1 /*
2  * Copyright (c) 2024 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "image/loaders/image_loader_ktx.h"
17 
18 #include <algorithm>
19 #include <cstdint>
20 #include <cstring>
21 
22 #include <base/containers/allocator.h>
23 #include <base/containers/array_view.h>
24 #include <base/containers/string_view.h>
25 #include <base/containers/type_traits.h>
26 #include <base/containers/unique_ptr.h>
27 #include <base/containers/vector.h>
28 #include <base/namespace.h>
29 #include <base/util/formats.h>
30 #include <core/image/intf_image_container.h>
31 #include <core/image/intf_image_loader_manager.h>
32 #include <core/io/intf_file.h>
33 #include <core/log.h>
34 #include <core/namespace.h>
35 
36 #include "image/image_loader_manager.h"
37 #include "image/loaders/gl_util.h"
38 
39 CORE_BEGIN_NAMESPACE()
40 namespace {
41 using BASE_NS::array_view;
42 using BASE_NS::CloneData;
43 using BASE_NS::Format;
44 using BASE_NS::make_unique;
45 using BASE_NS::move;
46 using BASE_NS::string_view;
47 using BASE_NS::unique_ptr;
48 using BASE_NS::vector;
49 
ReadU32(const uint8_t ** data)50 uint32_t ReadU32(const uint8_t** data)
51 {
52     CORE_ASSERT(data);
53     CORE_ASSERT(*data);
54 
55     uint32_t value = *(*data)++;
56     value |= static_cast<uint32_t>(*(*data)++) << 8;
57     value |= static_cast<uint32_t>(*(*data)++) << 16;
58     value |= static_cast<uint32_t>(*(*data)++) << 24;
59     return value;
60 }
61 
ReadU32FlipEndian(const uint8_t ** data)62 uint32_t ReadU32FlipEndian(const uint8_t** data)
63 {
64     CORE_ASSERT(data);
65     CORE_ASSERT(*data);
66 
67     uint32_t value = static_cast<uint32_t>(*(*data)++) << 24;
68     value |= static_cast<uint32_t>(*(*data)++) << 16;
69     value |= static_cast<uint32_t>(*(*data)++) << 8;
70     value |= static_cast<uint32_t>(*(*data)++);
71     return value;
72 }
73 
74 #ifdef CORE_READ_KTX_HEADER_STRING
75 // NOTE: Returns null if the value is not a valid null terminated string.
76 //       (i.e. maxBytes was reached before a null was found)
ReadStringZ(const uint8_t ** data,size_t maxBytes,size_t * bytesReadOut)77 string_view ReadStringZ(const uint8_t** data, size_t maxBytes, size_t* bytesReadOut)
78 {
79     CORE_ASSERT(data);
80     CORE_ASSERT(*data);
81     CORE_ASSERT(bytesReadOut);
82 
83     *bytesReadOut = 0;
84 
85     if (maxBytes == 0) {
86         return {};
87     }
88 
89     const auto start = *data;
90     const auto end = start + maxBytes;
91 
92     if (auto const pos = std::find(start, end, 0); pos != end) {
93         *data = pos + 1;
94         *bytesReadOut = static_cast<size_t>(std::distance(start, pos + 1));
95         return { reinterpret_cast<const char*>(start), *bytesReadOut };
96     }
97 
98     return {};
99 }
100 #endif
101 
102 // 12 byte ktx identifier.
103 constexpr const size_t KTX_IDENTIFIER_LENGTH = 12;
104 constexpr const char KTX_IDENTIFIER_REFERENCE[KTX_IDENTIFIER_LENGTH] = { '\xAB', 'K', 'T', 'X', ' ', '1', '1', '\xBB',
105     '\r', '\n', '\x1A', '\n' };
106 constexpr const uint32_t KTX_FILE_ENDIANNESS = 0x04030201;
107 constexpr const uint32_t KTX_FILE_ENDIANNESS_FLIPPED = 0x01020304;
108 
109 struct KtxHeader {
110     int8_t identifier[KTX_IDENTIFIER_LENGTH];
111     uint32_t endianness;
112     uint32_t glType;
113     uint32_t glTypeSize;
114     uint32_t glFormat;
115     uint32_t glInternalFormat;
116     uint32_t glBaseInternalFormat;
117     uint32_t pixelWidth;
118     uint32_t pixelHeight;
119     uint32_t pixelDepth;
120     uint32_t numberOfArrayElements;
121     uint32_t numberOfFaces;
122     uint32_t numberOfMipmapLevels;
123     uint32_t bytesOfKeyValueData;
124 };
125 
126 constexpr const size_t KTX_HEADER_LENGTH = sizeof(KtxHeader);
127 
GetImageType(const KtxHeader & header)128 IImageContainer::ImageType GetImageType(const KtxHeader& header)
129 {
130     if (header.pixelHeight == 0 && header.pixelDepth == 0) {
131         return IImageContainer::ImageType::TYPE_1D;
132     }
133     if (header.pixelDepth == 0) {
134         return IImageContainer::ImageType::TYPE_2D;
135     }
136 
137     return IImageContainer::ImageType::TYPE_3D;
138 }
139 
GetImageViewType(const KtxHeader & header,IImageContainer::ImageType imageType)140 IImageContainer::ImageViewType GetImageViewType(const KtxHeader& header, IImageContainer::ImageType imageType)
141 {
142     const bool isArray = (header.numberOfArrayElements != 0);
143     const bool isCubeMap = (header.numberOfFaces == 6);
144 
145     if (isCubeMap) {
146         if (imageType == IImageContainer::ImageType::TYPE_3D || imageType == IImageContainer::ImageType::TYPE_1D) {
147             // Cubemaps must be 2d textures.
