnPointerDownToken = newToken; } void setPointerCapture(const PointerCaptureRequest& request) override { std::scoped_lock lock(mLock); mPointerCaptureRequest = {request}; mPointerCaptureChangedCondition.notify_all(); } void notifyDropWindow(const sp& token, float x, float y) override { std::scoped_lock lock(mLock); mNotifyDropWindowWasCalled = true; mDropTargetWindowToken = token; } void assertFilterInputEventWasCalled(int type, nsecs_t eventTime, int32_t action, int32_t displayId) { std::scoped_lock lock(mLock); ASSERT_NE(nullptr, mFilteredEvent) << "Expected filterInputEvent() to have been called."; ASSERT_EQ(mFilteredEvent->getType(), type); if (type == AINPUT_EVENT_TYPE_KEY) { const KeyEvent& keyEvent = static_cast(*mFilteredEvent); EXPECT_EQ(keyEvent.getEventTime(), eventTime); EXPECT_EQ(keyEvent.getAction(), action); EXPECT_EQ(keyEvent.getDisplayId(), displayId); } else if (type == AINPUT_EVENT_TYPE_MOTION) { const MotionEvent& motionEvent = static_cast(*mFilteredEvent); EXPECT_EQ(motionEvent.getEventTime(), eventTime); EXPECT_EQ(motionEvent.getAction(), action); EXPECT_EQ(motionEvent.getDisplayId(), displayId); } else { FAIL() << "Unknown type: " << type; } mFilteredEvent = nullptr; } }; // --- InputDispatcherTest --- class InputDispatcherTest : public testing::Test { protected: sp mFakePolicy; sp mDispatcher; void SetUp() override { mFakePolicy = new FakeInputDispatcherPolicy(); mDispatcher = new InputDispatcher(mFakePolicy); mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false); // Start InputDispatcher thread ASSERT_EQ(OK, mDispatcher->start()); } void TearDown() override { ASSERT_EQ(OK, mDispatcher->stop()); mFakePolicy.clear(); mDispatcher.clear(); } /** * Used for debugging when writing the test */ void dumpDispatcherState() { std::string dump; mDispatcher->dump(dump); std::stringstream ss(dump); std::string to; while (std::getline(ss, to, '\n')) { ALOGE("%s", to.c_str()); } } void setFocusedWindow(const sp& window, const sp& focusedWindow = nullptr) { FocusRequest request; request.token = window->getToken(); request.windowName = window->getName(); if (focusedWindow) { request.focusedToken = focusedWindow->getToken(); } request.timestamp = systemTime(SYSTEM_TIME_MONOTONIC); request.displayId = window->getInfo()->displayId; mDispatcher->setFocusedWindow(request); } }; TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesKeyEvents) { KeyEvent event; // Rejects undefined key actions. event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE, INVALID_HMAC, /*action*/ -1, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0, ARBITRARY_TIME, ARBITRARY_TIME); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject key events with undefined action."; // Rejects ACTION_MULTIPLE since it is not supported despite being defined in the API. event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE, INVALID_HMAC, AKEY_EVENT_ACTION_MULTIPLE, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0, ARBITRARY_TIME, ARBITRARY_TIME); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject key events with ACTION_MULTIPLE."; } TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesMotionEvents) { MotionEvent event; PointerProperties pointerProperties[MAX_POINTERS + 1]; PointerCoords pointerCoords[MAX_POINTERS + 1]; for (int i = 0; i <= MAX_POINTERS; i++) { pointerProperties[i].clear(); pointerProperties[i].id = i; pointerCoords[i].clear(); } // Some constants commonly used below constexpr int32_t source = AINPUT_SOURCE_TOUCHSCREEN; constexpr int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE; constexpr int32_t metaState = AMETA_NONE; constexpr MotionClassification classification = MotionClassification::NONE; ui::Transform identityTransform; // Rejects undefined motion actions. event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, /*action*/ -1, 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with undefined action."; // Rejects pointer down with invalid index. event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with pointer down index too large."; event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_POINTER_DOWN | (~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with pointer down index too small."; // Rejects pointer up with invalid index. event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with pointer up index too large."; event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_POINTER_UP | (~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with pointer up index too small."; // Rejects motion events with invalid number of pointers. event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 0, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with 0 pointers."; event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ MAX_POINTERS + 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with more than MAX_POINTERS pointers."; // Rejects motion events with invalid pointer ids. pointerProperties[0].id = -1; event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with pointer ids less than 0."; pointerProperties[0].id = MAX_POINTER_ID + 1; event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with pointer ids greater than MAX_POINTER_ID."; // Rejects motion events with duplicate pointer ids. pointerProperties[0].id = 1; pointerProperties[1].id = 1; event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, INVALID_DISPLAY_SIZE, INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 2, pointerProperties, pointerCoords); ASSERT_EQ(InputEventInjectionResult::FAILED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::NONE, 0ms, 0)) << "Should reject motion events with duplicate pointer ids."; } /* Test InputDispatcher for notifyConfigurationChanged and notifySwitch events */ TEST_F(InputDispatcherTest, NotifyConfigurationChanged_CallsPolicy) { constexpr nsecs_t eventTime = 20; NotifyConfigurationChangedArgs args(10 /*id*/, eventTime); mDispatcher->notifyConfigurationChanged(&args); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyConfigurationChangedWasCalled(eventTime); } TEST_F(InputDispatcherTest, NotifySwitch_CallsPolicy) { NotifySwitchArgs args(10 /*id*/, 20 /*eventTime*/, 0 /*policyFlags*/, 1 /*switchValues*/, 2 /*switchMask*/); mDispatcher->notifySwitch(&args); // InputDispatcher adds POLICY_FLAG_TRUSTED because the event went through InputListener args.policyFlags |= POLICY_FLAG_TRUSTED; mFakePolicy->assertNotifySwitchWasCalled(args); } // --- InputDispatcherTest SetInputWindowTest --- static constexpr std::chrono::duration INJECT_EVENT_TIMEOUT = 500ms; static constexpr std::chrono::nanoseconds DISPATCHING_TIMEOUT = 5s; class FakeApplicationHandle : public InputApplicationHandle { public: FakeApplicationHandle() { mInfo.name = "Fake Application"; mInfo.token = new BBinder(); mInfo.dispatchingTimeoutMillis = std::chrono::duration_cast(DISPATCHING_TIMEOUT).count(); } virtual ~FakeApplicationHandle() {} virtual bool updateInfo() override { return true; } void setDispatchingTimeout(std::chrono::milliseconds timeout) { mInfo.dispatchingTimeoutMillis = timeout.count(); } }; class FakeInputReceiver { public: explicit FakeInputReceiver(std::unique_ptr clientChannel, const std::string name) : mName(name) { mConsumer = std::make_unique(std::move(clientChannel)); } InputEvent* consume() { InputEvent* event; std::optional consumeSeq = receiveEvent(&event); if (!consumeSeq) { return nullptr; } finishEvent(*consumeSeq); return event; } /** * Receive an event without acknowledging it. * Return the sequence number that could later be used to send finished signal. */ std::optional receiveEvent(InputEvent** outEvent = nullptr) { uint32_t consumeSeq; InputEvent* event; std::chrono::time_point start = std::chrono::steady_clock::now(); status_t status = WOULD_BLOCK; while (status == WOULD_BLOCK) { status = mConsumer->consume(&mEventFactory, true /*consumeBatches*/, -1, &consumeSeq, &event); std::chrono::duration elapsed = std::chrono::steady_clock::now() - start; if (elapsed > 100ms) { break; } } if (status == WOULD_BLOCK) { // Just means there's no event available. return std::nullopt; } if (status != OK) { ADD_FAILURE() << mName.c_str() << ": consumer consume should return OK."; return std::nullopt; } if (event == nullptr) { ADD_FAILURE() << "Consumed correctly, but received NULL event from consumer"; return std::nullopt; } if (outEvent != nullptr) { *outEvent = event; } return consumeSeq; } /** * To be used together with "receiveEvent" to complete the consumption of an event. */ void finishEvent(uint32_t consumeSeq) { const status_t status = mConsumer->sendFinishedSignal(consumeSeq, true); ASSERT_EQ(OK, status) << mName.c_str() << ": consumer sendFinishedSignal should return OK."; } void sendTimeline(int32_t inputEventId, std::array timeline) { const status_t status = mConsumer->sendTimeline(inputEventId, timeline); ASSERT_EQ(OK, status); } void consumeEvent(int32_t expectedEventType, int32_t expectedAction, std::optional expectedDisplayId, std::optional expectedFlags) { InputEvent* event = consume(); ASSERT_NE(nullptr, event) << mName.c_str() << ": consumer should have returned non-NULL event."; ASSERT_EQ(expectedEventType, event->getType()) << mName.c_str() << " expected " << inputEventTypeToString(expectedEventType) << " event, got " << inputEventTypeToString(event->getType()) << " event"; if (expectedDisplayId.has_value()) { EXPECT_EQ(expectedDisplayId, event->getDisplayId()); } switch (expectedEventType) { case AINPUT_EVENT_TYPE_KEY: { const KeyEvent& keyEvent = static_cast(*event); EXPECT_EQ(expectedAction, keyEvent.getAction()); if (expectedFlags.has_value()) { EXPECT_EQ(expectedFlags.value(), keyEvent.getFlags()); } break; } case AINPUT_EVENT_TYPE_MOTION: { const MotionEvent& motionEvent = static_cast(*event); EXPECT_EQ(expectedAction, motionEvent.getAction()); if (expectedFlags.has_value()) { EXPECT_EQ(expectedFlags.value(), motionEvent.getFlags()); } break; } case AINPUT_EVENT_TYPE_FOCUS: { FAIL() << "Use 'consumeFocusEvent' for FOCUS events"; } case AINPUT_EVENT_TYPE_CAPTURE: { FAIL() << "Use 'consumeCaptureEvent' for CAPTURE events"; } case AINPUT_EVENT_TYPE_DRAG: { FAIL() << "Use 'consumeDragEvent' for DRAG events"; } default: { FAIL() << mName.c_str() << ": invalid event type: " << expectedEventType; } } } void consumeFocusEvent(bool hasFocus, bool inTouchMode) { InputEvent* event = consume(); ASSERT_NE(nullptr, event) << mName.c_str() << ": consumer should have returned non-NULL event."; ASSERT_EQ(AINPUT_EVENT_TYPE_FOCUS, event->getType()) << "Got " << inputEventTypeToString(event->getType()) << " event instead of FOCUS event"; ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId()) << mName.c_str() << ": event displayId should always be NONE."; FocusEvent* focusEvent = static_cast(event); EXPECT_EQ(hasFocus, focusEvent->getHasFocus()); EXPECT_EQ(inTouchMode, focusEvent->getInTouchMode()); } void consumeCaptureEvent(bool hasCapture) { const InputEvent* event = consume(); ASSERT_NE(nullptr, event) << mName.c_str() << ": consumer should have returned non-NULL event."; ASSERT_EQ(AINPUT_EVENT_TYPE_CAPTURE, event->getType()) << "Got " << inputEventTypeToString(event->getType()) << " event instead of CAPTURE event"; ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId()) << mName.c_str() << ": event displayId should always be NONE."; const auto& captureEvent = static_cast(*event); EXPECT_EQ(hasCapture, captureEvent.getPointerCaptureEnabled()); } void consumeDragEvent(bool isExiting, float x, float y) { const InputEvent* event = consume(); ASSERT_NE(nullptr, event) << mName.c_str() << ": consumer should have returned non-NULL event."; ASSERT_EQ(AINPUT_EVENT_TYPE_DRAG, event->getType()) << "Got " << inputEventTypeToString(event->getType()) << " event instead of DRAG event"; EXPECT_EQ(ADISPLAY_ID_NONE, event->getDisplayId()) << mName.c_str() << ": event displayId should always be NONE."; const auto& dragEvent = static_cast(*event); EXPECT_EQ(isExiting, dragEvent.isExiting()); EXPECT_EQ(x, dragEvent.getX()); EXPECT_EQ(y, dragEvent.getY()); } void assertNoEvents() { InputEvent* event = consume(); if (event == nullptr) { return; } if (event->getType() == AINPUT_EVENT_TYPE_KEY) { KeyEvent& keyEvent = static_cast(*event); ADD_FAILURE() << "Received key event " << KeyEvent::actionToString(keyEvent.getAction()); } else if (event->getType() == AINPUT_EVENT_TYPE_MOTION) { MotionEvent& motionEvent = static_cast(*event); ADD_FAILURE() << "Received motion event " << MotionEvent::actionToString(motionEvent.getAction()); } else if (event->getType() == AINPUT_EVENT_TYPE_FOCUS) { FocusEvent& focusEvent = static_cast(*event); ADD_FAILURE() << "Received focus event, hasFocus = " << (focusEvent.getHasFocus() ? "true" : "false"); } else if (event->getType() == AINPUT_EVENT_TYPE_CAPTURE) { const auto& captureEvent = static_cast(*event); ADD_FAILURE() << "Received capture event, pointerCaptureEnabled = " << (captureEvent.getPointerCaptureEnabled() ? "true" : "false"); } FAIL() << mName.c_str() << ": should not have received any events, so consume() should return NULL"; } sp getToken() { return mConsumer->getChannel()->getConnectionToken(); } protected: std::unique_ptr mConsumer; PreallocatedInputEventFactory mEventFactory; std::string mName; }; class FakeWindowHandle : public WindowInfoHandle { public: static const int32_t WIDTH = 600; static const int32_t HEIGHT = 800; FakeWindowHandle(const std::shared_ptr& inputApplicationHandle, const sp& dispatcher, const std::string name, int32_t displayId, std::optional> token = std::nullopt) : mName(name) { if (token == std::nullopt) { base::Result> channel = dispatcher->createInputChannel(name); token = (*channel)->getConnectionToken(); mInputReceiver = std::make_unique(std::move(*channel), name); } inputApplicationHandle->updateInfo(); mInfo.applicationInfo = *inputApplicationHandle->getInfo(); mInfo.token = *token; mInfo.id = sId++; mInfo.name = name; mInfo.type = WindowInfo::Type::APPLICATION; mInfo.dispatchingTimeout = DISPATCHING_TIMEOUT; mInfo.alpha = 1.0; mInfo.frameLeft = 0; mInfo.frameTop = 0; mInfo.frameRight = WIDTH; mInfo.frameBottom = HEIGHT; mInfo.transform.set(0, 0); mInfo.globalScaleFactor = 1.0; mInfo.touchableRegion.clear(); mInfo.addTouchableRegion(Rect(0, 0, WIDTH, HEIGHT)); mInfo.visible = true; mInfo.focusable = false; mInfo.hasWallpaper = false; mInfo.paused = false; mInfo.ownerPid = INJECTOR_PID; mInfo.ownerUid = INJECTOR_UID; mInfo.displayId = displayId; } sp clone( const std::shared_ptr& inputApplicationHandle, const sp& dispatcher, int32_t displayId) { sp handle = new FakeWindowHandle(inputApplicationHandle, dispatcher, mInfo.name + "(Mirror)", displayId, mInfo.token); return handle; } void setFocusable(bool focusable) { mInfo.focusable = focusable; } void setVisible(bool visible) { mInfo.visible = visible; } void setDispatchingTimeout(std::chrono::nanoseconds timeout) { mInfo.dispatchingTimeout = timeout; } void setPaused(bool paused) { mInfo.paused = paused; } void setAlpha(float alpha) { mInfo.alpha = alpha; } void setTouchOcclusionMode(TouchOcclusionMode mode) { mInfo.touchOcclusionMode = mode; } void setApplicationToken(sp token) { mInfo.applicationInfo.token = token; } void setFrame(const Rect& frame) { mInfo.frameLeft = frame.left; mInfo.frameTop = frame.top; mInfo.frameRight = frame.right; mInfo.frameBottom = frame.bottom; mInfo.transform.set(-frame.left, -frame.top); mInfo.touchableRegion.clear(); mInfo.addTouchableRegion(frame); } void addFlags(Flags flags) { mInfo.flags |= flags; } void setFlags(Flags flags) { mInfo.flags = flags; } void setInputFeatures(WindowInfo::Feature features) { mInfo.inputFeatures = features; } void setWindowTransform(float dsdx, float dtdx, float dtdy, float dsdy) { mInfo.transform.set(dsdx, dtdx, dtdy, dsdy); } void setWindowScale(float xScale, float yScale) { setWindowTransform(xScale, 0, 0, yScale); } void setWindowOffset(float offsetX, float offsetY) { mInfo.transform.set(offsetX, offsetY); } void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) { consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_DOWN, expectedDisplayId, expectedFlags); } void consumeKeyUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) { consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, expectedDisplayId, expectedFlags); } void consumeMotionCancel(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, expectedDisplayId, expectedFlags); } void consumeMotionMove(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_MOVE, expectedDisplayId, expectedFlags); } void consumeMotionDown(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { consumeAnyMotionDown(expectedDisplayId, expectedFlags); } void consumeAnyMotionDown(std::optional expectedDisplayId = std::nullopt, std::optional expectedFlags = std::nullopt) { consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_DOWN, expectedDisplayId, expectedFlags); } void consumeMotionPointerDown(int32_t pointerIdx, int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { int32_t action = AMOTION_EVENT_ACTION_POINTER_DOWN | (pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, expectedDisplayId, expectedFlags); } void consumeMotionPointerUp(int32_t pointerIdx, int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { int32_t action = AMOTION_EVENT_ACTION_POINTER_UP | (pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, expectedDisplayId, expectedFlags); } void consumeMotionUp(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_UP, expectedDisplayId, expectedFlags); } void consumeMotionOutside(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) { consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE, expectedDisplayId, expectedFlags); } void consumeFocusEvent(bool hasFocus, bool inTouchMode = true) { ASSERT_NE(mInputReceiver, nullptr) << "Cannot consume events from a window with no receiver"; mInputReceiver->consumeFocusEvent(hasFocus, inTouchMode); } void consumeCaptureEvent(bool hasCapture) { ASSERT_NE(mInputReceiver, nullptr) << "Cannot consume events from a window with no receiver"; mInputReceiver->consumeCaptureEvent(hasCapture); } void consumeEvent(int32_t expectedEventType, int32_t expectedAction, std::optional expectedDisplayId, std::optional expectedFlags) { ASSERT_NE(mInputReceiver, nullptr) << "Invalid consume event on window with no receiver"; mInputReceiver->consumeEvent(expectedEventType, expectedAction, expectedDisplayId, expectedFlags); } void consumeDragEvent(bool isExiting, float x, float y) { mInputReceiver->consumeDragEvent(isExiting, x, y); } std::optional receiveEvent(InputEvent** outEvent = nullptr) { if (mInputReceiver == nullptr) { ADD_FAILURE() << "Invalid receive event on window with no receiver"; return std::nullopt; } return mInputReceiver->receiveEvent(outEvent); } void finishEvent(uint32_t sequenceNum) { ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver"; mInputReceiver->finishEvent(sequenceNum); } void sendTimeline(int32_t inputEventId, std::array timeline) { ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver"; mInputReceiver->sendTimeline(inputEventId, timeline); } InputEvent* consume() { if (mInputReceiver == nullptr) { return nullptr; } return mInputReceiver->consume(); } MotionEvent* consumeMotion() { InputEvent* event = consume(); if (event == nullptr) { ADD_FAILURE() << "Consume failed : no event"; return nullptr; } if (event->getType() != AINPUT_EVENT_TYPE_MOTION) { ADD_FAILURE() << "Instead of motion event, got " << inputEventTypeToString(event->getType()); return nullptr; } return static_cast(event); } void assertNoEvents() { if (mInputReceiver == nullptr && mInfo.inputFeatures.test(WindowInfo::Feature::NO_INPUT_CHANNEL)) { return; // Can't receive events if the window does not have input channel } ASSERT_NE(nullptr, mInputReceiver) << "Window without InputReceiver must specify feature NO_INPUT_CHANNEL"; mInputReceiver->assertNoEvents(); } sp getToken() { return mInfo.token; } const std::string& getName() { return mName; } void setOwnerInfo(int32_t ownerPid, int32_t ownerUid) { mInfo.ownerPid = ownerPid; mInfo.ownerUid = ownerUid; } private: const std::string mName; std::unique_ptr mInputReceiver; static std::atomic sId; // each window gets a unique id, like in surfaceflinger }; std::atomic FakeWindowHandle::sId{1}; static InputEventInjectionResult injectKey( const sp& dispatcher, int32_t action, int32_t repeatCount, int32_t displayId = ADISPLAY_ID_NONE, InputEventInjectionSync syncMode = InputEventInjectionSync::WAIT_FOR_RESULT, std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT, bool allowKeyRepeat = true) { KeyEvent event; nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); // Define a valid key down event. event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, displayId, INVALID_HMAC, action, /* flags */ 0, AKEYCODE_A, KEY_A, AMETA_NONE, repeatCount, currentTime, currentTime); int32_t policyFlags = POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER; if (!allowKeyRepeat) { policyFlags |= POLICY_FLAG_DISABLE_KEY_REPEAT; } // Inject event until dispatch out. return dispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, syncMode, injectionTimeout, policyFlags); } static InputEventInjectionResult injectKeyDown(const sp& dispatcher, int32_t displayId = ADISPLAY_ID_NONE) { return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /* repeatCount */ 0, displayId); } // Inject a down event that has key repeat disabled. This allows InputDispatcher to idle without // sending a subsequent key up. When key repeat is enabled, the dispatcher cannot idle because it // has to be woken up to process the repeating key. static InputEventInjectionResult injectKeyDownNoRepeat(const sp& dispatcher, int32_t displayId = ADISPLAY_ID_NONE) { return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /* repeatCount */ 0, displayId, InputEventInjectionSync::WAIT_FOR_RESULT, INJECT_EVENT_TIMEOUT, /* allowKeyRepeat */ false); } static InputEventInjectionResult injectKeyUp(const sp& dispatcher, int32_t displayId = ADISPLAY_ID_NONE) { return injectKey(dispatcher, AKEY_EVENT_ACTION_UP, /* repeatCount */ 0, displayId); } class PointerBuilder { public: PointerBuilder(int32_t id, int32_t toolType) { mProperties.clear(); mProperties.id = id; mProperties.toolType = toolType; mCoords.clear(); } PointerBuilder& x(float x) { return axis(AMOTION_EVENT_AXIS_X, x); } PointerBuilder& y(float y) { return axis(AMOTION_EVENT_AXIS_Y, y); } PointerBuilder& axis(int32_t axis, float value) { mCoords.setAxisValue(axis, value); return *this; } PointerProperties buildProperties() const { return mProperties; } PointerCoords buildCoords() const { return mCoords; } private: PointerProperties mProperties; PointerCoords mCoords; }; class MotionEventBuilder { public: MotionEventBuilder(int32_t action, int32_t source) { mAction = action; mSource = source; mEventTime = systemTime(SYSTEM_TIME_MONOTONIC); } MotionEventBuilder& eventTime(nsecs_t eventTime) { mEventTime = eventTime; return *this; } MotionEventBuilder& displayId(int32_t displayId) { mDisplayId = displayId; return *this; } MotionEventBuilder& actionButton(int32_t actionButton) { mActionButton = actionButton; return *this; } MotionEventBuilder& buttonState(int32_t buttonState) { mButtonState = buttonState; return *this; } MotionEventBuilder& rawXCursorPosition(float rawXCursorPosition) { mRawXCursorPosition = rawXCursorPosition; return *this; } MotionEventBuilder& rawYCursorPosition(float rawYCursorPosition) { mRawYCursorPosition = rawYCursorPosition; return *this; } MotionEventBuilder& pointer(PointerBuilder pointer) { mPointers.push_back(pointer); return *this; } MotionEventBuilder& addFlag(uint32_t flags) { mFlags |= flags; return *this; } MotionEvent build() { std::vector pointerProperties; std::vector pointerCoords; for (const PointerBuilder& pointer : mPointers) { pointerProperties.push_back(pointer.buildProperties()); pointerCoords.push_back(pointer.buildCoords()); } // Set mouse cursor position for the most common cases to avoid boilerplate. if (mSource == AINPUT_SOURCE_MOUSE && !MotionEvent::isValidCursorPosition(mRawXCursorPosition, mRawYCursorPosition) && mPointers.size() == 1) { mRawXCursorPosition = pointerCoords[0].getX(); mRawYCursorPosition = pointerCoords[0].getY(); } MotionEvent event; ui::Transform identityTransform; event.initialize(InputEvent::nextId(), DEVICE_ID, mSource, mDisplayId, INVALID_HMAC, mAction, mActionButton, mFlags, /* edgeFlags */ 0, AMETA_NONE, mButtonState, MotionClassification::NONE, identityTransform, /* xPrecision */ 0, /* yPrecision */ 0, mRawXCursorPosition, mRawYCursorPosition, mDisplayOrientation, mDisplayWidth, mDisplayHeight, mEventTime, mEventTime, mPointers.size(), pointerProperties.data(), pointerCoords.data()); return event; } private: int32_t mAction; int32_t mSource; nsecs_t mEventTime; int32_t mDisplayId{ADISPLAY_ID_DEFAULT}; int32_t mActionButton{0}; int32_t mButtonState{0}; int32_t mFlags{0}; float mRawXCursorPosition{AMOTION_EVENT_INVALID_CURSOR_POSITION}; float mRawYCursorPosition{AMOTION_EVENT_INVALID_CURSOR_POSITION}; uint32_t mDisplayOrientation{ui::Transform::ROT_0}; int32_t mDisplayWidth{INVALID_DISPLAY_SIZE}; int32_t mDisplayHeight{INVALID_DISPLAY_SIZE}; std::vector mPointers; }; static InputEventInjectionResult injectMotionEvent( const sp& dispatcher, const MotionEvent& event, std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT, InputEventInjectionSync injectionMode = InputEventInjectionSync::WAIT_FOR_RESULT) { return dispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, injectionMode, injectionTimeout, POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER); } static InputEventInjectionResult injectMotionEvent( const sp& dispatcher, int32_t action, int32_t source, int32_t displayId, const PointF& position, const PointF& cursorPosition = {AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION}, std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT, InputEventInjectionSync injectionMode = InputEventInjectionSync::WAIT_FOR_RESULT, nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC)) { MotionEvent event = MotionEventBuilder(action, source) .displayId(displayId) .eventTime(eventTime) .rawXCursorPosition(cursorPosition.x) .rawYCursorPosition(cursorPosition.y) .pointer(PointerBuilder(/* id */ 0, AMOTION_EVENT_TOOL_TYPE_FINGER) .x(position.x) .y(position.y)) .build(); // Inject event until dispatch out. return injectMotionEvent(dispatcher, event, injectionTimeout, injectionMode); } static InputEventInjectionResult injectMotionDown(const sp& dispatcher, int32_t source, int32_t displayId, const PointF& location = {100, 200}) { return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_DOWN, source, displayId, location); } static InputEventInjectionResult injectMotionUp(const sp& dispatcher, int32_t source, int32_t displayId, const PointF& location = {100, 200}) { return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_UP, source, displayId, location); } static NotifyKeyArgs generateKeyArgs(int32_t action, int32_t displayId = ADISPLAY_ID_NONE) { nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); // Define a valid key event. NotifyKeyArgs args(/* id */ 0, currentTime, 0 /*readTime*/, DEVICE_ID, AINPUT_SOURCE_KEYBOARD, displayId, POLICY_FLAG_PASS_TO_USER, action, /* flags */ 0, AKEYCODE_A, KEY_A, AMETA_NONE, currentTime); return args; } static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId, const std::vector& points) { size_t pointerCount = points.size(); if (action == AMOTION_EVENT_ACTION_DOWN || action == AMOTION_EVENT_ACTION_UP) { EXPECT_EQ(1U, pointerCount) << "Actions DOWN and UP can only contain a single pointer"; } PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (size_t i = 0; i < pointerCount; i++) { pointerProperties[i].clear(); pointerProperties[i].id = i; pointerProperties[i].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; pointerCoords[i].clear(); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, points[i].x); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, points[i].y); } nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); // Define a valid motion event. NotifyMotionArgs args(/* id */ 0, currentTime, 0 /*readTime*/, DEVICE_ID, source, displayId, POLICY_FLAG_PASS_TO_USER, action, /* actionButton */ 0, /* flags */ 0, AMETA_NONE, /* buttonState */ 0, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, pointerCount, pointerProperties, pointerCoords, /* xPrecision */ 0, /* yPrecision */ 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, currentTime, /* videoFrames */ {}); return args; } static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId) { return generateMotionArgs(action, source, displayId, {PointF{100, 200}}); } static NotifyPointerCaptureChangedArgs generatePointerCaptureChangedArgs( const PointerCaptureRequest& request) { return NotifyPointerCaptureChangedArgs(/* id */ 0, systemTime(SYSTEM_TIME_MONOTONIC), request); } TEST_F(InputDispatcherTest, SetInputWindow_SingleWindowTouch) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Window should receive motion event. window->consumeMotionDown(ADISPLAY_ID_DEFAULT); } /** * Calling setInputWindows once with FLAG_NOT_TOUCH_MODAL should not cause any issues. * To ensure that window receives only events that were directly inside of it, add * FLAG_NOT_TOUCH_MODAL. This will enforce using the touchableRegion of the input * when finding touched windows. * This test serves as a sanity check for the next test, where setInputWindows is * called twice. */ TEST_F(InputDispatcherTest, SetInputWindowOnce_SingleWindowTouch) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); window->setFrame(Rect(0, 0, 100, 100)); window->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Window should receive motion event. window->consumeMotionDown(ADISPLAY_ID_DEFAULT); } /** * Calling setInputWindows twice, with the same info, should not cause any issues. * To ensure that window receives only events that were directly inside of it, add * FLAG_NOT_TOUCH_MODAL. This will enforce using the touchableRegion of the input * when finding touched windows. */ TEST_F(InputDispatcherTest, SetInputWindowTwice_SingleWindowTouch) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); window->setFrame(Rect(0, 0, 100, 100)); window->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Window should receive motion event. window->consumeMotionDown(ADISPLAY_ID_DEFAULT); } // The foreground window should receive the first touch down event. TEST_F(InputDispatcherTest, SetInputWindow_MultiWindowsTouch) { std::shared_ptr application = std::make_shared(); sp windowTop = new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT); sp windowSecond = new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Top window should receive the touch down event. Second window should not receive anything. windowTop->consumeMotionDown(ADISPLAY_ID_DEFAULT); windowSecond->assertNoEvents(); } TEST_F(InputDispatcherTest, HoverMoveEnterMouseClickAndHoverMoveExit) { std::shared_ptr application = std::make_shared(); sp windowLeft = new FakeWindowHandle(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT); windowLeft->setFrame(Rect(0, 0, 600, 800)); windowLeft->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp windowRight = new FakeWindowHandle(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT); windowRight->setFrame(Rect(600, 0, 1200, 800)); windowRight->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}}); // Start cursor position in right window so that we can move the cursor to left window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE, AINPUT_SOURCE_MOUSE) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(900) .y(400)) .build())); windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_MOVE, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); // Move cursor into left window ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE, AINPUT_SOURCE_MOUSE) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_EXIT, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_MOVE, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); // Inject a series of mouse events for a mouse click ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE) .buttonState(AMOTION_EVENT_BUTTON_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); windowLeft->consumeMotionDown(ADISPLAY_ID_DEFAULT); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS, AINPUT_SOURCE_MOUSE) .buttonState(AMOTION_EVENT_BUTTON_PRIMARY) .actionButton(AMOTION_EVENT_BUTTON_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_PRESS, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_RELEASE, AINPUT_SOURCE_MOUSE) .buttonState(0) .actionButton(AMOTION_EVENT_BUTTON_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_RELEASE, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE) .buttonState(0) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); windowLeft->consumeMotionUp(ADISPLAY_ID_DEFAULT); // Move mouse cursor back to right window ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE, AINPUT_SOURCE_MOUSE) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(900) .y(400)) .build())); windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_EXIT, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_MOVE, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); } // This test is different from the test above that HOVER_ENTER and HOVER_EXIT events are injected // directly in this test. TEST_F(InputDispatcherTest, HoverEnterMouseClickAndHoverExit) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT); window->setFrame(Rect(0, 0, 1200, 800)); window->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER, AINPUT_SOURCE_MOUSE) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); // Inject a series of mouse events for a mouse click ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE) .buttonState(AMOTION_EVENT_BUTTON_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); window->consumeMotionDown(ADISPLAY_ID_DEFAULT); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS, AINPUT_SOURCE_MOUSE) .buttonState(AMOTION_EVENT_BUTTON_PRIMARY) .actionButton(AMOTION_EVENT_BUTTON_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_PRESS, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_RELEASE, AINPUT_SOURCE_MOUSE) .buttonState(0) .actionButton(AMOTION_EVENT_BUTTON_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_RELEASE, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE) .buttonState(0) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); window->consumeMotionUp(ADISPLAY_ID_DEFAULT); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_EXIT, AINPUT_SOURCE_MOUSE) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE) .x(300) .y(400)) .build())); window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_EXIT, ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */); } TEST_F(InputDispatcherTest, DispatchMouseEventsUnderCursor) { std::shared_ptr application = std::make_shared(); sp windowLeft = new FakeWindowHandle(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT); windowLeft->setFrame(Rect(0, 0, 600, 800)); windowLeft->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp windowRight = new FakeWindowHandle(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT); windowRight->setFrame(Rect(600, 0, 1200, 800)); windowRight->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}}); // Inject an event with coordinate in the area of right window, with mouse cursor in the area of // left window. This event should be dispatched to the left window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE, ADISPLAY_ID_DEFAULT, {610, 400}, {599, 400})); windowLeft->consumeMotionDown(ADISPLAY_ID_DEFAULT); windowRight->assertNoEvents(); } TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsKeyStream) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true); NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); // Window should receive key down event. window->consumeKeyDown(ADISPLAY_ID_DEFAULT); // When device reset happens, that key stream should be terminated with FLAG_CANCELED // on the app side. NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID); mDispatcher->notifyDeviceReset(&args); window->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT, AKEY_EVENT_FLAG_CANCELED); } TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsMotionStream) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); // Window should receive motion down event. window->consumeMotionDown(ADISPLAY_ID_DEFAULT); // When device reset happens, that motion stream should be terminated with ACTION_CANCEL // on the app side. NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID); mDispatcher->notifyDeviceReset(&args); window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, ADISPLAY_ID_DEFAULT, 0 /*expectedFlags*/); } using TransferFunction = std::function dispatcher, sp, sp)>; class TransferTouchFixture : public InputDispatcherTest, public ::testing::WithParamInterface {}; TEST_P(TransferTouchFixture, TransferTouch_OnePointer) { std::shared_ptr application = std::make_shared(); // Create a couple of windows sp firstWindow = new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT); sp secondWindow = new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT); // Add the windows to the dispatcher mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}}); // Send down to the first window NotifyMotionArgs downMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&downMotionArgs); // Only the first window should get the down event firstWindow->consumeMotionDown(); secondWindow->assertNoEvents(); // Transfer touch to the second window TransferFunction f = GetParam(); const bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken()); ASSERT_TRUE(success); // The first window gets cancel and the second gets down firstWindow->consumeMotionCancel(); secondWindow->consumeMotionDown(); // Send up event to the second window NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&upMotionArgs); // The first window gets no events and the second gets up firstWindow->assertNoEvents(); secondWindow->consumeMotionUp(); } TEST_P(TransferTouchFixture, TransferTouch_TwoPointersNonSplitTouch) { std::shared_ptr application = std::make_shared(); PointF touchPoint = {10, 10}; // Create a couple of windows sp firstWindow = new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT); sp secondWindow = new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT); // Add the windows to the dispatcher mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}}); // Send down to the first window NotifyMotionArgs downMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchPoint}); mDispatcher->notifyMotion(&downMotionArgs); // Only the first window should get the down event firstWindow->consumeMotionDown(); secondWindow->assertNoEvents(); // Send pointer down to the first window NotifyMotionArgs pointerDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchPoint, touchPoint}); mDispatcher->notifyMotion(&pointerDownMotionArgs); // Only the first window should get the pointer down event firstWindow->consumeMotionPointerDown(1); secondWindow->assertNoEvents(); // Transfer touch focus to the second window TransferFunction f = GetParam(); bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken()); ASSERT_TRUE(success); // The first window gets cancel and the second gets down and pointer down firstWindow->consumeMotionCancel(); secondWindow->consumeMotionDown(); secondWindow->consumeMotionPointerDown(1); // Send pointer up to the second window NotifyMotionArgs pointerUpMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchPoint, touchPoint}); mDispatcher->notifyMotion(&pointerUpMotionArgs); // The first window gets nothing and the second gets pointer up firstWindow->assertNoEvents(); secondWindow->consumeMotionPointerUp(1); // Send up event to the second window NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&upMotionArgs); // The first window gets nothing and the second gets up firstWindow->assertNoEvents(); secondWindow->consumeMotionUp(); } // For the cases of single pointer touch and two pointers non-split touch, the api's // 'transferTouch' and 'transferTouchFocus' are equivalent in behaviour. They only differ // for the case where there are multiple pointers split across several windows. INSTANTIATE_TEST_SUITE_P(TransferFunctionTests, TransferTouchFixture, ::testing::Values( [&](sp dispatcher, sp /*ignored*/, sp destChannelToken) { return dispatcher->transferTouch(destChannelToken); }, [&](sp dispatcher, sp from, sp to) { return dispatcher->transferTouchFocus(from, to, false /*isDragAndDrop*/); })); TEST_F(InputDispatcherTest, TransferTouchFocus_TwoPointersSplitTouch) { std::shared_ptr application = std::make_shared(); // Create a non touch modal window that supports split touch sp firstWindow = new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT); firstWindow->setFrame(Rect(0, 0, 600, 400)); firstWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Create a non touch modal window that supports split touch sp secondWindow = new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT); secondWindow->setFrame(Rect(0, 400, 600, 800)); secondWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Add the windows to the dispatcher mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}}); PointF pointInFirst = {300, 200}; PointF pointInSecond = {300, 600}; // Send down to the first window NotifyMotionArgs firstDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst}); mDispatcher->notifyMotion(&firstDownMotionArgs); // Only the first window should get the down event firstWindow->consumeMotionDown(); secondWindow->assertNoEvents(); // Send down to the second window NotifyMotionArgs secondDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond}); mDispatcher->notifyMotion(&secondDownMotionArgs); // The first window gets a move and the second a down firstWindow->consumeMotionMove(); secondWindow->consumeMotionDown(); // Transfer touch focus to the second window mDispatcher->transferTouchFocus(firstWindow->getToken(), secondWindow->getToken()); // The first window gets cancel and the new gets pointer down (it already saw down) firstWindow->consumeMotionCancel(); secondWindow->consumeMotionPointerDown(1); // Send pointer up to the second window NotifyMotionArgs pointerUpMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond}); mDispatcher->notifyMotion(&pointerUpMotionArgs); // The first window gets nothing and the second gets pointer up firstWindow->assertNoEvents(); secondWindow->consumeMotionPointerUp(1); // Send up event to the second window NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&upMotionArgs); // The first window gets nothing and the second gets up firstWindow->assertNoEvents(); secondWindow->consumeMotionUp(); } // Same as TransferTouchFocus_TwoPointersSplitTouch, but using 'transferTouch' api. // Unlike 'transferTouchFocus', calling 'transferTouch' when there are two windows receiving // touch is not supported, so the touch should continue on those windows and the transferred-to // window should get nothing. TEST_F(InputDispatcherTest, TransferTouch_TwoPointersSplitTouch) { std::shared_ptr application = std::make_shared(); // Create a non touch modal window that supports split touch sp firstWindow = new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT); firstWindow->setFrame(Rect(0, 0, 600, 400)); firstWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Create a non touch modal window that supports split touch sp secondWindow = new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT); secondWindow->setFrame(Rect(0, 400, 600, 800)); secondWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Add the windows to the dispatcher mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}}); PointF pointInFirst = {300, 200}; PointF pointInSecond = {300, 600}; // Send down to the first window NotifyMotionArgs firstDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst}); mDispatcher->notifyMotion(&firstDownMotionArgs); // Only the first window should get the down event firstWindow->consumeMotionDown(); secondWindow->assertNoEvents(); // Send down to the second window NotifyMotionArgs secondDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond}); mDispatcher->notifyMotion(&secondDownMotionArgs); // The first window gets a move and the second a down firstWindow->consumeMotionMove(); secondWindow->consumeMotionDown(); // Transfer touch focus to the second window const bool transferred = mDispatcher->transferTouch(secondWindow->getToken()); // The 'transferTouch' call should not succeed, because there are 2 touched windows ASSERT_FALSE(transferred); firstWindow->assertNoEvents(); secondWindow->assertNoEvents(); // The rest of the dispatch should proceed as normal // Send pointer up to the second window NotifyMotionArgs pointerUpMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond}); mDispatcher->notifyMotion(&pointerUpMotionArgs); // The first window gets MOVE and the second gets pointer up firstWindow->consumeMotionMove(); secondWindow->consumeMotionUp(); // Send up event to the first window NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&upMotionArgs); // The first window gets nothing and the second gets up firstWindow->consumeMotionUp(); secondWindow->assertNoEvents(); } // This case will create two windows and one mirrored window on the default display and mirror // two windows on the second display. It will test if 'transferTouchFocus' works fine if we put // the windows info of second display before default display. TEST_F(InputDispatcherTest, TransferTouchFocus_CloneSurface) { std::shared_ptr application = std::make_shared(); sp firstWindowInPrimary = new FakeWindowHandle(application, mDispatcher, "D_1_W1", ADISPLAY_ID_DEFAULT); firstWindowInPrimary->setFrame(Rect(0, 0, 100, 100)); firstWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp secondWindowInPrimary = new FakeWindowHandle(application, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT); secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100)); secondWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp mirrorWindowInPrimary = firstWindowInPrimary->clone(application, mDispatcher, ADISPLAY_ID_DEFAULT); mirrorWindowInPrimary->setFrame(Rect(0, 100, 100, 200)); mirrorWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp firstWindowInSecondary = firstWindowInPrimary->clone(application, mDispatcher, SECOND_DISPLAY_ID); firstWindowInSecondary->setFrame(Rect(0, 0, 100, 100)); firstWindowInSecondary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp secondWindowInSecondary = secondWindowInPrimary->clone(application, mDispatcher, SECOND_DISPLAY_ID); secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100)); secondWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); // Update window info, let it find window handle of second display first. mDispatcher->setInputWindows( {{SECOND_DISPLAY_ID, {firstWindowInSecondary, secondWindowInSecondary}}, {ADISPLAY_ID_DEFAULT, {mirrorWindowInPrimary, firstWindowInPrimary, secondWindowInPrimary}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Window should receive motion event. firstWindowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT); // Transfer touch focus ASSERT_TRUE(mDispatcher->transferTouchFocus(firstWindowInPrimary->getToken(), secondWindowInPrimary->getToken())); // The first window gets cancel. firstWindowInPrimary->consumeMotionCancel(); secondWindowInPrimary->consumeMotionDown(); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; firstWindowInPrimary->assertNoEvents(); secondWindowInPrimary->consumeMotionMove(); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; firstWindowInPrimary->assertNoEvents(); secondWindowInPrimary->consumeMotionUp(); } // Same as TransferTouchFocus_CloneSurface, but this touch on the secondary display and use // 'transferTouch' api. TEST_F(InputDispatcherTest, TransferTouch_CloneSurface) { std::shared_ptr application = std::make_shared(); sp firstWindowInPrimary = new FakeWindowHandle(application, mDispatcher, "D_1_W1", ADISPLAY_ID_DEFAULT); firstWindowInPrimary->setFrame(Rect(0, 0, 100, 100)); firstWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp secondWindowInPrimary = new FakeWindowHandle(application, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT); secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100)); secondWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp mirrorWindowInPrimary = firstWindowInPrimary->clone(application, mDispatcher, ADISPLAY_ID_DEFAULT); mirrorWindowInPrimary->setFrame(Rect(0, 100, 100, 200)); mirrorWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp firstWindowInSecondary = firstWindowInPrimary->clone(application, mDispatcher, SECOND_DISPLAY_ID); firstWindowInSecondary->setFrame(Rect(0, 0, 100, 100)); firstWindowInSecondary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); sp secondWindowInSecondary = secondWindowInPrimary->clone(application, mDispatcher, SECOND_DISPLAY_ID); secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100)); secondWindowInPrimary->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); // Update window info, let it find window handle of second display first. mDispatcher->setInputWindows( {{SECOND_DISPLAY_ID, {firstWindowInSecondary, secondWindowInSecondary}}, {ADISPLAY_ID_DEFAULT, {mirrorWindowInPrimary, firstWindowInPrimary, secondWindowInPrimary}}}); // Touch on second display. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Window should receive motion event. firstWindowInPrimary->consumeMotionDown(SECOND_DISPLAY_ID); // Transfer touch focus ASSERT_TRUE(mDispatcher->transferTouch(secondWindowInSecondary->getToken())); // The first window gets cancel. firstWindowInPrimary->consumeMotionCancel(SECOND_DISPLAY_ID); secondWindowInPrimary->consumeMotionDown(SECOND_DISPLAY_ID); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; firstWindowInPrimary->assertNoEvents(); secondWindowInPrimary->consumeMotionMove(SECOND_DISPLAY_ID); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; firstWindowInPrimary->assertNoEvents(); secondWindowInPrimary->consumeMotionUp(SECOND_DISPLAY_ID); } TEST_F(InputDispatcherTest, FocusedWindow_ReceivesFocusEventAndKeyEvent) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true); NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); // Window should receive key down event. window->consumeKeyDown(ADISPLAY_ID_DEFAULT); } TEST_F(InputDispatcherTest, UnfocusedWindow_DoesNotReceiveFocusEventOrKeyEvent) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); mDispatcher->waitForIdle(); window->assertNoEvents(); } // If a window is touchable, but does not have focus, it should receive motion events, but not keys TEST_F(InputDispatcherTest, UnfocusedWindow_ReceivesMotionsButNotKeys) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); // Send key NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); // Send motion NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); // Window should receive only the motion event window->consumeMotionDown(ADISPLAY_ID_DEFAULT); window->assertNoEvents(); // Key event or focus event will not be received } TEST_F(InputDispatcherTest, PointerCancel_SendCancelWhenSplitTouch) { std::shared_ptr application = std::make_shared(); // Create first non touch modal window that supports split touch sp firstWindow = new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT); firstWindow->setFrame(Rect(0, 0, 600, 400)); firstWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Create second non touch modal window that supports split touch sp secondWindow = new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT); secondWindow->setFrame(Rect(0, 400, 600, 800)); secondWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Add the windows to the dispatcher mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}}); PointF pointInFirst = {300, 200}; PointF pointInSecond = {300, 600}; // Send down to the first window NotifyMotionArgs firstDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst}); mDispatcher->notifyMotion(&firstDownMotionArgs); // Only the first window should get the down event firstWindow->consumeMotionDown(); secondWindow->assertNoEvents(); // Send down to the second window NotifyMotionArgs secondDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond}); mDispatcher->notifyMotion(&secondDownMotionArgs); // The first window gets a move and the second a down firstWindow->consumeMotionMove(); secondWindow->consumeMotionDown(); // Send pointer cancel to the second window NotifyMotionArgs pointerUpMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond}); pointerUpMotionArgs.flags |= AMOTION_EVENT_FLAG_CANCELED; mDispatcher->notifyMotion(&pointerUpMotionArgs); // The first window gets move and the second gets cancel. firstWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED); secondWindow->consumeMotionCancel(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED); // Send up event. NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&upMotionArgs); // The first window gets up and the second gets nothing. firstWindow->consumeMotionUp(); secondWindow->assertNoEvents(); } TEST_F(InputDispatcherTest, SendTimeline_DoesNotCrashDispatcher) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); std::array graphicsTimeline; graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME] = 2; graphicsTimeline[GraphicsTimeline::PRESENT_TIME] = 3; window->sendTimeline(1 /*inputEventId*/, graphicsTimeline); window->assertNoEvents(); mDispatcher->waitForIdle(); } class FakeMonitorReceiver { public: FakeMonitorReceiver(const sp& dispatcher, const std::string name, int32_t displayId, bool isGestureMonitor = false) { base::Result> channel = dispatcher->createInputMonitor(displayId, isGestureMonitor, name, MONITOR_PID); mInputReceiver = std::make_unique(std::move(*channel), name); } sp getToken() { return mInputReceiver->getToken(); } void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) { mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_DOWN, expectedDisplayId, expectedFlags); } std::optional receiveEvent() { return mInputReceiver->receiveEvent(); } void finishEvent(uint32_t consumeSeq) { return mInputReceiver->finishEvent(consumeSeq); } void consumeMotionDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) { mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_DOWN, expectedDisplayId, expectedFlags); } void consumeMotionUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) { mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_UP, expectedDisplayId, expectedFlags); } void consumeMotionCancel(int32_t expectedDisplayId, int32_t expectedFlags = 0) { mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, expectedDisplayId, expectedFlags); } void consumeMotionPointerDown(int32_t pointerIdx) { int32_t action = AMOTION_EVENT_ACTION_POINTER_DOWN | (pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, ADISPLAY_ID_DEFAULT, 0 /*expectedFlags*/); } MotionEvent* consumeMotion() { InputEvent* event = mInputReceiver->consume(); if (!event) { ADD_FAILURE() << "No event was produced"; return nullptr; } if (event->getType() != AINPUT_EVENT_TYPE_MOTION) { ADD_FAILURE() << "Received event of type " << event->getType() << " instead of motion"; return nullptr; } return static_cast(event); } void assertNoEvents() { mInputReceiver->assertNoEvents(); } private: std::unique_ptr mInputReceiver; }; // Tests for gesture monitors TEST_F(InputDispatcherTest, GestureMonitor_ReceivesMotionEvents) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; window->consumeMotionDown(ADISPLAY_ID_DEFAULT); monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); } TEST_F(InputDispatcherTest, GestureMonitor_DoesNotReceiveKeyEvents) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true); FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; window->consumeKeyDown(ADISPLAY_ID_DEFAULT); monitor.assertNoEvents(); } TEST_F(InputDispatcherTest, GestureMonitor_CanPilferAfterWindowIsRemovedMidStream) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; window->consumeMotionDown(ADISPLAY_ID_DEFAULT); monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); window->releaseChannel(); mDispatcher->pilferPointers(monitor.getToken()); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT); } TEST_F(InputDispatcherTest, UnresponsiveGestureMonitor_GetsAnr) { FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)); std::optional consumeSeq = monitor.receiveEvent(); ASSERT_TRUE(consumeSeq); mFakePolicy->assertNotifyMonitorUnresponsiveWasCalled(DISPATCHING_TIMEOUT); monitor.finishEvent(*consumeSeq); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyMonitorResponsiveWasCalled(); } // Tests for gesture monitors TEST_F(InputDispatcherTest, GestureMonitor_NoWindowTransform) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); window->setWindowOffset(20, 40); window->setWindowTransform(0, 1, -1, 0); FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; window->consumeMotionDown(ADISPLAY_ID_DEFAULT); MotionEvent* event = monitor.consumeMotion(); // Even though window has transform, gesture monitor must not. ASSERT_EQ(ui::Transform(), event->getTransform()); } TEST_F(InputDispatcherTest, TestMoveEvent) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); // Window should receive motion down event. window->consumeMotionDown(ADISPLAY_ID_DEFAULT); motionArgs.action = AMOTION_EVENT_ACTION_MOVE; motionArgs.id += 1; motionArgs.eventTime = systemTime(SYSTEM_TIME_MONOTONIC); motionArgs.pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, motionArgs.pointerCoords[0].getX() - 10); mDispatcher->notifyMotion(&motionArgs); window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_MOVE, ADISPLAY_ID_DEFAULT, 0 /*expectedFlags*/); } TEST_F(InputDispatcherTest, GestureMonitor_SplitIfNoWindowTouched) { FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); std::shared_ptr application = std::make_shared(); // Create a non touch modal window that supports split touch sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); window->setFrame(Rect(0, 0, 100, 100)); window->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); // First finger down, no window touched. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {100, 200})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); window->assertNoEvents(); // Second finger down on window, the window should receive touch down. const MotionEvent secondFingerDownEvent = MotionEventBuilder(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN) .displayId(ADISPLAY_ID_DEFAULT) .eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) .pointer(PointerBuilder(/* id */ 0, AMOTION_EVENT_TOOL_TYPE_FINGER) .x(100) .y(200)) .pointer(PointerBuilder(/* id */ 1, AMOTION_EVENT_TOOL_TYPE_FINGER).x(50).y(50)) .build(); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT, InputEventInjectionSync::WAIT_FOR_RESULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; window->consumeMotionDown(ADISPLAY_ID_DEFAULT); monitor.consumeMotionPointerDown(1 /* pointerIndex */); } TEST_F(InputDispatcherTest, GestureMonitor_NoSplitAfterPilfer) { FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); std::shared_ptr application = std::make_shared(); // Create a non touch modal window that supports split touch sp window = new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); window->setFrame(Rect(0, 0, 100, 100)); window->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); // First finger down, no window touched. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {100, 200})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); window->assertNoEvents(); // Gesture monitor pilfer the pointers. mDispatcher->pilferPointers(monitor.getToken()); // Second finger down on window, the window should not receive touch down. const MotionEvent secondFingerDownEvent = MotionEventBuilder(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT), AINPUT_SOURCE_TOUCHSCREEN) .displayId(ADISPLAY_ID_DEFAULT) .eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) .pointer(PointerBuilder(/* id */ 0, AMOTION_EVENT_TOOL_TYPE_FINGER) .x(100) .y(200)) .pointer(PointerBuilder(/* id */ 1, AMOTION_EVENT_TOOL_TYPE_FINGER).x(50).y(50)) .build(); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT, InputEventInjectionSync::WAIT_FOR_RESULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; window->assertNoEvents(); monitor.consumeMotionPointerDown(1 /* pointerIndex */); } /** * Dispatcher has touch mode enabled by default. Typically, the policy overrides that value to * the device default right away. In the test scenario, we check both the default value, * and the action of enabling / disabling. */ TEST_F(InputDispatcherTest, TouchModeState_IsSentToApps) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); // Set focused application. mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); SCOPED_TRACE("Check default value of touch mode"); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/); SCOPED_TRACE("Remove the window to trigger focus loss"); window->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); window->consumeFocusEvent(false /*hasFocus*/, true /*inTouchMode*/); SCOPED_TRACE("Disable touch mode"); mDispatcher->setInTouchMode(false); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, false /*inTouchMode*/); SCOPED_TRACE("Remove the window to trigger focus loss"); window->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); window->consumeFocusEvent(false /*hasFocus*/, false /*inTouchMode*/); SCOPED_TRACE("Enable touch mode again"); mDispatcher->setInTouchMode(true); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/); window->assertNoEvents(); } TEST_F(InputDispatcherTest, VerifyInputEvent_KeyEvent) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/); NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN); mDispatcher->notifyKey(&keyArgs); InputEvent* event = window->consume(); ASSERT_NE(event, nullptr); std::unique_ptr verified = mDispatcher->verifyInputEvent(*event); ASSERT_NE(verified, nullptr); ASSERT_EQ(verified->type, VerifiedInputEvent::Type::KEY); ASSERT_EQ(keyArgs.eventTime, verified->eventTimeNanos); ASSERT_EQ(keyArgs.deviceId, verified->deviceId); ASSERT_EQ(keyArgs.source, verified->source); ASSERT_EQ(keyArgs.displayId, verified->displayId); const VerifiedKeyEvent& verifiedKey = static_cast(*verified); ASSERT_EQ(keyArgs.action, verifiedKey.action); ASSERT_EQ(keyArgs.downTime, verifiedKey.downTimeNanos); ASSERT_EQ(keyArgs.flags & VERIFIED_KEY_EVENT_FLAGS, verifiedKey.flags); ASSERT_EQ(keyArgs.keyCode, verifiedKey.keyCode); ASSERT_EQ(keyArgs.scanCode, verifiedKey.scanCode); ASSERT_EQ(keyArgs.metaState, verifiedKey.metaState); ASSERT_EQ(0, verifiedKey.repeatCount); } TEST_F(InputDispatcherTest, VerifyInputEvent_MotionEvent) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); InputEvent* event = window->consume(); ASSERT_NE(event, nullptr); std::unique_ptr verified = mDispatcher->verifyInputEvent(*event); ASSERT_NE(verified, nullptr); ASSERT_EQ(verified->type, VerifiedInputEvent::Type::MOTION); EXPECT_EQ(motionArgs.eventTime, verified->eventTimeNanos); EXPECT_EQ(motionArgs.deviceId, verified->deviceId); EXPECT_EQ(motionArgs.source, verified->source); EXPECT_EQ(motionArgs.displayId, verified->displayId); const VerifiedMotionEvent& verifiedMotion = static_cast(*verified); EXPECT_EQ(motionArgs.pointerCoords[0].getX(), verifiedMotion.rawX); EXPECT_EQ(motionArgs.pointerCoords[0].getY(), verifiedMotion.rawY); EXPECT_EQ(motionArgs.action & AMOTION_EVENT_ACTION_MASK, verifiedMotion.actionMasked); EXPECT_EQ(motionArgs.downTime, verifiedMotion.downTimeNanos); EXPECT_EQ(motionArgs.flags & VERIFIED_MOTION_EVENT_FLAGS, verifiedMotion.flags); EXPECT_EQ(motionArgs.metaState, verifiedMotion.metaState); EXPECT_EQ(motionArgs.buttonState, verifiedMotion.buttonState); } TEST_F(InputDispatcherTest, NonPointerMotionEvent_JoystickAndTouchpadNotTransformed) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); const std::string name = window->getName(); // Window gets transformed by offset values. window->setWindowOffset(500.0f, 500.0f); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); // First, we set focused window so that focusedWindowHandle is not null. setFocusedWindow(window); // Second, we consume focus event if it is right or wrong according to onFocusChangedLocked. window->consumeFocusEvent(true); constexpr const std::array nonTransformedSources = {std::pair(AINPUT_SOURCE_TOUCHPAD, AMOTION_EVENT_ACTION_DOWN), std::pair(AINPUT_SOURCE_JOYSTICK, AMOTION_EVENT_ACTION_MOVE)}; for (const auto& [source, action] : nonTransformedSources) { const NotifyMotionArgs motionArgs = generateMotionArgs(action, source, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); MotionEvent* event = window->consumeMotion(); ASSERT_NE(event, nullptr); const MotionEvent& motionEvent = *event; EXPECT_EQ(action, motionEvent.getAction()); EXPECT_EQ(motionArgs.pointerCount, motionEvent.getPointerCount()); float expectedX = motionArgs.pointerCoords[0].getX(); float expectedY = motionArgs.pointerCoords[0].getY(); // Ensure the axis values from the final motion event are not transformed. EXPECT_EQ(expectedX, motionEvent.getX(0)) << "expected " << expectedX << " for x coord of " << name.c_str() << ", got " << motionEvent.getX(0); EXPECT_EQ(expectedY, motionEvent.getY(0)) << "expected " << expectedY << " for y coord of " << name.c_str() << ", got " << motionEvent.getY(0); // Ensure the raw and transformed axis values for the motion event are the same. EXPECT_EQ(motionEvent.getRawX(0), motionEvent.getX(0)) << "expected raw and transformed X-axis values to be equal"; EXPECT_EQ(motionEvent.getRawY(0), motionEvent.getY(0)) << "expected raw and transformed Y-axis values to be equal"; } } /** * Ensure that separate calls to sign the same data are generating the same key. * We avoid asserting against INVALID_HMAC. Since the key is random, there is a non-zero chance * that a specific key and data combination would produce INVALID_HMAC, which would cause flaky * tests. */ TEST_F(InputDispatcherTest, GeneratedHmac_IsConsistent) { KeyEvent event = getTestKeyEvent(); VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event); std::array hmac1 = mDispatcher->sign(verifiedEvent); std::array hmac2 = mDispatcher->sign(verifiedEvent); ASSERT_EQ(hmac1, hmac2); } /** * Ensure that changes in VerifiedKeyEvent produce a different hmac. */ TEST_F(InputDispatcherTest, GeneratedHmac_ChangesWhenFieldsChange) { KeyEvent event = getTestKeyEvent(); VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event); std::array initialHmac = mDispatcher->sign(verifiedEvent); verifiedEvent.deviceId += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.source += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.eventTimeNanos += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.displayId += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.action += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.downTimeNanos += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.flags += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.keyCode += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.scanCode += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.metaState += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); verifiedEvent.repeatCount += 1; ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent)); } TEST_F(InputDispatcherTest, SetFocusedWindow) { std::shared_ptr application = std::make_shared(); sp windowTop = new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT); sp windowSecond = new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); // Top window is also focusable but is not granted focus. windowTop->setFocusable(true); windowSecond->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}}); setFocusedWindow(windowSecond); windowSecond->consumeFocusEvent(true); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; // Focused window should receive event. windowSecond->consumeKeyDown(ADISPLAY_ID_NONE); windowTop->assertNoEvents(); } TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestInvalidChannel) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); // Release channel for window is no longer valid. window->releaseChannel(); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); // Test inject a key down, should timeout. ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; // window channel is invalid, so it should not receive any input event. window->assertNoEvents(); } TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestNoFocusableWindow) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); // Window is not focusable. mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); // Test inject a key down, should timeout. ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; // window is invalid, so it should not receive any input event. window->assertNoEvents(); } TEST_F(InputDispatcherTest, SetFocusedWindow_CheckFocusedToken) { std::shared_ptr application = std::make_shared(); sp windowTop = new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT); sp windowSecond = new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); windowTop->setFocusable(true); windowSecond->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}}); setFocusedWindow(windowTop); windowTop->consumeFocusEvent(true); setFocusedWindow(windowSecond, windowTop); windowSecond->consumeFocusEvent(true); windowTop->consumeFocusEvent(false); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; // Focused window should receive event. windowSecond->consumeKeyDown(ADISPLAY_ID_NONE); } TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestFocusTokenNotFocused) { std::shared_ptr application = std::make_shared(); sp windowTop = new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT); sp windowSecond = new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); windowTop->setFocusable(true); windowSecond->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}}); setFocusedWindow(windowSecond, windowTop); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; // Event should be dropped. windowTop->assertNoEvents(); windowSecond->assertNoEvents(); } TEST_F(InputDispatcherTest, SetFocusedWindow_DeferInvisibleWindow) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); sp previousFocusedWindow = new FakeWindowHandle(application, mDispatcher, "previousFocusedWindow", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); previousFocusedWindow->setFocusable(true); window->setVisible(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window, previousFocusedWindow}}}); setFocusedWindow(previousFocusedWindow); previousFocusedWindow->consumeFocusEvent(true); // Requesting focus on invisible window takes focus from currently focused window. setFocusedWindow(window); previousFocusedWindow->consumeFocusEvent(false); // Injected key goes to pending queue. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE)); // Window does not get focus event or key down. window->assertNoEvents(); // Window becomes visible. window->setVisible(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); // Window receives focus event. window->consumeFocusEvent(true); // Focused window receives key down. window->consumeKeyDown(ADISPLAY_ID_DEFAULT); } TEST_F(InputDispatcherTest, DisplayRemoved) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "window", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); // window is granted focus. window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true); // When a display is removed window loses focus. mDispatcher->displayRemoved(ADISPLAY_ID_DEFAULT); window->consumeFocusEvent(false); } /** * Launch two windows, with different owners. One window (slipperyExitWindow) has Flag::SLIPPERY, * and overlaps the other window, slipperyEnterWindow. The window 'slipperyExitWindow' is on top * of the 'slipperyEnterWindow'. * * Inject touch down into the top window. Upon receipt of the DOWN event, move the window in such * a way so that the touched location is no longer covered by the top window. * * Next, inject a MOVE event. Because the top window already moved earlier, this event is now * positioned over the bottom (slipperyEnterWindow) only. And because the top window had * Flag::SLIPPERY, this will cause the top window to lose the touch event (it will receive * ACTION_CANCEL instead), and the bottom window will receive a newly generated gesture (starting * with ACTION_DOWN). * Thus, the touch has been transferred from the top window into the bottom window, because the top * window moved itself away from the touched location and had Flag::SLIPPERY. * * Even though the top window moved away from the touched location, it is still obscuring the bottom * window. It's just not obscuring it at the touched location. That means, FLAG_WINDOW_IS_PARTIALLY_ * OBSCURED should be set for the MotionEvent that reaches the bottom window. * * In this test, we ensure that the event received by the bottom window has * FLAG_WINDOW_IS_PARTIALLY_OBSCURED. */ TEST_F(InputDispatcherTest, SlipperyWindow_SetsFlagPartiallyObscured) { constexpr int32_t SLIPPERY_PID = INJECTOR_PID + 1; constexpr int32_t SLIPPERY_UID = INJECTOR_UID + 1; std::shared_ptr application = std::make_shared(); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); sp slipperyExitWindow = new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT); slipperyExitWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SLIPPERY); // Make sure this one overlaps the bottom window slipperyExitWindow->setFrame(Rect(25, 25, 75, 75)); // Change the owner uid/pid of the window so that it is considered to be occluding the bottom // one. Windows with the same owner are not considered to be occluding each other. slipperyExitWindow->setOwnerInfo(SLIPPERY_PID, SLIPPERY_UID); sp slipperyEnterWindow = new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT); slipperyExitWindow->setFrame(Rect(0, 0, 100, 100)); mDispatcher->setInputWindows( {{ADISPLAY_ID_DEFAULT, {slipperyExitWindow, slipperyEnterWindow}}}); // Use notifyMotion instead of injecting to avoid dealing with injection permissions NotifyMotionArgs args = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {{50, 50}}); mDispatcher->notifyMotion(&args); slipperyExitWindow->consumeMotionDown(); slipperyExitWindow->setFrame(Rect(70, 70, 100, 100)); mDispatcher->setInputWindows( {{ADISPLAY_ID_DEFAULT, {slipperyExitWindow, slipperyEnterWindow}}}); args = generateMotionArgs(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {{51, 51}}); mDispatcher->notifyMotion(&args); slipperyExitWindow->consumeMotionCancel(); slipperyEnterWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED); } class InputDispatcherKeyRepeatTest : public InputDispatcherTest { protected: static constexpr nsecs_t KEY_REPEAT_TIMEOUT = 40 * 1000000; // 40 ms static constexpr nsecs_t KEY_REPEAT_DELAY = 40 * 1000000; // 40 ms std::shared_ptr mApp; sp mWindow; virtual void SetUp() override { mFakePolicy = new FakeInputDispatcherPolicy(); mFakePolicy->setKeyRepeatConfiguration(KEY_REPEAT_TIMEOUT, KEY_REPEAT_DELAY); mDispatcher = new InputDispatcher(mFakePolicy); mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false); ASSERT_EQ(OK, mDispatcher->start()); setUpWindow(); } void setUpWindow() { mApp = std::make_shared(); mWindow = new FakeWindowHandle(mApp, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT); mWindow->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); setFocusedWindow(mWindow); mWindow->consumeFocusEvent(true); } void sendAndConsumeKeyDown(int32_t deviceId) { NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); keyArgs.deviceId = deviceId; keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Otherwise it won't generate repeat event mDispatcher->notifyKey(&keyArgs); // Window should receive key down event. mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); } void expectKeyRepeatOnce(int32_t repeatCount) { SCOPED_TRACE(StringPrintf("Checking event with repeat count %" PRId32, repeatCount)); InputEvent* repeatEvent = mWindow->consume(); ASSERT_NE(nullptr, repeatEvent); uint32_t eventType = repeatEvent->getType(); ASSERT_EQ(AINPUT_EVENT_TYPE_KEY, eventType); KeyEvent* repeatKeyEvent = static_cast(repeatEvent); uint32_t eventAction = repeatKeyEvent->getAction(); EXPECT_EQ(AKEY_EVENT_ACTION_DOWN, eventAction); EXPECT_EQ(repeatCount, repeatKeyEvent->getRepeatCount()); } void sendAndConsumeKeyUp(int32_t deviceId) { NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT); keyArgs.deviceId = deviceId; keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Unless it won't generate repeat event mDispatcher->notifyKey(&keyArgs); // Window should receive key down event. mWindow->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT, 0 /*expectedFlags*/); } }; TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeat) { sendAndConsumeKeyDown(1 /* deviceId */); for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) { expectKeyRepeatOnce(repeatCount); } } TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeatFromTwoDevices) { sendAndConsumeKeyDown(1 /* deviceId */); for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) { expectKeyRepeatOnce(repeatCount); } sendAndConsumeKeyDown(2 /* deviceId */); /* repeatCount will start from 1 for deviceId 2 */ for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) { expectKeyRepeatOnce(repeatCount); } } TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_StopsKeyRepeatAfterUp) { sendAndConsumeKeyDown(1 /* deviceId */); expectKeyRepeatOnce(1 /*repeatCount*/); sendAndConsumeKeyUp(1 /* deviceId */); mWindow->assertNoEvents(); } TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_KeyRepeatAfterStaleDeviceKeyUp) { sendAndConsumeKeyDown(1 /* deviceId */); expectKeyRepeatOnce(1 /*repeatCount*/); sendAndConsumeKeyDown(2 /* deviceId */); expectKeyRepeatOnce(1 /*repeatCount*/); // Stale key up from device 1. sendAndConsumeKeyUp(1 /* deviceId */); // Device 2 is still down, keep repeating expectKeyRepeatOnce(2 /*repeatCount*/); expectKeyRepeatOnce(3 /*repeatCount*/); // Device 2 key up sendAndConsumeKeyUp(2 /* deviceId */); mWindow->assertNoEvents(); } TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_KeyRepeatStopsAfterRepeatingKeyUp) { sendAndConsumeKeyDown(1 /* deviceId */); expectKeyRepeatOnce(1 /*repeatCount*/); sendAndConsumeKeyDown(2 /* deviceId */); expectKeyRepeatOnce(1 /*repeatCount*/); // Device 2 which holds the key repeating goes up, expect the repeating to stop. sendAndConsumeKeyUp(2 /* deviceId */); // Device 1 still holds key down, but the repeating was already stopped mWindow->assertNoEvents(); } TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseEventIdFromInputDispatcher) { sendAndConsumeKeyDown(1 /* deviceId */); for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) { InputEvent* repeatEvent = mWindow->consume(); ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount; EXPECT_EQ(IdGenerator::Source::INPUT_DISPATCHER, IdGenerator::getSource(repeatEvent->getId())); } } TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseUniqueEventId) { sendAndConsumeKeyDown(1 /* deviceId */); std::unordered_set idSet; for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) { InputEvent* repeatEvent = mWindow->consume(); ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount; int32_t id = repeatEvent->getId(); EXPECT_EQ(idSet.end(), idSet.find(id)); idSet.insert(id); } } /* Test InputDispatcher for MultiDisplay */ class InputDispatcherFocusOnTwoDisplaysTest : public InputDispatcherTest { public: virtual void SetUp() override { InputDispatcherTest::SetUp(); application1 = std::make_shared(); windowInPrimary = new FakeWindowHandle(application1, mDispatcher, "D_1", ADISPLAY_ID_DEFAULT); // Set focus window for primary display, but focused display would be second one. mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application1); windowInPrimary->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary}}}); setFocusedWindow(windowInPrimary); windowInPrimary->consumeFocusEvent(true); application2 = std::make_shared(); windowInSecondary = new FakeWindowHandle(application2, mDispatcher, "D_2", SECOND_DISPLAY_ID); // Set focus to second display window. // Set focus display to second one. mDispatcher->setFocusedDisplay(SECOND_DISPLAY_ID); // Set focus window for second display. mDispatcher->setFocusedApplication(SECOND_DISPLAY_ID, application2); windowInSecondary->setFocusable(true); mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {windowInSecondary}}}); setFocusedWindow(windowInSecondary); windowInSecondary->consumeFocusEvent(true); } virtual void TearDown() override { InputDispatcherTest::TearDown(); application1.reset(); windowInPrimary.clear(); application2.reset(); windowInSecondary.clear(); } protected: std::shared_ptr application1; sp windowInPrimary; std::shared_ptr application2; sp windowInSecondary; }; TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayTouch) { // Test touch down on primary display. