/* * Copyright (c) 2021-2022 Huawei Device Co., Ltd. * * HDF is dual licensed: you can use it either under the terms of * the GPL, or the BSD license, at your option. * See the LICENSE file in the root of this repository for complete details. */ #include "magnetic_lsm303.h" #include #include "osal_mem.h" #include "osal_time.h" #include "sensor_config_controller.h" #include "sensor_device_manager.h" #include "sensor_magnetic_driver.h" #define HDF_LOG_TAG khdf_sensor_magnetic_driver static struct Lsm303DrvData *g_lsm303DrvData = NULL; /* IO config for int-pin and I2C-pin */ #define SENSOR_I2C6_DATA_REG_ADDR 0x114f004c #define SENSOR_I2C6_CLK_REG_ADDR 0x114f0048 #define SENSOR_I2C_REG_CFG 0x403 static int32_t ReadLsm303RawData(struct SensorCfgData *data, struct MagneticData *rawData, uint64_t *timestamp) { uint8_t status = 0; uint8_t reg[MAGNETIC_AXIS_BUTT]; OsalTimespec time; (void)memset_s(&time, sizeof(time), 0, sizeof(time)); (void)memset_s(reg, sizeof(reg), 0, sizeof(reg)); CHECK_NULL_PTR_RETURN_VALUE(data, HDF_ERR_INVALID_PARAM); if (OsalGetTime(&time) != HDF_SUCCESS) { HDF_LOGE("%s: Get time failed", __func__); return HDF_FAILURE; } *timestamp = time.sec * SENSOR_SECOND_CONVERT_NANOSECOND + time.usec * SENSOR_CONVERT_UNIT; /* unit nanosecond */ int32_t ret = ReadSensor(&data->busCfg, LSM303_STATUS_ADDR, &status, sizeof(uint8_t)); if (!(status & LSM303_DATA_READY_MASK) || (ret != HDF_SUCCESS)) { HDF_LOGE("%s: data status [%u] ret [%d]", __func__, status, ret); return HDF_FAILURE; } ret = ReadSensor(&data->busCfg, LSM303_MAGNETIC_X_MSB_ADDR, ®[MAGNETIC_X_AXIS_MSB], sizeof(uint8_t)); CHECK_PARSER_RESULT_RETURN_VALUE(ret, "read data"); ret = ReadSensor(&data->busCfg, LSM303_MAGNETIC_X_LSB_ADDR, ®[MAGNETIC_X_AXIS_LSB], sizeof(uint8_t)); CHECK_PARSER_RESULT_RETURN_VALUE(ret, "read data"); ret = ReadSensor(&data->busCfg, LSM303_MAGNETIC_Y_MSB_ADDR, ®[MAGNETIC_Y_AXIS_MSB], sizeof(uint8_t)); CHECK_PARSER_RESULT_RETURN_VALUE(ret, "read data"); ret = ReadSensor(&data->busCfg, LSM303_MAGNETIC_Y_LSB_ADDR, ®[MAGNETIC_Y_AXIS_LSB], sizeof(uint8_t)); CHECK_PARSER_RESULT_RETURN_VALUE(ret, "read data"); ret = ReadSensor(&data->busCfg, LSM303_MAGNETIC_Z_MSB_ADDR, ®[MAGNETIC_Z_AXIS_MSB], sizeof(uint8_t)); CHECK_PARSER_RESULT_RETURN_VALUE(ret, "read data"); ret = ReadSensor(&data->busCfg, LSM303_MAGNETIC_Z_LSB_ADDR, ®[MAGNETIC_Z_AXIS_LSB], sizeof(uint8_t)); CHECK_PARSER_RESULT_RETURN_VALUE(ret, "read data"); rawData->x = (int16_t)(SENSOR_DATA_SHIFT_LEFT(reg[MAGNETIC_X_AXIS_MSB], SENSOR_DATA_WIDTH_8_BIT) | reg[MAGNETIC_X_AXIS_LSB]); rawData->y = (int16_t)(SENSOR_DATA_SHIFT_LEFT(reg[MAGNETIC_Y_AXIS_MSB], SENSOR_DATA_WIDTH_8_BIT) | reg[MAGNETIC_Y_AXIS_LSB]); rawData->z = (int16_t)(SENSOR_DATA_SHIFT_LEFT(reg[MAGNETIC_Z_AXIS_MSB], SENSOR_DATA_WIDTH_8_BIT) | reg[MAGNETIC_Z_AXIS_LSB]); return HDF_SUCCESS; } static int32_t ReadLsm303Data(struct SensorCfgData *data) { struct MagneticData rawData = { 0, 0, 0 }; int32_t tmp[MAGNETIC_AXIS_NUM]; struct SensorReportEvent event; (void)memset_s(&event, sizeof(event), 0, sizeof(event)); (void)memset_s(tmp, sizeof(tmp), 0, sizeof(tmp)); CHECK_NULL_PTR_RETURN_VALUE(data, HDF_ERR_INVALID_PARAM); int32_t ret = ReadLsm303RawData(data, &rawData, &event.timestamp); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: LSM303 read raw data failed", __func__); return HDF_FAILURE; } event.sensorId = SENSOR_TAG_MAGNETIC_FIELD; event.option = 0; event.mode = SENSOR_WORK_MODE_REALTIME; tmp[MAGNETIC_X_AXIS] = rawData.x * LSM303_MAGNETIC_GIN / LSM303DLHC_SENSITIVITY_XY47GA; tmp[MAGNETIC_Y_AXIS] = rawData.y * LSM303_MAGNETIC_GIN / LSM303DLHC_SENSITIVITY_XY47GA; tmp[MAGNETIC_Z_AXIS] = rawData.z * LSM303_MAGNETIC_GIN / LSM303DLHC_SENSITIVITY_Z47GA; ret = SensorRawDataToRemapData(data->direction, tmp, sizeof(tmp) / sizeof(tmp[0])); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: LSM303 convert raw data failed", __func__); return HDF_FAILURE; } event.dataLen = sizeof(tmp); event.data = (uint8_t *)&tmp; ret = ReportSensorEvent(&event); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: LSM303 report data failed", __func__); } return ret; } static int32_t InitLsm303(struct SensorCfgData *data) { int32_t ret; CHECK_NULL_PTR_RETURN_VALUE(data, HDF_ERR_INVALID_PARAM); ret = SetSensorRegCfgArray(&data->busCfg, data->regCfgGroup[SENSOR_INIT_GROUP]); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: Lsm303 sensor init config failed", __func__); return HDF_FAILURE; } return HDF_SUCCESS; } static int32_t InitMagneticPreConfig(void) { if (SetSensorPinMux(SENSOR_I2C6_DATA_REG_ADDR, SENSOR_ADDR_WIDTH_4_BYTE, SENSOR_I2C_REG_CFG) != HDF_SUCCESS) { HDF_LOGE("%s: Data write mux pin failed", __func__); return HDF_FAILURE; } if (SetSensorPinMux(SENSOR_I2C6_CLK_REG_ADDR, SENSOR_ADDR_WIDTH_4_BYTE, SENSOR_I2C_REG_CFG) != HDF_SUCCESS) { HDF_LOGE("%s: Clk write mux pin failed", __func__); return HDF_FAILURE; } return HDF_SUCCESS; } static int32_t DispatchLsm303(struct HdfDeviceIoClient *client, int cmd, struct HdfSBuf *data, struct HdfSBuf *reply) { (void)client; (void)cmd; (void)data; (void)reply; return HDF_SUCCESS; } static int32_t Lsm303BindDriver(struct HdfDeviceObject *device) { CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM); struct Lsm303DrvData *drvData = (struct Lsm303DrvData *)OsalMemCalloc(sizeof(*drvData)); if (drvData == NULL) { HDF_LOGE("%s: Malloc Lsm303 drv data fail", __func__); return HDF_ERR_MALLOC_FAIL; } drvData->ioService.Dispatch = DispatchLsm303; drvData->device = device; device->service = &drvData->ioService; g_lsm303DrvData = drvData; return HDF_SUCCESS; } static int32_t Lsm303InitDriver(struct HdfDeviceObject *device) { int32_t ret; struct MagneticOpsCall ops; CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM); struct Lsm303DrvData *drvData = (struct Lsm303DrvData *)device->service; CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM); ret = InitMagneticPreConfig(); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: Init Lsm303 bus mux config", __func__); return HDF_FAILURE; } drvData->sensorCfg = MagneticCreateCfgData(device->property); if (drvData->sensorCfg == NULL || drvData->sensorCfg->root == NULL) { HDF_LOGD("%s: Creating magneticcfg failed because detection failed", __func__); return HDF_ERR_NOT_SUPPORT; } ops.Init = NULL; ops.ReadData = ReadLsm303Data; ret = MagneticRegisterChipOps(&ops); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: Register lsm303 magnetic failed", __func__); return HDF_FAILURE; } ret = InitLsm303(drvData->sensorCfg); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: Init lsm303 magnetic failed", __func__); return HDF_FAILURE; } return HDF_SUCCESS; } static void Lsm303ReleaseDriver(struct HdfDeviceObject *device) { CHECK_NULL_PTR_RETURN(device); struct Lsm303DrvData *drvData = (struct Lsm303DrvData *)device->service; CHECK_NULL_PTR_RETURN(drvData); if (drvData->sensorCfg != NULL) { MagneticReleaseCfgData(drvData->sensorCfg); drvData->sensorCfg = NULL; } OsalMemFree(drvData); } struct HdfDriverEntry g_magneticLsm303DevEntry = { .moduleVersion = 1, .moduleName = "HDF_SENSOR_MAGNETIC_LSM303", .Bind = Lsm303BindDriver, .Init = Lsm303InitDriver, .Release = Lsm303ReleaseDriver, }; HDF_INIT(g_magneticLsm303DevEntry);