148             return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
149         }
150         return (isArray ? IImageContainer::ImageViewType::VIEW_TYPE_CUBE_ARRAY
151                         : IImageContainer::ImageViewType::VIEW_TYPE_CUBE);
152     }
153     if (isArray) {
154         switch (imageType) {
155             case IImageContainer::ImageType::TYPE_1D:
156                 return IImageContainer::ImageViewType::VIEW_TYPE_1D_ARRAY;
157             case IImageContainer::ImageType::TYPE_2D:
158                 return IImageContainer::ImageViewType::VIEW_TYPE_2D_ARRAY;
159             case IImageContainer::ImageType::TYPE_3D:
160                 // 3d arrays are not supported.
161                 [[fallthrough]];
162             case IImageContainer::ImageType::TYPE_MAX_ENUM:
163                 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
164         }
165     } else {
166         switch (imageType) {
167             case IImageContainer::ImageType::TYPE_1D:
168                 return IImageContainer::ImageViewType::VIEW_TYPE_1D;
169             case IImageContainer::ImageType::TYPE_2D:
170                 return IImageContainer::ImageViewType::VIEW_TYPE_2D;
171             case IImageContainer::ImageType::TYPE_3D:
172                 return IImageContainer::ImageViewType::VIEW_TYPE_3D;
173             case IImageContainer::ImageType::TYPE_MAX_ENUM:
174                 return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
175         }
176     }
177 
178     return IImageContainer::ImageViewType::VIEW_TYPE_MAX_ENUM;
179 }
180 
181 class KtxImage final : public IImageContainer {
182 public:
183     KtxImage() = default;
184 
KtxImage(unique_ptr<uint8_t[]> && fileBytes,size_t fileBytesLength)185     KtxImage(unique_ptr<uint8_t[]>&& fileBytes, size_t fileBytesLength)
186         : fileBytes_(CORE_NS::move(fileBytes)), fileBytesLength_(fileBytesLength)
187     {}
188 
189     using Ptr = BASE_NS::unique_ptr<KtxImage, Deleter>;
190 
GetImageDesc() const191     const ImageDesc& GetImageDesc() const override
192     {
193         return imageDesc_;
194     }
195 
GetData() const196     array_view<const uint8_t> GetData() const override
197     {
198         return array_view<const uint8_t>(imageBytes_, imageBytesLength_);
199     }
200 
GetBufferImageCopies() const201     array_view<const SubImageDesc> GetBufferImageCopies() const override
202     {
203         return imageBuffers_;
204     }
205 
ProcessMipmapLevel(KtxImage::Ptr & image,const size_t imageBufferIndex,const uint32_t currentImageElementOffset,const GlImageFormatInfo & formatInfo,const uint32_t elementWidth,const uint32_t elementHeight,const uint32_t mipmapLevel,const uint32_t faceCount,const uint32_t arrayElementCount,const uint32_t elementDepth,const size_t subelementLength)206     static void ProcessMipmapLevel(KtxImage::Ptr& image, const size_t imageBufferIndex,
207         const uint32_t currentImageElementOffset, const GlImageFormatInfo& formatInfo, const uint32_t elementWidth,
208         const uint32_t elementHeight, const uint32_t mipmapLevel, const uint32_t faceCount,
209         const uint32_t arrayElementCount, const uint32_t elementDepth, const size_t subelementLength)
210     {
211         image->imageBuffers_[imageBufferIndex].bufferOffset = currentImageElementOffset;
212 
213         // Vulkan requires the bufferRowLength and bufferImageHeight to be multiple of block width / height.