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT); windowInSecondary->assertNoEvents(); // Test touch down on second display. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->assertNoEvents(); windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID); } TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayFocus) { // Test inject a key down with display id specified. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher, ADISPLAY_ID_DEFAULT)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT); windowInSecondary->assertNoEvents(); // Test inject a key down without display id specified. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->assertNoEvents(); windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE); // Remove all windows in secondary display. mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {}}}); // Old focus should receive a cancel event. windowInSecondary->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_NONE, AKEY_EVENT_FLAG_CANCELED); // Test inject a key down, should timeout because of no target window. ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDownNoRepeat(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; windowInPrimary->assertNoEvents(); windowInSecondary->consumeFocusEvent(false); windowInSecondary->assertNoEvents(); } // Test per-display input monitors for motion event. TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorMotionEvent_MultiDisplay) { FakeMonitorReceiver monitorInPrimary = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT); FakeMonitorReceiver monitorInSecondary = FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID); // Test touch down on primary display. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT); monitorInPrimary.consumeMotionDown(ADISPLAY_ID_DEFAULT); windowInSecondary->assertNoEvents(); monitorInSecondary.assertNoEvents(); // Test touch down on second display. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->assertNoEvents(); monitorInPrimary.assertNoEvents(); windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID); monitorInSecondary.consumeMotionDown(SECOND_DISPLAY_ID); // Test inject a non-pointer motion event. // If specific a display, it will dispatch to the focused window of particular display, // or it will dispatch to the focused window of focused display. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_NONE)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->assertNoEvents(); monitorInPrimary.assertNoEvents(); windowInSecondary->consumeMotionDown(ADISPLAY_ID_NONE); monitorInSecondary.consumeMotionDown(ADISPLAY_ID_NONE); } // Test per-display input monitors for key event. TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorKeyEvent_MultiDisplay) { // Input monitor per display. FakeMonitorReceiver monitorInPrimary = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT); FakeMonitorReceiver monitorInSecondary = FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID); // Test inject a key down. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->assertNoEvents(); monitorInPrimary.assertNoEvents(); windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE); monitorInSecondary.consumeKeyDown(ADISPLAY_ID_NONE); } TEST_F(InputDispatcherFocusOnTwoDisplaysTest, CanFocusWindowOnUnfocusedDisplay) { sp secondWindowInPrimary = new FakeWindowHandle(application1, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT); secondWindowInPrimary->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary, secondWindowInPrimary}}}); setFocusedWindow(secondWindowInPrimary); windowInPrimary->consumeFocusEvent(false); secondWindowInPrimary->consumeFocusEvent(true); // Test inject a key down. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; windowInPrimary->assertNoEvents(); windowInSecondary->assertNoEvents(); secondWindowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT); } class InputFilterTest : public InputDispatcherTest { protected: void testNotifyMotion(int32_t displayId, bool expectToBeFiltered) { NotifyMotionArgs motionArgs; motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, displayId); mDispatcher->notifyMotion(&motionArgs); motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, displayId); mDispatcher->notifyMotion(&motionArgs); ASSERT_TRUE(mDispatcher->waitForIdle()); if (expectToBeFiltered) { mFakePolicy->assertFilterInputEventWasCalled(motionArgs); } else { mFakePolicy->assertFilterInputEventWasNotCalled(); } } void testNotifyKey(bool expectToBeFiltered) { NotifyKeyArgs keyArgs; keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN); mDispatcher->notifyKey(&keyArgs); keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP); mDispatcher->notifyKey(&keyArgs); ASSERT_TRUE(mDispatcher->waitForIdle()); if (expectToBeFiltered) { mFakePolicy->assertFilterInputEventWasCalled(keyArgs); } else { mFakePolicy->assertFilterInputEventWasNotCalled(); } } }; // Test InputFilter for MotionEvent TEST_F(InputFilterTest, MotionEvent_InputFilter) { // Since the InputFilter is disabled by default, check if touch events aren't filtered. testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false); testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false); // Enable InputFilter mDispatcher->setInputFilterEnabled(true); // Test touch on both primary and second display, and check if both events are filtered. testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ true); testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ true); // Disable InputFilter mDispatcher->setInputFilterEnabled(false); // Test touch on both primary and second display, and check if both events aren't filtered. testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false); testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false); } // Test InputFilter for KeyEvent TEST_F(InputFilterTest, KeyEvent_InputFilter) { // Since the InputFilter is disabled by default, check if key event aren't filtered. testNotifyKey(/*expectToBeFiltered*/ false); // Enable InputFilter mDispatcher->setInputFilterEnabled(true); // Send a key event, and check if it is filtered. testNotifyKey(/*expectToBeFiltered*/ true); // Disable InputFilter mDispatcher->setInputFilterEnabled(false); // Send a key event, and check if it isn't filtered. testNotifyKey(/*expectToBeFiltered*/ false); } class InputFilterInjectionPolicyTest : public InputDispatcherTest { protected: virtual void SetUp() override { InputDispatcherTest::SetUp(); /** * We don't need to enable input filter to test the injected event policy, but we enabled it * here to make the tests more realistic, since this policy only matters when inputfilter is * on. */ mDispatcher->setInputFilterEnabled(true); std::shared_ptr application = std::make_shared(); mWindow = new FakeWindowHandle(application, mDispatcher, "Test Window", ADISPLAY_ID_DEFAULT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); mWindow->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); setFocusedWindow(mWindow); mWindow->consumeFocusEvent(true); } void testInjectedKey(int32_t policyFlags, int32_t injectedDeviceId, int32_t resolvedDeviceId, int32_t flags) { KeyEvent event; const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC); event.initialize(InputEvent::nextId(), injectedDeviceId, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE, INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0 /*repeatCount*/, eventTime, eventTime); const int32_t additionalPolicyFlags = POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_DISABLE_KEY_REPEAT; ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, policyFlags | additionalPolicyFlags)); InputEvent* received = mWindow->consume(); ASSERT_NE(nullptr, received); ASSERT_EQ(resolvedDeviceId, received->getDeviceId()); ASSERT_EQ(received->getType(), AINPUT_EVENT_TYPE_KEY); KeyEvent& keyEvent = static_cast(*received); ASSERT_EQ(flags, keyEvent.getFlags()); } void testInjectedMotion(int32_t policyFlags, int32_t injectedDeviceId, int32_t resolvedDeviceId, int32_t flags) { MotionEvent event; PointerProperties pointerProperties[1]; PointerCoords pointerCoords[1]; pointerProperties[0].clear(); pointerProperties[0].id = 0; pointerCoords[0].clear(); pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 300); pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 400); ui::Transform identityTransform; const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC); event.initialize(InputEvent::nextId(), injectedDeviceId, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, MotionClassification::NONE, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, ui::Transform::ROT_0, 0 /*INVALID_DISPLAY_SIZE*/, 0 /*INVALID_DISPLAY_SIZE*/, eventTime, eventTime, /*pointerCount*/ 1, pointerProperties, pointerCoords); const int32_t additionalPolicyFlags = POLICY_FLAG_PASS_TO_USER; ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, policyFlags | additionalPolicyFlags)); InputEvent* received = mWindow->consume(); ASSERT_NE(nullptr, received); ASSERT_EQ(resolvedDeviceId, received->getDeviceId()); ASSERT_EQ(received->getType(), AINPUT_EVENT_TYPE_MOTION); MotionEvent& motionEvent = static_cast(*received); ASSERT_EQ(flags, motionEvent.getFlags()); } private: sp mWindow; }; TEST_F(InputFilterInjectionPolicyTest, TrustedFilteredEvents_KeepOriginalDeviceId) { // Must have POLICY_FLAG_FILTERED here to indicate that the event has gone through the input // filter. Without it, the event will no different from a regularly injected event, and the // injected device id will be overwritten. testInjectedKey(POLICY_FLAG_FILTERED, 3 /*injectedDeviceId*/, 3 /*resolvedDeviceId*/, 0 /*flags*/); } TEST_F(InputFilterInjectionPolicyTest, KeyEventsInjectedFromAccessibility_HaveAccessibilityFlag) { testInjectedKey(POLICY_FLAG_FILTERED | POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY, 3 /*injectedDeviceId*/, 3 /*resolvedDeviceId*/, AKEY_EVENT_FLAG_IS_ACCESSIBILITY_EVENT); } TEST_F(InputFilterInjectionPolicyTest, MotionEventsInjectedFromAccessibility_HaveAccessibilityFlag) { testInjectedMotion(POLICY_FLAG_FILTERED | POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY, 3 /*injectedDeviceId*/, 3 /*resolvedDeviceId*/, AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT); } TEST_F(InputFilterInjectionPolicyTest, RegularInjectedEvents_ReceiveVirtualDeviceId) { testInjectedKey(0 /*policyFlags*/, 3 /*injectedDeviceId*/, VIRTUAL_KEYBOARD_ID /*resolvedDeviceId*/, 0 /*flags*/); } class InputDispatcherOnPointerDownOutsideFocus : public InputDispatcherTest { virtual void SetUp() override { InputDispatcherTest::SetUp(); std::shared_ptr application = std::make_shared(); mUnfocusedWindow = new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT); mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30)); // Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this // window. mUnfocusedWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mFocusedWindow = new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT); mFocusedWindow->setFrame(Rect(50, 50, 100, 100)); mFocusedWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); // Set focused application. mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); mFocusedWindow->setFocusable(true); // Expect one focus window exist in display. mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}}); setFocusedWindow(mFocusedWindow); mFocusedWindow->consumeFocusEvent(true); } virtual void TearDown() override { InputDispatcherTest::TearDown(); mUnfocusedWindow.clear(); mFocusedWindow.clear(); } protected: sp mUnfocusedWindow; sp mFocusedWindow; static constexpr PointF FOCUSED_WINDOW_TOUCH_POINT = {60, 60}; }; // Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action // DOWN on the window that doesn't have focus. Ensure the window that didn't have focus received // the onPointerDownOutsideFocus callback. TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_Success) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {20, 20})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mUnfocusedWindow->consumeMotionDown(); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertOnPointerDownEquals(mUnfocusedWindow->getToken()); } // Have two windows, one with focus. Inject MotionEvent with source TRACKBALL and action // DOWN on the window that doesn't have focus. Ensure no window received the // onPointerDownOutsideFocus callback. TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonPointerSource) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_DEFAULT, {20, 20})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mFocusedWindow->consumeMotionDown(); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertOnPointerDownWasNotCalled(); } // Have two windows, one with focus. Inject KeyEvent with action DOWN on the window that doesn't // have focus. Ensure no window received the onPointerDownOutsideFocus callback. TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonMotionFailure) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher, ADISPLAY_ID_DEFAULT)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mFocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertOnPointerDownWasNotCalled(); } // Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action // DOWN on the window that already has focus. Ensure no window received the // onPointerDownOutsideFocus callback. TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_OnAlreadyFocusedWindow) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, FOCUSED_WINDOW_TOUCH_POINT)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mFocusedWindow->consumeMotionDown(); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertOnPointerDownWasNotCalled(); } // Have two windows, one with focus. Injecting a trusted DOWN MotionEvent with the flag // NO_FOCUS_CHANGE on the unfocused window should not call the onPointerDownOutsideFocus callback. TEST_F(InputDispatcherOnPointerDownOutsideFocus, NoFocusChangeFlag) { const MotionEvent event = MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE) .eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) .pointer(PointerBuilder(/* id */ 0, AMOTION_EVENT_TOOL_TYPE_FINGER).x(20).y(20)) .addFlag(AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE) .build(); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, event)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mUnfocusedWindow->consumeAnyMotionDown(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertOnPointerDownWasNotCalled(); // Ensure that the unfocused window did not receive any FOCUS events. mUnfocusedWindow->assertNoEvents(); } // These tests ensures we can send touch events to a single client when there are multiple input // windows that point to the same client token. class InputDispatcherMultiWindowSameTokenTests : public InputDispatcherTest { virtual void SetUp() override { InputDispatcherTest::SetUp(); std::shared_ptr application = std::make_shared(); mWindow1 = new FakeWindowHandle(application, mDispatcher, "Fake Window 1", ADISPLAY_ID_DEFAULT); // Adding FLAG_NOT_TOUCH_MODAL otherwise all taps will go to the top most window. // We also need FLAG_SPLIT_TOUCH or we won't be able to get touches for both windows. mWindow1->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); mWindow1->setFrame(Rect(0, 0, 100, 100)); mWindow2 = new FakeWindowHandle(application, mDispatcher, "Fake Window 2", ADISPLAY_ID_DEFAULT, mWindow1->getToken()); mWindow2->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); mWindow2->setFrame(Rect(100, 100, 200, 200)); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow1, mWindow2}}}); } protected: sp mWindow1; sp mWindow2; // Helper function to convert the point from screen coordinates into the window's space static PointF getPointInWindow(const WindowInfo* windowInfo, const PointF& point) { vec2 vals = windowInfo->transform.transform(point.x, point.y); return {vals.x, vals.y}; } void consumeMotionEvent(const sp& window, int32_t expectedAction, const std::vector& points) { const std::string name = window->getName(); InputEvent* event = window->consume(); ASSERT_NE(nullptr, event) << name.c_str() << ": consumer should have returned non-NULL event."; ASSERT_EQ(AINPUT_EVENT_TYPE_MOTION, event->getType()) << name.c_str() << "expected " << inputEventTypeToString(AINPUT_EVENT_TYPE_MOTION) << " event, got " << inputEventTypeToString(event->getType()) << " event"; const MotionEvent& motionEvent = static_cast(*event); EXPECT_EQ(expectedAction, motionEvent.getAction()); for (size_t i = 0; i < points.size(); i++) { float expectedX = points[i].x; float expectedY = points[i].y; EXPECT_EQ(expectedX, motionEvent.getX(i)) << "expected " << expectedX << " for x[" << i << "] coord of " << name.c_str() << ", got " << motionEvent.getX(i); EXPECT_EQ(expectedY, motionEvent.getY(i)) << "expected " << expectedY << " for y[" << i << "] coord of " << name.c_str() << ", got " << motionEvent.getY(i); } } void touchAndAssertPositions(int32_t action, std::vector touchedPoints, std::vector expectedPoints) { NotifyMotionArgs motionArgs = generateMotionArgs(action, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, touchedPoints); mDispatcher->notifyMotion(&motionArgs); // Always consume from window1 since it's the window that has the InputReceiver consumeMotionEvent(mWindow1, action, expectedPoints); } }; TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchSameScale) { // Touch Window 1 PointF touchedPoint = {10, 10}; PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint); touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint}); // Release touch on Window 1 touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint}); // Touch Window 2 touchedPoint = {150, 150}; expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint); touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint}); } TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchDifferentTransform) { // Set scale value for window2 mWindow2->setWindowScale(0.5f, 0.5f); // Touch Window 1 PointF touchedPoint = {10, 10}; PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint); touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint}); // Release touch on Window 1 touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint}); // Touch Window 2 touchedPoint = {150, 150}; expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint); touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint}); touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint}); // Update the transform so rotation is set mWindow2->setWindowTransform(0, -1, 1, 0); expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint); touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint}); } TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchDifferentTransform) { mWindow2->setWindowScale(0.5f, 0.5f); // Touch Window 1 std::vector touchedPoints = {PointF{10, 10}}; std::vector expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])}; touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints); // Touch Window 2 int32_t actionPointerDown = AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); touchedPoints.push_back(PointF{150, 150}); expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1])); touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints); // Release Window 2 int32_t actionPointerUp = AMOTION_EVENT_ACTION_POINTER_UP + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); touchAndAssertPositions(actionPointerUp, touchedPoints, expectedPoints); expectedPoints.pop_back(); // Update the transform so rotation is set for Window 2 mWindow2->setWindowTransform(0, -1, 1, 0); expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1])); touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints); } TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchMoveDifferentTransform) { mWindow2->setWindowScale(0.5f, 0.5f); // Touch Window 1 std::vector touchedPoints = {PointF{10, 10}}; std::vector expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])}; touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints); // Touch