214         const auto blockWidth = formatInfo.blockWidth;
215         const auto blockHeight = formatInfo.blockHeight;
216         const auto widthBlockCount = (elementWidth + (blockWidth - 1)) / blockWidth;
217         const auto heightBlockCount = (elementHeight + (blockHeight - 1)) / blockHeight;
218         image->imageBuffers_[imageBufferIndex].bufferRowLength = widthBlockCount * blockWidth;
219         image->imageBuffers_[imageBufferIndex].bufferImageHeight = heightBlockCount * blockHeight;
220 
221         image->imageBuffers_[imageBufferIndex].mipLevel = mipmapLevel;
222 
223         image->imageBuffers_[imageBufferIndex].layerCount = faceCount * arrayElementCount;
224 
225         image->imageBuffers_[imageBufferIndex].width = elementWidth;
226         image->imageBuffers_[imageBufferIndex].height = elementHeight;
227         image->imageBuffers_[imageBufferIndex].depth = elementDepth;
228 
229         //
230         // Vulkan requires that: "If the calling command's VkImage parameter's
231         // format is not a depth/stencil format or a multi-planar format, then
232         // bufferOffset must be a multiple of the format's texel block size."
233         //
234         // This is a bit problematic as the ktx format requires padding only to
235         // 4 bytes and contains a 4 byte "lodsize" value between each data section.
236         // this causes all formats with bytesPerBlock > 4 to be misaligned.
237         //
238         // NOTE: try to figure out if there is a better way.
239         //
240         const uint32_t bytesPerBlock = formatInfo.bitsPerBlock / 8u;
241         if (mipmapLevel > 0 && bytesPerBlock > 4u) {
242             // We can assume that moving the data to the previous valid position
243             // is ok as it will only overwrite the now unnecessary "lodsize" value.
244             const uint32_t validOffset =
245                 static_cast<uint32_t>(currentImageElementOffset / bytesPerBlock * bytesPerBlock);
246             uint8_t* imageBytes = const_cast<uint8_t*>(image->imageBytes_);
247             if (memmove_s(imageBytes + validOffset, image->imageBytesLength_ - validOffset,
248                     imageBytes + currentImageElementOffset, subelementLength) != EOK) {
249                 CORE_LOG_E("memmove failed.");
250             }
251             image->imageBuffers_[imageBufferIndex].bufferOffset = validOffset;
252         }
253     }
254 
ResolveGpuImageDesc(ImageDesc & desc,const KtxHeader & ktx,const CORE_NS::GlImageFormatInfo & formatInfo,const uint32_t loadFlags,const uint32_t inputMipCount,const uint32_t arrayElementCount,const uint32_t faceCount)255     static bool ResolveGpuImageDesc(ImageDesc& desc, const KtxHeader& ktx, const CORE_NS::GlImageFormatInfo& formatInfo,
256         const uint32_t loadFlags, const uint32_t inputMipCount, const uint32_t arrayElementCount,
257         const uint32_t faceCount)
258     {
259         if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_FORCE_SRGB_BIT) != 0) {
260             desc.format = formatInfo.coreFormatForceSrgb;
261         } else if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_FORCE_LINEAR_RGB_BIT) != 0) {
262             desc.format = formatInfo.coreFormatForceLinear;
263         } else {
264             desc.format = formatInfo.coreFormat;
265         }
266 
267         if ((desc.imageFlags & ImageFlags::FLAGS_CUBEMAP_BIT) != 0) {
268         }
269 
270         desc.imageType = GetImageType(ktx);
271         desc.imageViewType = GetImageViewType(ktx, desc.imageType);
272         if (desc.format == Format::BASE_FORMAT_UNDEFINED || desc.imageType == ImageType::TYPE_MAX_ENUM ||
273             desc.imageViewType == ImageViewType::VIEW_TYPE_MAX_ENUM) {
274             CORE_LOG_D(
275                 "glFormat=%u imageType=%u imageViewType=%u", ktx.glInternalFormat, desc.imageType, desc.imageViewType);
276             return false;
277         }
278 
279         desc.mipCount = inputMipCount;
280 
281         // NOTE: depth here means 3D textures, not color channels.
282         // In 1D and 2D textures the height and depth might be 0.