Window 2 int32_t actionPointerDown = AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); touchedPoints.push_back(PointF{150, 150}); expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1])); touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints); // Move both windows touchedPoints = {{20, 20}, {175, 175}}; expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]), getPointInWindow(mWindow2->getInfo(), touchedPoints[1])}; touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints); // Release Window 2 int32_t actionPointerUp = AMOTION_EVENT_ACTION_POINTER_UP + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); touchAndAssertPositions(actionPointerUp, touchedPoints, expectedPoints); expectedPoints.pop_back(); // Touch Window 2 mWindow2->setWindowTransform(0, -1, 1, 0); expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1])); touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints); // Move both windows touchedPoints = {{20, 20}, {175, 175}}; expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]), getPointInWindow(mWindow2->getInfo(), touchedPoints[1])}; touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints); } TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleWindowsFirstTouchWithScale) { mWindow1->setWindowScale(0.5f, 0.5f); // Touch Window 1 std::vector touchedPoints = {PointF{10, 10}}; std::vector expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])}; touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints); // Touch Window 2 int32_t actionPointerDown = AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); touchedPoints.push_back(PointF{150, 150}); expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1])); touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints); // Move both windows touchedPoints = {{20, 20}, {175, 175}}; expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]), getPointInWindow(mWindow2->getInfo(), touchedPoints[1])}; touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints); } class InputDispatcherSingleWindowAnr : public InputDispatcherTest { virtual void SetUp() override { InputDispatcherTest::SetUp(); mApplication = std::make_shared(); mApplication->setDispatchingTimeout(20ms); mWindow = new FakeWindowHandle(mApplication, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); mWindow->setFrame(Rect(0, 0, 30, 30)); mWindow->setDispatchingTimeout(30ms); mWindow->setFocusable(true); // Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this // window. mWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); // Set focused application. mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); setFocusedWindow(mWindow); mWindow->consumeFocusEvent(true); } virtual void TearDown() override { InputDispatcherTest::TearDown(); mWindow.clear(); } protected: std::shared_ptr mApplication; sp mWindow; static constexpr PointF WINDOW_LOCATION = {20, 20}; void tapOnWindow() { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION)); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION)); } }; // Send a tap and respond, which should not cause an ANR. TEST_F(InputDispatcherSingleWindowAnr, WhenTouchIsConsumed_NoAnr) { tapOnWindow(); mWindow->consumeMotionDown(); mWindow->consumeMotionUp(); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyAnrWasNotCalled(); } // Send a regular key and respond, which should not cause an ANR. TEST_F(InputDispatcherSingleWindowAnr, WhenKeyIsConsumed_NoAnr) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher)); mWindow->consumeKeyDown(ADISPLAY_ID_NONE); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyAnrWasNotCalled(); } TEST_F(InputDispatcherSingleWindowAnr, WhenFocusedApplicationChanges_NoAnr) { mWindow->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); mWindow->consumeFocusEvent(false); InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE, 10ms /*injectionTimeout*/, false /* allowKeyRepeat */); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result); // Key will not go to window because we have no focused window. // The 'no focused window' ANR timer should start instead. // Now, the focused application goes away. mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, nullptr); // The key should get dropped and there should be no ANR. ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyAnrWasNotCalled(); } // Send an event to the app and have the app not respond right away. // When ANR is raised, policy will tell the dispatcher to cancel the events for that window. // So InputDispatcher will enqueue ACTION_CANCEL event as well. TEST_F(InputDispatcherSingleWindowAnr, OnPointerDown_BasicAnr) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION)); std::optional sequenceNum = mWindow->receiveEvent(); // ACTION_DOWN ASSERT_TRUE(sequenceNum); const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); mWindow->finishEvent(*sequenceNum); mWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, ADISPLAY_ID_DEFAULT, 0 /*flags*/); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken()); } // Send a key to the app and have the app not respond right away. TEST_F(InputDispatcherSingleWindowAnr, OnKeyDown_BasicAnr) { // Inject a key, and don't respond - expect that ANR is called. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher)); std::optional sequenceNum = mWindow->receiveEvent(); ASSERT_TRUE(sequenceNum); const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); ASSERT_TRUE(mDispatcher->waitForIdle()); } // We have a focused application, but no focused window TEST_F(InputDispatcherSingleWindowAnr, FocusedApplication_NoFocusedWindow) { mWindow->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); mWindow->consumeFocusEvent(false); // taps on the window work as normal ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION)); ASSERT_NO_FATAL_FAILURE(mWindow->consumeMotionDown()); mDispatcher->waitForIdle(); mFakePolicy->assertNotifyAnrWasNotCalled(); // Once a focused event arrives, we get an ANR for this application // We specify the injection timeout to be smaller than the application timeout, to ensure that // injection times out (instead of failing). const InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, false /* allowKeyRepeat */); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result); const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(timeout, mApplication); ASSERT_TRUE(mDispatcher->waitForIdle()); } // We have a focused application, but no focused window // Make sure that we don't notify policy twice about the same ANR. TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DoesNotSendDuplicateAnr) { mWindow->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); mWindow->consumeFocusEvent(false); // Once a focused event arrives, we get an ANR for this application // We specify the injection timeout to be smaller than the application timeout, to ensure that // injection times out (instead of failing). const InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, false /* allowKeyRepeat */); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result); const std::chrono::duration appTimeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(appTimeout, mApplication); std::this_thread::sleep_for(appTimeout); // ANR should not be raised again. It is up to policy to do that if it desires. mFakePolicy->assertNotifyAnrWasNotCalled(); // If we now get a focused window, the ANR should stop, but the policy handles that via // 'notifyFocusChanged' callback. This is implemented in the policy so we can't test it here. ASSERT_TRUE(mDispatcher->waitForIdle()); } // We have a focused application, but no focused window TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DropsFocusedEvents) { mWindow->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); mWindow->consumeFocusEvent(false); // Once a focused event arrives, we get an ANR for this application const InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::WAIT_FOR_RESULT, 10ms); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result); const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(timeout, mApplication); // Future focused events get dropped right away ASSERT_EQ(InputEventInjectionResult::FAILED, injectKeyDown(mDispatcher)); ASSERT_TRUE(mDispatcher->waitForIdle()); mWindow->assertNoEvents(); } /** * Ensure that the implementation is valid. Since we are using multiset to keep track of the * ANR timeouts, we are allowing entries with identical timestamps in the same connection. * If we process 1 of the events, but ANR on the second event with the same timestamp, * the ANR mechanism should still work. * * In this test, we are injecting DOWN and UP events with the same timestamps, and acknowledging the * DOWN event, while not responding on the second one. */ TEST_F(InputDispatcherSingleWindowAnr, Anr_HandlesEventsWithIdenticalTimestamps) { nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION, {AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION}, 500ms, InputEventInjectionSync::WAIT_FOR_RESULT, currentTime); // Now send ACTION_UP, with identical timestamp injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION, {AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION}, 500ms, InputEventInjectionSync::WAIT_FOR_RESULT, currentTime); // We have now sent down and up. Let's consume first event and then ANR on the second. mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT); const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); } // If an app is not responding to a key event, gesture monitors should continue to receive // new motion events TEST_F(InputDispatcherSingleWindowAnr, GestureMonitors_ReceiveEventsDuringAppAnrOnKey) { FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT)); mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher, ADISPLAY_ID_DEFAULT)); // Stuck on the ACTION_UP const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); // New tap will go to the gesture monitor, but not to the window tapOnWindow(); monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT); mWindow->consumeKeyUp(ADISPLAY_ID_DEFAULT); // still the previous motion mDispatcher->waitForIdle(); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken()); mWindow->assertNoEvents(); monitor.assertNoEvents(); } // If an app is not responding to a motion event, gesture monitors should continue to receive // new motion events TEST_F(InputDispatcherSingleWindowAnr, GestureMonitors_ReceiveEventsDuringAppAnrOnMotion) { FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT, true /*isGestureMonitor*/); tapOnWindow(); monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT); mWindow->consumeMotionDown(); // Stuck on the ACTION_UP const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); // New tap will go to the gesture monitor, but not to the window tapOnWindow(); monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT); monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT); mWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); // still the previous motion mDispatcher->waitForIdle(); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken()); mWindow->assertNoEvents(); monitor.assertNoEvents(); } // If a window is unresponsive, then you get anr. if the window later catches up and starts to // process events, you don't get an anr. When the window later becomes unresponsive again, you // get an ANR again. // 1. tap -> block on ACTION_UP -> receive ANR // 2. consume all pending events (= queue becomes healthy again) // 3. tap again -> block on ACTION_UP again -> receive ANR second time TEST_F(InputDispatcherSingleWindowAnr, SameWindow_CanReceiveAnrTwice) { tapOnWindow(); mWindow->consumeMotionDown(); // Block on ACTION_UP const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); mWindow->consumeMotionUp(); // Now the connection should be healthy again mDispatcher->waitForIdle(); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken()); mWindow->assertNoEvents(); tapOnWindow(); mWindow->consumeMotionDown(); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken()); mWindow->consumeMotionUp(); mDispatcher->waitForIdle(); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken()); mFakePolicy->assertNotifyAnrWasNotCalled(); mWindow->assertNoEvents(); } // If a connection remains unresponsive for a while, make sure policy is only notified once about // it. TEST_F(InputDispatcherSingleWindowAnr, Policy_DoesNotGetDuplicateAnr) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, WINDOW_LOCATION)); const std::chrono::duration windowTimeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(windowTimeout, mWindow->getToken()); std::this_thread::sleep_for(windowTimeout); // 'notifyConnectionUnresponsive' should only be called once per connection mFakePolicy->assertNotifyAnrWasNotCalled(); // When the ANR happened, dispatcher should abort the current event stream via ACTION_CANCEL mWindow->consumeMotionDown(); mWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, ADISPLAY_ID_DEFAULT, 0 /*flags*/); mWindow->assertNoEvents(); mDispatcher->waitForIdle(); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken()); mFakePolicy->assertNotifyAnrWasNotCalled(); } /** * If a window is processing a motion event, and then a key event comes in, the key event should * not to to the focused window until the motion is processed. * * Warning!!! * This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT * and the injection timeout that we specify when injecting the key. * We must have the injection timeout (10ms) be smaller than * KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms). * * If that value changes, this test should also change. */ TEST_F(InputDispatcherSingleWindowAnr, Key_StaysPendingWhileMotionIsProcessed) { mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); tapOnWindow(); std::optional downSequenceNum = mWindow->receiveEvent(); ASSERT_TRUE(downSequenceNum); std::optional upSequenceNum = mWindow->receiveEvent(); ASSERT_TRUE(upSequenceNum); // Don't finish the events yet, and send a key // Injection will "succeed" because we will eventually give up and send the key to the focused // window even if motions are still being processed. But because the injection timeout is short, // we will receive INJECTION_TIMED_OUT as the result. InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::WAIT_FOR_RESULT, 10ms); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result); // Key will not be sent to the window, yet, because the window is still processing events // and the key remains pending, waiting for the touch events to be processed std::optional keySequenceNum = mWindow->receiveEvent(); ASSERT_FALSE(keySequenceNum); std::this_thread::sleep_for(500ms); // if we wait long enough though, dispatcher will give up, and still send the key // to the focused window, even though we have not yet finished the motion event mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); mWindow->finishEvent(*downSequenceNum); mWindow->finishEvent(*upSequenceNum); } /** * If a window is processing a motion event, and then a key event comes in, the key event should * not go to the focused window until the motion is processed. * If then a new motion comes in, then the pending key event should be going to the currently * focused window right away. */ TEST_F(InputDispatcherSingleWindowAnr, PendingKey_IsDroppedWhileMotionIsProcessedAndNewTouchComesIn) { mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}}); tapOnWindow(); std::optional downSequenceNum = mWindow->receiveEvent(); ASSERT_TRUE(downSequenceNum); std::optional upSequenceNum = mWindow->receiveEvent(); ASSERT_TRUE(upSequenceNum); // Don't finish the events yet, and send a key // Injection is async, so it will succeed ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE)); // At this point, key is still pending, and should not be sent to the application yet. std::optional keySequenceNum = mWindow->receiveEvent(); ASSERT_FALSE(keySequenceNum); // Now tap down again. It should cause the pending key to go to the focused window right away. tapOnWindow(); mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); // it doesn't matter that we haven't ack'd // the other events yet. We can finish events in any order. mWindow->finishEvent(*downSequenceNum); // first tap's ACTION_DOWN mWindow->finishEvent(*upSequenceNum); // first tap's ACTION_UP mWindow->consumeMotionDown(); mWindow->consumeMotionUp(); mWindow->assertNoEvents(); } class InputDispatcherMultiWindowAnr : public InputDispatcherTest { virtual void SetUp() override { InputDispatcherTest::SetUp(); mApplication = std::make_shared(); mApplication->setDispatchingTimeout(10ms); mUnfocusedWindow = new FakeWindowHandle(mApplication, mDispatcher, "Unfocused", ADISPLAY_ID_DEFAULT); mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30)); // Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this // window. // Adding FLAG_WATCH_OUTSIDE_TOUCH to receive ACTION_OUTSIDE when another window is tapped mUnfocusedWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::WATCH_OUTSIDE_TOUCH | WindowInfo::Flag::SPLIT_TOUCH); mFocusedWindow = new FakeWindowHandle(mApplication, mDispatcher, "Focused", ADISPLAY_ID_DEFAULT); mFocusedWindow->setDispatchingTimeout(30ms); mFocusedWindow->setFrame(Rect(50, 50, 100, 100)); mFocusedWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL | WindowInfo::Flag::SPLIT_TOUCH); // Set focused application. mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication); mFocusedWindow->setFocusable(true); // Expect one focus window exist in display. mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}}); setFocusedWindow(mFocusedWindow); mFocusedWindow->consumeFocusEvent(true); } virtual void TearDown() override { InputDispatcherTest::TearDown(); mUnfocusedWindow.clear(); mFocusedWindow.clear(); } protected: std::shared_ptr mApplication; sp mUnfocusedWindow; sp mFocusedWindow; static constexpr PointF UNFOCUSED_WINDOW_LOCATION = {20, 20}; static constexpr PointF FOCUSED_WINDOW_LOCATION = {75, 75}; static constexpr PointF LOCATION_OUTSIDE_ALL_WINDOWS = {40, 40}; void tapOnFocusedWindow() { tap(FOCUSED_WINDOW_LOCATION); } void tapOnUnfocusedWindow() { tap(UNFOCUSED_WINDOW_LOCATION); } private: void tap(const PointF& location) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, location)); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, location)); } }; // If we have 2 windows that are both unresponsive, the one with the shortest timeout // should be ANR'd first. TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsive) { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, FOCUSED_WINDOW_LOCATION)) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mFocusedWindow->consumeMotionDown(); mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE, ADISPLAY_ID_DEFAULT, 0 /*flags*/); // We consumed all events, so no ANR ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyAnrWasNotCalled(); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, FOCUSED_WINDOW_LOCATION)); std::optional unfocusedSequenceNum = mUnfocusedWindow->receiveEvent(); ASSERT_TRUE(unfocusedSequenceNum); const std::chrono::duration timeout = mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow->getToken()); // Because we injected two DOWN events in a row, CANCEL is enqueued for the first event // sequence to make it consistent mFocusedWindow->consumeMotionCancel(); mUnfocusedWindow->finishEvent(*unfocusedSequenceNum); mFocusedWindow->consumeMotionDown(); // This cancel is generated because the connection was unresponsive mFocusedWindow->consumeMotionCancel(); mFocusedWindow->assertNoEvents(); mUnfocusedWindow->assertNoEvents(); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken()); mFakePolicy->assertNotifyAnrWasNotCalled(); } // If we have 2 windows with identical timeouts that are both unresponsive, // it doesn't matter which order they should have ANR. // But we should receive ANR for both. TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsiveWithSameTimeout) { // Set the timeout for unfocused window to match the focused window mUnfocusedWindow->setDispatchingTimeout(10ms); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}}); tapOnFocusedWindow(); // we should have ACTION_DOWN/ACTION_UP on focused window and ACTION_OUTSIDE on unfocused window sp anrConnectionToken1 = mFakePolicy->getUnresponsiveWindowToken(10ms); sp anrConnectionToken2 = mFakePolicy->getUnresponsiveWindowToken(0ms); // We don't know which window will ANR first. But both of them should happen eventually. ASSERT_TRUE(mFocusedWindow->getToken() == anrConnectionToken1 || mFocusedWindow->getToken() == anrConnectionToken2); ASSERT_TRUE(mUnfocusedWindow->getToken() == anrConnectionToken1 || mUnfocusedWindow->getToken() == anrConnectionToken2); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyAnrWasNotCalled(); mFocusedWindow->consumeMotionDown(); mFocusedWindow->consumeMotionUp(); mUnfocusedWindow->consumeMotionOutside(); sp responsiveToken1 = mFakePolicy->getResponsiveWindowToken(); sp responsiveToken2 = mFakePolicy->getResponsiveWindowToken(); // Both applications should be marked as responsive, in any order ASSERT_TRUE(mFocusedWindow->getToken() == responsiveToken1 || mFocusedWindow->getToken() == responsiveToken2); ASSERT_TRUE(mUnfocusedWindow->getToken() == responsiveToken1 || mUnfocusedWindow->getToken() == responsiveToken2); mFakePolicy->assertNotifyAnrWasNotCalled(); } // If a window is already not responding, the second tap on the same window should be ignored. // We should also log an error to account for the dropped event (not tested here). // At the same time, FLAG_WATCH_OUTSIDE_TOUCH targets should not receive any events. TEST_F(InputDispatcherMultiWindowAnr, DuringAnr_SecondTapIsIgnored) { tapOnFocusedWindow(); mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE, ADISPLAY_ID_DEFAULT, 0 /*flags*/); // Receive the events, but don't respond std::optional downEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_DOWN ASSERT_TRUE(downEventSequenceNum); std::optional upEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_UP ASSERT_TRUE(upEventSequenceNum); const std::chrono::duration timeout = mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow->getToken()); // Tap once again // We cannot use "tapOnFocusedWindow" because it asserts the injection result to be success ASSERT_EQ(InputEventInjectionResult::FAILED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, FOCUSED_WINDOW_LOCATION)); ASSERT_EQ(InputEventInjectionResult::FAILED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, FOCUSED_WINDOW_LOCATION)); // Unfocused window does not receive ACTION_OUTSIDE because the tapped window is not a // valid touch target mUnfocusedWindow->assertNoEvents(); // Consume the first tap mFocusedWindow->finishEvent(*downEventSequenceNum); mFocusedWindow->finishEvent(*upEventSequenceNum); ASSERT_TRUE(mDispatcher->waitForIdle()); // The second tap did not go to the focused window mFocusedWindow->assertNoEvents(); // Since all events are finished, connection should be deemed healthy again mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken()); mFakePolicy->assertNotifyAnrWasNotCalled(); } // If you tap outside of all windows, there will not be ANR TEST_F(InputDispatcherMultiWindowAnr, TapOutsideAllWindows_DoesNotAnr) { ASSERT_EQ(InputEventInjectionResult::FAILED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, LOCATION_OUTSIDE_ALL_WINDOWS)); ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyAnrWasNotCalled(); } // Since the focused window is paused, tapping on it should not produce any events TEST_F(InputDispatcherMultiWindowAnr, Window_CanBePaused) { mFocusedWindow->setPaused(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}}); ASSERT_EQ(InputEventInjectionResult::FAILED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, FOCUSED_WINDOW_LOCATION)); std::this_thread::sleep_for(mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT)); ASSERT_TRUE(mDispatcher->waitForIdle()); // Should not ANR because the window is paused, and touches shouldn't go to it mFakePolicy->assertNotifyAnrWasNotCalled(); mFocusedWindow->assertNoEvents(); mUnfocusedWindow->assertNoEvents(); } /** * If a window is processing a motion event, and then a key event comes in, the key event should * not to to the focused window until the motion is processed. * If a different window becomes focused at this time, the key should go to that window instead. * * Warning!!! * This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT * and the injection timeout that we specify when injecting the key. * We must have the injection timeout (10ms) be smaller than * KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms). * * If that value changes, this test should also change. */ TEST_F(InputDispatcherMultiWindowAnr, PendingKey_GoesToNewlyFocusedWindow) { // Set a long ANR timeout to prevent it from triggering mFocusedWindow->setDispatchingTimeout(2s); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}}); tapOnUnfocusedWindow(); std::optional downSequenceNum = mUnfocusedWindow->receiveEvent(); ASSERT_TRUE(downSequenceNum); std::optional upSequenceNum = mUnfocusedWindow->receiveEvent(); ASSERT_TRUE(upSequenceNum); // Don't finish the events yet, and send a key // Injection will succeed because we will eventually give up and send the key to the focused // window even if motions are still being processed. InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE, 10ms /*injectionTimeout*/); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result); // Key will not be sent to the window, yet, because the window is still processing events // and the key remains pending, waiting for the touch events to be processed std::optional keySequenceNum = mFocusedWindow->receiveEvent(); ASSERT_FALSE(keySequenceNum); // Switch the focus to the "unfocused" window that we tapped. Expect the key to go there mFocusedWindow->setFocusable(false); mUnfocusedWindow->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}}); setFocusedWindow(mUnfocusedWindow); // Focus events should precede the key events mUnfocusedWindow->consumeFocusEvent(true); mFocusedWindow->consumeFocusEvent(false); // Finish the tap events, which should unblock dispatcher mUnfocusedWindow->finishEvent(*downSequenceNum); mUnfocusedWindow->finishEvent(*upSequenceNum); // Now that all queues are cleared and no backlog in the connections, the key event // can finally go to the newly focused "mUnfocusedWindow". mUnfocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); mFocusedWindow->assertNoEvents(); mUnfocusedWindow->assertNoEvents(); mFakePolicy->assertNotifyAnrWasNotCalled(); } // When the touch stream is split across 2 windows, and one of them does not respond, // then ANR should be raised and the touch should be canceled for the unresponsive window. // The other window should not be affected by that. TEST_F(InputDispatcherMultiWindowAnr, SplitTouch_SingleWindowAnr) { // Touch Window 1 NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {FOCUSED_WINDOW_LOCATION}); mDispatcher->notifyMotion(&motionArgs); mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE, ADISPLAY_ID_DEFAULT, 0 /*flags*/); // Touch Window 2 int32_t actionPointerDown = AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); motionArgs = generateMotionArgs(actionPointerDown, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {FOCUSED_WINDOW_LOCATION, UNFOCUSED_WINDOW_LOCATION}); mDispatcher->notifyMotion(&motionArgs); const std::chrono::duration timeout = mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT); mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow->getToken()); mUnfocusedWindow->consumeMotionDown(); mFocusedWindow->consumeMotionDown(); // Focused window may or may not receive ACTION_MOVE // But it should definitely receive ACTION_CANCEL due to the ANR InputEvent* event; std::optional moveOrCancelSequenceNum = mFocusedWindow->receiveEvent(&event); ASSERT_TRUE(moveOrCancelSequenceNum); mFocusedWindow->finishEvent(*moveOrCancelSequenceNum); ASSERT_NE(nullptr, event); ASSERT_EQ(event->getType(), AINPUT_EVENT_TYPE_MOTION); MotionEvent& motionEvent = static_cast(*event); if (motionEvent.getAction() == AMOTION_EVENT_ACTION_MOVE) { mFocusedWindow->consumeMotionCancel(); } else { ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionEvent.getAction()); } ASSERT_TRUE(mDispatcher->waitForIdle()); mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken()); mUnfocusedWindow->assertNoEvents(); mFocusedWindow->assertNoEvents(); mFakePolicy->assertNotifyAnrWasNotCalled(); } /** * If we have no focused window, and a key comes in, we start the ANR timer. * The focused application should add a focused window before the timer runs out to prevent ANR. * * If the user touches another application during this time, the key should be dropped. * Next, if a new focused window comes in, without toggling the focused application, * then no ANR should occur. * * Normally, we would expect the new focused window to be accompanied by 'setFocusedApplication', * but in some cases the policy may not update the focused application. */ TEST_F(InputDispatcherMultiWindowAnr, FocusedWindowWithoutSetFocusedApplication_NoAnr) { std::shared_ptr focusedApplication = std::make_shared(); focusedApplication->setDispatchingTimeout(60ms); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, focusedApplication); // The application that owns 'mFocusedWindow' and 'mUnfocusedWindow' is not focused. mFocusedWindow->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}}); mFocusedWindow->consumeFocusEvent(false); // Send a key. The ANR timer should start because there is no focused window. // 'focusedApplication' will get blamed if this timer completes. // Key will not be sent anywhere because we have no focused window. It will remain pending. InputEventInjectionResult result = injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE, 10ms /*injectionTimeout*/, false /* allowKeyRepeat */); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result); // Wait until dispatcher starts the "no focused window" timer. If we don't wait here, // then the injected touches won't cause the focused event to get dropped. // The dispatcher only checks for whether the queue should be pruned upon queueing. // If we inject the touch right away and the ANR timer hasn't started, the touch event would // simply be added to the queue without 'shouldPruneInboundQueueLocked' returning 'true'. // For this test, it means that the key would get delivered to the window once it becomes // focused. std::this_thread::sleep_for(10ms); // Touch unfocused window. This should force the pending key to get dropped. NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {UNFOCUSED_WINDOW_LOCATION}); mDispatcher->notifyMotion(&motionArgs); // We do not consume the motion right away, because that would require dispatcher to first // process (== drop) the key event, and by that time, ANR will be raised. // Set the focused window first. mFocusedWindow->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}}); setFocusedWindow(mFocusedWindow); mFocusedWindow->consumeFocusEvent(true); // We do not call "setFocusedApplication" here, even though the newly focused window belongs // to another application. This could be a bug / behaviour in the policy. mUnfocusedWindow->consumeMotionDown(); ASSERT_TRUE(mDispatcher->waitForIdle()); // Should not ANR because we actually have a focused window. It was just added too slowly. ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyAnrWasNotCalled()); } // These tests ensure we cannot send touch events to a window that's positioned behind a window // that has feature NO_INPUT_CHANNEL. // Layout: // Top (closest to user) // mNoInputWindow (above all windows) // mBottomWindow // Bottom (furthest from user) class InputDispatcherMultiWindowOcclusionTests : public InputDispatcherTest { virtual void SetUp() override { InputDispatcherTest::SetUp(); mApplication = std::make_shared(); mNoInputWindow = new FakeWindowHandle(mApplication, mDispatcher, "Window without input channel", ADISPLAY_ID_DEFAULT, std::make_optional>(nullptr) /*token*/); mNoInputWindow->setInputFeatures(WindowInfo::Feature::NO_INPUT_CHANNEL); mNoInputWindow->setFrame(Rect(0, 0, 100, 100)); // It's perfectly valid for this window to not have an associated input channel mBottomWindow = new FakeWindowHandle(mApplication, mDispatcher, "Bottom window", ADISPLAY_ID_DEFAULT); mBottomWindow->setFrame(Rect(0, 0, 100, 100)); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mNoInputWindow, mBottomWindow}}}); } protected: std::shared_ptr mApplication; sp mNoInputWindow; sp mBottomWindow; }; TEST_F(InputDispatcherMultiWindowOcclusionTests, NoInputChannelFeature_DropsTouches) { PointF touchedPoint = {10, 10}; NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchedPoint}); mDispatcher->notifyMotion(&motionArgs); mNoInputWindow->assertNoEvents(); // Even though the window 'mNoInputWindow' positioned above 'mBottomWindow' does not have // an input channel, it is not marked as FLAG_NOT_TOUCHABLE, // and therefore should prevent mBottomWindow from receiving touches mBottomWindow->assertNoEvents(); } /** * If a window has feature NO_INPUT_CHANNEL, and somehow (by mistake) still has an input channel, * ensure that this window does not receive any touches, and blocks touches to windows underneath. */ TEST_F(InputDispatcherMultiWindowOcclusionTests, NoInputChannelFeature_DropsTouchesWithValidChannel) { mNoInputWindow = new FakeWindowHandle(mApplication, mDispatcher, "Window with input channel and NO_INPUT_CHANNEL", ADISPLAY_ID_DEFAULT); mNoInputWindow->setInputFeatures(WindowInfo::Feature::NO_INPUT_CHANNEL); mNoInputWindow->setFrame(Rect(0, 0, 100, 100)); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mNoInputWindow, mBottomWindow}}}); PointF touchedPoint = {10, 10}; NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchedPoint}); mDispatcher->notifyMotion(&motionArgs); mNoInputWindow->assertNoEvents(); mBottomWindow->assertNoEvents(); } class InputDispatcherMirrorWindowFocusTests : public InputDispatcherTest { protected: std::shared_ptr mApp; sp mWindow; sp mMirror; virtual void SetUp() override { InputDispatcherTest::SetUp(); mApp = std::make_shared(); mWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); mMirror = new FakeWindowHandle(mApp, mDispatcher, "TestWindowMirror", ADISPLAY_ID_DEFAULT, mWindow->getToken()); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp); mWindow->setFocusable(true); mMirror->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}}); } }; TEST_F(InputDispatcherMirrorWindowFocusTests, CanGetFocus) { // Request focus on a mirrored window setFocusedWindow(mMirror); // window gets focused mWindow->consumeFocusEvent(true); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyDown(ADISPLAY_ID_NONE); } // A focused & mirrored window remains focused only if the window and its mirror are both // focusable. TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedIfAllWindowsFocusable) { setFocusedWindow(mMirror); // window gets focused mWindow->consumeFocusEvent(true); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyDown(ADISPLAY_ID_NONE); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyUp(ADISPLAY_ID_NONE); mMirror->setFocusable(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}}); // window loses focus since one of the windows associated with the token in not focusable mWindow->consumeFocusEvent(false); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; mWindow->assertNoEvents(); } // A focused & mirrored window remains focused until the window and its mirror both become // invisible. TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedIfAnyWindowVisible) { setFocusedWindow(mMirror); // window gets focused mWindow->consumeFocusEvent(true); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyDown(ADISPLAY_ID_NONE); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyUp(ADISPLAY_ID_NONE); mMirror->setVisible(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyDown(ADISPLAY_ID_NONE); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyUp(ADISPLAY_ID_NONE); mWindow->setVisible(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}}); // window loses focus only after all windows associated with the token become invisible. mWindow->consumeFocusEvent(false); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; mWindow->assertNoEvents(); } // A focused & mirrored window remains focused until both windows are removed. TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedWhileWindowsAlive) { setFocusedWindow(mMirror); // window gets focused mWindow->consumeFocusEvent(true); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyDown(ADISPLAY_ID_NONE); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyUp(ADISPLAY_ID_NONE); // single window is removed but the window token remains focused mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mMirror}}}); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyDown(ADISPLAY_ID_NONE); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher)) << "Inject key event should return InputEventInjectionResult::SUCCEEDED"; mWindow->consumeKeyUp(ADISPLAY_ID_NONE); // Both windows are removed mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {}}}); mWindow->consumeFocusEvent(false); ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher)) << "Inject key event should return InputEventInjectionResult::TIMED_OUT"; mWindow->assertNoEvents(); } // Focus request can be pending until one window becomes visible. TEST_F(InputDispatcherMirrorWindowFocusTests, DeferFocusWhenInvisible) { // Request focus on an invisible mirror. mWindow->setVisible(false); mMirror->setVisible(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}}); setFocusedWindow(mMirror); // Injected key goes to pending queue. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE)); mMirror->setVisible(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}}); // window gets focused mWindow->consumeFocusEvent(true); // window gets the pending key event mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); } class InputDispatcherPointerCaptureTests : public InputDispatcherTest { protected: std::shared_ptr mApp; sp mWindow; sp mSecondWindow; void SetUp() override { InputDispatcherTest::SetUp(); mApp = std::make_shared(); mWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); mWindow->setFocusable(true); mSecondWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT); mSecondWindow->setFocusable(true); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mSecondWindow}}}); setFocusedWindow(mWindow); mWindow->consumeFocusEvent(true); } void notifyPointerCaptureChanged(const PointerCaptureRequest& request) { const NotifyPointerCaptureChangedArgs args = generatePointerCaptureChangedArgs(request); mDispatcher->notifyPointerCaptureChanged(&args); } PointerCaptureRequest requestAndVerifyPointerCapture(const sp& window, bool enabled) { mDispatcher->requestPointerCapture(window->getToken(), enabled); auto request = mFakePolicy->assertSetPointerCaptureCalled(enabled); notifyPointerCaptureChanged(request); window->consumeCaptureEvent(enabled); return request; } }; TEST_F(InputDispatcherPointerCaptureTests, EnablePointerCaptureWhenFocused) { // Ensure that capture cannot be obtained for unfocused windows. mDispatcher->requestPointerCapture(mSecondWindow->getToken(), true); mFakePolicy->assertSetPointerCaptureNotCalled(); mSecondWindow->assertNoEvents(); // Ensure that capture can be enabled from the focus window. requestAndVerifyPointerCapture(mWindow, true); // Ensure that capture cannot be disabled from a window that does not have capture. mDispatcher->requestPointerCapture(mSecondWindow->getToken(), false); mFakePolicy->assertSetPointerCaptureNotCalled(); // Ensure that capture can be disabled from the window with capture. requestAndVerifyPointerCapture(mWindow, false); } TEST_F(InputDispatcherPointerCaptureTests, DisablesPointerCaptureAfterWindowLosesFocus) { auto request = requestAndVerifyPointerCapture(mWindow, true); setFocusedWindow(mSecondWindow); // Ensure that the capture disabled event was sent first. mWindow->consumeCaptureEvent(false); mWindow->consumeFocusEvent(false); mSecondWindow->consumeFocusEvent(true); mFakePolicy->assertSetPointerCaptureCalled(false); // Ensure that additional state changes from InputReader are not sent to the window. notifyPointerCaptureChanged({}); notifyPointerCaptureChanged(request); notifyPointerCaptureChanged({}); mWindow->assertNoEvents(); mSecondWindow->assertNoEvents(); mFakePolicy->assertSetPointerCaptureNotCalled(); } TEST_F(InputDispatcherPointerCaptureTests, UnexpectedStateChangeDisablesPointerCapture) { auto request = requestAndVerifyPointerCapture(mWindow, true); // InputReader unexpectedly disables and enables pointer capture. notifyPointerCaptureChanged({}); notifyPointerCaptureChanged(request); // Ensure that Pointer Capture is disabled. mFakePolicy->assertSetPointerCaptureCalled(false); mWindow->consumeCaptureEvent(false); mWindow->assertNoEvents(); } TEST_F(InputDispatcherPointerCaptureTests, OutOfOrderRequests) { requestAndVerifyPointerCapture(mWindow, true); // The first window loses focus. setFocusedWindow(mSecondWindow); mFakePolicy->assertSetPointerCaptureCalled(false); mWindow->consumeCaptureEvent(false); // Request Pointer Capture from the second window before the notification from InputReader // arrives. mDispatcher->requestPointerCapture(mSecondWindow->getToken(), true); auto request = mFakePolicy->assertSetPointerCaptureCalled(true); // InputReader notifies Pointer Capture was disabled (because of the focus change). notifyPointerCaptureChanged({}); // InputReader notifies Pointer Capture was enabled (because of mSecondWindow's request). notifyPointerCaptureChanged(request); mSecondWindow->consumeFocusEvent(true); mSecondWindow->consumeCaptureEvent(true); } TEST_F(InputDispatcherPointerCaptureTests, EnableRequestFollowsSequenceNumbers) { // App repeatedly enables and disables capture. mDispatcher->requestPointerCapture(mWindow->getToken(), true); auto firstRequest = mFakePolicy->assertSetPointerCaptureCalled(true); mDispatcher->requestPointerCapture(mWindow->getToken(), false); mFakePolicy->assertSetPointerCaptureCalled(false); mDispatcher->requestPointerCapture(mWindow->getToken(), true); auto secondRequest = mFakePolicy->assertSetPointerCaptureCalled(true); // InputReader notifies that PointerCapture has been enabled for the first request. Since the // first request is now stale, this should do nothing. notifyPointerCaptureChanged(firstRequest); mWindow->assertNoEvents(); // InputReader notifies that the second request was enabled. notifyPointerCaptureChanged(secondRequest); mWindow->consumeCaptureEvent(true); } class InputDispatcherUntrustedTouchesTest : public InputDispatcherTest { protected: constexpr static const float MAXIMUM_OBSCURING_OPACITY = 0.8; constexpr static const float OPACITY_ABOVE_THRESHOLD = 0.9; static_assert(OPACITY_ABOVE_THRESHOLD > MAXIMUM_OBSCURING_OPACITY); constexpr static const float OPACITY_BELOW_THRESHOLD = 0.7; static_assert(OPACITY_BELOW_THRESHOLD < MAXIMUM_OBSCURING_OPACITY); // When combined twice, ie 1 - (1 - 0.5)*(1 - 0.5) = 0.75 < 8, is still below the threshold constexpr static const float OPACITY_FAR_BELOW_THRESHOLD = 0.5; static_assert(OPACITY_FAR_BELOW_THRESHOLD < MAXIMUM_OBSCURING_OPACITY); static_assert(1 - (1 - OPACITY_FAR_BELOW_THRESHOLD) * (1 - OPACITY_FAR_BELOW_THRESHOLD) < MAXIMUM_OBSCURING_OPACITY); static const int32_t TOUCHED_APP_UID = 10001; static const int32_t APP_B_UID = 10002; static const int32_t APP_C_UID = 10003; sp mTouchWindow; virtual void SetUp() override { InputDispatcherTest::SetUp(); mTouchWindow = getWindow(TOUCHED_APP_UID, "Touched"); mDispatcher->setBlockUntrustedTouchesMode(android::os::BlockUntrustedTouchesMode::BLOCK); mDispatcher->setMaximumObscuringOpacityForTouch(MAXIMUM_OBSCURING_OPACITY); } virtual void TearDown() override { InputDispatcherTest::TearDown(); mTouchWindow.clear(); } sp getOccludingWindow(int32_t uid, std::string name, TouchOcclusionMode mode, float alpha = 1.0f) { sp window = getWindow(uid, name); window->setFlags(WindowInfo::Flag::NOT_TOUCHABLE); window->setTouchOcclusionMode(mode); window->setAlpha(alpha); return window; } sp getWindow(int32_t uid, std::string name) { std::shared_ptr app = std::make_shared(); sp window = new FakeWindowHandle(app, mDispatcher, name, ADISPLAY_ID_DEFAULT); // Generate an arbitrary PID based on the UID window->setOwnerInfo(1777 + (uid % 10000), uid); return window; } void touch(const std::vector& points = {PointF{100, 200}}) { NotifyMotionArgs args = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, points); mDispatcher->notifyMotion(&args); } }; TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedOcclusionMode_BlocksTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedOcclusionModeWithOpacityBelowThreshold_BlocksTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.7f); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedOcclusionMode_DoesNotReceiveTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); w->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithAllowOcclusionMode_AllowsTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::ALLOW); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, TouchOutsideOccludingWindow_AllowsTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED); w->setFrame(Rect(0, 0, 50, 50)); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch({PointF{100, 100}}); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowFromSameUid_AllowsTouch) { const sp& w = getOccludingWindow(TOUCHED_APP_UID, "A", TouchOcclusionMode::BLOCK_UNTRUSTED); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacity_AllowsTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacity_DoesNotReceiveTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); w->assertNoEvents(); } /** * This is important to make sure apps can't indirectly learn the position of touches (outside vs * inside) while letting them pass-through. Note that even though touch passes through the occluding * window, the occluding window will still receive ACTION_OUTSIDE event. */ TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacityAndWatchOutside_ReceivesOutsideEvent) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f); w->addFlags(WindowInfo::Flag::WATCH_OUTSIDE_TOUCH); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); w->consumeMotionOutside(); } TEST_F(InputDispatcherUntrustedTouchesTest, OutsideEvent_HasZeroCoordinates) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f); w->addFlags(WindowInfo::Flag::WATCH_OUTSIDE_TOUCH); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); InputEvent* event = w->consume(); ASSERT_EQ(AINPUT_EVENT_TYPE_MOTION, event->getType()); MotionEvent& motionEvent = static_cast(*event); EXPECT_EQ(0.0f, motionEvent.getRawPointerCoords(0)->getX()); EXPECT_EQ(0.0f, motionEvent.getRawPointerCoords(0)->getY()); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityBelowThreshold_AllowsTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAtThreshold_AllowsTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, MAXIMUM_OBSCURING_OPACITY); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAboveThreshold_BlocksTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_ABOVE_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowsWithCombinedOpacityAboveThreshold_BlocksTouch) { // Resulting opacity = 1 - (1 - 0.7)*(1 - 0.7) = .91 const sp& w1 = getOccludingWindow(APP_B_UID, "B1", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); const sp& w2 = getOccludingWindow(APP_B_UID, "B2", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowsWithCombinedOpacityBelowThreshold_AllowsTouch) { // Resulting opacity = 1 - (1 - 0.5)*(1 - 0.5) = .75 const sp& w1 = getOccludingWindow(APP_B_UID, "B1", TouchOcclusionMode::USE_OPACITY, OPACITY_FAR_BELOW_THRESHOLD); const sp& w2 = getOccludingWindow(APP_B_UID, "B2", TouchOcclusionMode::USE_OPACITY, OPACITY_FAR_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowsFromDifferentAppsEachBelowThreshold_AllowsTouch) { const sp& wB = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); const sp& wC = getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowsFromDifferentAppsOneAboveThreshold_BlocksTouch) { const sp& wB = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); const sp& wC = getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY, OPACITY_ABOVE_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAboveThresholdAndSelfWindow_BlocksTouch) { const sp& wA = getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); const sp& wB = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_ABOVE_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wA, wB, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityBelowThresholdAndSelfWindow_AllowsTouch) { const sp& wA = getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY, OPACITY_ABOVE_THRESHOLD); const sp& wB = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wA, wB, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, SelfWindowWithOpacityAboveThreshold_AllowsTouch) { const sp& w = getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY, OPACITY_ABOVE_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, SelfWindowWithBlockUntrustedMode_AllowsTouch) { const sp& w = getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::BLOCK_UNTRUSTED); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, OpacityThresholdIs0AndWindowAboveThreshold_BlocksTouch) { mDispatcher->setMaximumObscuringOpacityForTouch(0.0f); const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, 0.1f); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } TEST_F(InputDispatcherUntrustedTouchesTest, OpacityThresholdIs0AndWindowAtThreshold_AllowsTouch) { mDispatcher->setMaximumObscuringOpacityForTouch(0.0f); const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, 0.0f); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, OpacityThresholdIs1AndWindowBelowThreshold_AllowsTouch) { mDispatcher->setMaximumObscuringOpacityForTouch(1.0f); const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_ABOVE_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedModeAndWindowWithOpacityBelowFromSameApp_BlocksTouch) { const sp& w1 = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, OPACITY_BELOW_THRESHOLD); const sp& w2 = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } /** * Window B of BLOCK_UNTRUSTED occlusion mode is enough to block the touch, we're testing that the * addition of another window (C) of USE_OPACITY occlusion mode and opacity below the threshold * (which alone would result in allowing touches) does not affect the blocking behavior. */ TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedModeAndWindowWithOpacityBelowFromDifferentApps_BlocksTouch) { const sp& wB = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, OPACITY_BELOW_THRESHOLD); const sp& wC = getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY, OPACITY_BELOW_THRESHOLD); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}}); touch(); mTouchWindow->assertNoEvents(); } /** * This test is testing that a window from a different UID but with same application token doesn't * block the touch. Apps can share the application token for close UI collaboration for example. */ TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithSameApplicationTokenFromDifferentApp_AllowsTouch) { const sp& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED); w->setApplicationToken(mTouchWindow->getApplicationToken()); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}}); touch(); mTouchWindow->consumeAnyMotionDown(); } class InputDispatcherDragTests : public InputDispatcherTest { protected: std::shared_ptr mApp; sp mWindow; sp mSecondWindow; sp mDragWindow; void SetUp() override { InputDispatcherTest::SetUp(); mApp = std::make_shared(); mWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT); mWindow->setFrame(Rect(0, 0, 100, 100)); mWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mSecondWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT); mSecondWindow->setFrame(Rect(100, 0, 200, 100)); mSecondWindow->setFlags(WindowInfo::Flag::NOT_TOUCH_MODAL); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mSecondWindow}}}); } // Start performing drag, we will create a drag window and transfer touch to it. void performDrag() { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; // Window should receive motion event. mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT); // The drag window covers the entire display mDragWindow = new FakeWindowHandle(mApp, mDispatcher, "DragWindow", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows( {{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}}); // Transfer touch focus to the drag window mDispatcher->transferTouchFocus(mWindow->getToken(), mDragWindow->getToken(), true /* isDragDrop */); mWindow->consumeMotionCancel(); mDragWindow->consumeMotionDown(); } // Start performing drag, we will create a drag window and transfer touch to it. void performStylusDrag() { ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_STYLUS) .buttonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS) .x(50) .y(50)) .build())); mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT); // The drag window covers the entire display mDragWindow = new FakeWindowHandle(mApp, mDispatcher, "DragWindow", ADISPLAY_ID_DEFAULT); mDispatcher->setInputWindows( {{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}}); // Transfer touch focus to the drag window mDispatcher->transferTouchFocus(mWindow->getToken(), mDragWindow->getToken(), true /* isDragDrop */); mWindow->consumeMotionCancel(); mDragWindow->consumeMotionDown(); } }; TEST_F(InputDispatcherDragTests, DragEnterAndDragExit) { performDrag(); // Move on window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(false, 50, 50); mSecondWindow->assertNoEvents(); // Move to another window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(true, 150, 50); mSecondWindow->consumeDragEvent(false, 50, 50); // Move back to original window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(false, 50, 50); mSecondWindow->consumeDragEvent(true, -50, 50); ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); mWindow->assertNoEvents(); mSecondWindow->assertNoEvents(); } TEST_F(InputDispatcherDragTests, DragAndDrop) { performDrag(); // Move on window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(false, 50, 50); mSecondWindow->assertNoEvents(); // Move to another window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(true, 150, 50); mSecondWindow->consumeDragEvent(false, 50, 50); // drop to another window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); mFakePolicy->assertDropTargetEquals(mSecondWindow->getToken()); mWindow->assertNoEvents(); mSecondWindow->assertNoEvents(); } TEST_F(InputDispatcherDragTests, StylusDragAndDrop) { performStylusDrag(); // Move on window and keep button pressed. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_STYLUS) .buttonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS) .x(50) .y(50)) .build())) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(false, 50, 50); mSecondWindow->assertNoEvents(); // Move to another window and release button, expect to drop item. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_STYLUS) .buttonState(0) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS) .x(150) .y(50)) .build())) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->assertNoEvents(); mSecondWindow->assertNoEvents(); mFakePolicy->assertDropTargetEquals(mSecondWindow->getToken()); // nothing to the window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_STYLUS) .buttonState(0) .pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS) .x(150) .y(50)) .build())) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); mWindow->assertNoEvents(); mSecondWindow->assertNoEvents(); } TEST_F(InputDispatcherDragTests, DragAndDrop_InvalidWindow) { performDrag(); // Set second window invisible. mSecondWindow->setVisible(false); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}}); // Move on window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(false, 50, 50); mSecondWindow->assertNoEvents(); // Move to another window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT); mWindow->consumeDragEvent(true, 150, 50); mSecondWindow->assertNoEvents(); // drop to another window. ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {150, 50})) << "Inject motion event should return InputEventInjectionResult::SUCCEEDED"; mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); mFakePolicy->assertDropTargetEquals(nullptr); mWindow->assertNoEvents(); mSecondWindow->assertNoEvents(); } class InputDispatcherDropInputFeatureTest : public InputDispatcherTest {}; TEST_F(InputDispatcherDropInputFeatureTest, WindowDropsInput) { std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); window->setInputFeatures(WindowInfo::Feature::DROP_INPUT); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/); // With the flag set, window should not get any input NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); window->assertNoEvents(); NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); window->assertNoEvents(); // With the flag cleared, the window should get input window->setInputFeatures({}); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}}); keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); window->consumeKeyUp(ADISPLAY_ID_DEFAULT); motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); window->consumeMotionDown(ADISPLAY_ID_DEFAULT); window->assertNoEvents(); } TEST_F(InputDispatcherDropInputFeatureTest, ObscuredWindowDropsInput) { std::shared_ptr obscuringApplication = std::make_shared(); sp obscuringWindow = new FakeWindowHandle(obscuringApplication, mDispatcher, "obscuringWindow", ADISPLAY_ID_DEFAULT); obscuringWindow->setFrame(Rect(0, 0, 50, 50)); obscuringWindow->setOwnerInfo(111, 111); obscuringWindow->setFlags(WindowInfo::Flag::NOT_TOUCHABLE); std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); window->setInputFeatures(WindowInfo::Feature::DROP_INPUT_IF_OBSCURED); window->setOwnerInfo(222, 222); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/); // With the flag set, window should not get any input NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); window->assertNoEvents(); NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); window->assertNoEvents(); // With the flag cleared, the window should get input window->setInputFeatures({}); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}}); keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); window->consumeKeyUp(ADISPLAY_ID_DEFAULT); motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); window->consumeMotionDown(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED); window->assertNoEvents(); } TEST_F(InputDispatcherDropInputFeatureTest, UnobscuredWindowGetsInput) { std::shared_ptr obscuringApplication = std::make_shared(); sp obscuringWindow = new FakeWindowHandle(obscuringApplication, mDispatcher, "obscuringWindow", ADISPLAY_ID_DEFAULT); obscuringWindow->setFrame(Rect(0, 0, 50, 50)); obscuringWindow->setOwnerInfo(111, 111); obscuringWindow->setFlags(WindowInfo::Flag::NOT_TOUCHABLE); std::shared_ptr application = std::make_shared(); sp window = new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT); window->setInputFeatures(WindowInfo::Feature::DROP_INPUT_IF_OBSCURED); window->setOwnerInfo(222, 222); mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application); window->setFocusable(true); mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}}); setFocusedWindow(window); window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/); // With the flag set, window should not get any input NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); window->assertNoEvents(); NotifyMotionArgs motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); window->assertNoEvents(); // When the window is no longer obscured because it went on top, it should get input mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window, obscuringWindow}}}); keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT); mDispatcher->notifyKey(&keyArgs); window->consumeKeyUp(ADISPLAY_ID_DEFAULT); motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT); mDispatcher->notifyMotion(&motionArgs); window->consumeMotionDown(ADISPLAY_ID_DEFAULT); window->assertNoEvents(); } } // namespace android::inputdispatcher