283         desc.width = ktx.pixelWidth;
284         desc.height = ((ktx.pixelHeight == 0) ? 1 : ktx.pixelHeight);
285         desc.depth = ((ktx.pixelDepth == 0) ? 1 : ktx.pixelDepth);
286         desc.layerCount = arrayElementCount * faceCount;
287 
288         const bool compressed = (desc.imageFlags & ImageFlags::FLAGS_COMPRESSED_BIT) != 0;
289         const bool imageRequestingMips = (desc.imageFlags & ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT) != 0;
290         const bool loaderRequestingMips = (loadFlags & IImageLoaderManager::IMAGE_LOADER_GENERATE_MIPS) != 0;
291         if (!compressed && (imageRequestingMips || loaderRequestingMips)) {
292             desc.imageFlags |= ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
293             uint32_t mipsize = (desc.width > desc.height) ? desc.width : desc.height;
294             desc.mipCount = 0;
295             while (mipsize > 0) {
296                 desc.mipCount++;
297                 mipsize >>= 1;
298             }
299         } else {
300             desc.imageFlags &= ~ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
301         }
302 
303         return true;
304     }
305 
ResolveImageDesc(const KtxHeader & ktx,const GlImageFormatInfo & formatInfo,uint32_t loadFlags,uint32_t inputMipCount,const uint32_t arrayElementCount,uint32_t faceCount,ImageDesc & outImageDesc)306     static bool ResolveImageDesc(const KtxHeader& ktx, const GlImageFormatInfo& formatInfo, uint32_t loadFlags,
307         uint32_t inputMipCount, const uint32_t arrayElementCount, uint32_t faceCount, ImageDesc& outImageDesc)
308     {
309         ImageDesc desc;
310 
311         desc.blockPixelWidth = formatInfo.blockWidth;
312         desc.blockPixelHeight = formatInfo.blockHeight;
313         desc.blockPixelDepth = formatInfo.blockDepth;
314         desc.bitsPerBlock = formatInfo.bitsPerBlock;
315 
316         // If there are six faces this is a cube.
317         if (faceCount == 6u) {
318             desc.imageFlags |= ImageFlags::FLAGS_CUBEMAP_BIT;
319         }
320 
321         // Is compressed?
322         if ((ktx.glType == 0) && (ktx.glFormat == 0)) {
323             desc.imageFlags |= ImageFlags::FLAGS_COMPRESSED_BIT;
324         } else {
325             // Mipmap generation works only if image is not using a compressed format.
326             // In ktx mip count of 0 (instead of 1) means requesting generating full chain of mipmaps.
327             if ((ktx.numberOfMipmapLevels == 0)) {
328                 desc.imageFlags |= ImageFlags::FLAGS_REQUESTING_MIPMAPS_BIT;
329             }
330         }
331 
332         if (!ResolveGpuImageDesc(desc, ktx, formatInfo, loadFlags, inputMipCount, arrayElementCount, faceCount)) {
333             return false;
334         }
335 
336         outImageDesc = desc;
337         return true;
338     }
339 
VerifyKtxInfo(const KtxHeader & ktx,const GlImageFormatInfo & formatInfo)340     static bool VerifyKtxInfo(const KtxHeader& ktx, const GlImageFormatInfo& formatInfo)
341     {
342         if (formatInfo.compressed) {
343             if (ktx.glTypeSize != 1) {
344                 CORE_LOG_D("Invalid typesize for a compressed image.");
345                 return false;
346             }
347             if (ktx.glFormat != 0) {
348                 CORE_LOG_D("Invalid glFormat for a compressed image.");
349                 return false;
350             }
351             if (ktx.glType != 0) {
352                 CORE_LOG_D("Invalid glType for a compressed image.");
353                 return false;
354             }
355         }
356 
357         if (ktx.pixelDepth != 0 && ktx.pixelHeight == 0) {
358             CORE_LOG_D("No pixelHeight defined for a 3d texture.");
359             return false;
360         }
361 
362         return true;
363     }
364 
CreateImage(KtxImage::Ptr image,const KtxHeader & ktx,uint32_t loadFlags,const uint8_t * data,bool isEndianFlipped)365     static ImageLoaderManager::LoadResult CreateImage(
366         KtxImage::Ptr image, const KtxHeader& ktx, uint32_t loadFlags, const uint8_t* data, bool isEndianFlipped)
367     {
368         // Mark this as the image data starting position.
369         const uint8_t* ktxDataSection = data;
370 
371         const uint32_t inputMipCount = ktx.numberOfMipmapLevels == 0 ? 1 : ktx.numberOfMipmapLevels;
372         const uint32_t arrayElementCount = ktx.numberOfArrayElements == 0 ? 1 : ktx.numberOfArrayElements;
373 
374         //
375         // Populate the image descriptor.
376         //
377         const GlImageFormatInfo formatInfo = GetFormatInfo(ktx.glInternalFormat);
378         if (!ResolveImageDesc(
379                 ktx, formatInfo, loadFlags, inputMipCount, arrayElementCount, ktx.numberOfFaces, image->imageDesc_)) {
380             return ImageLoaderManager::ResultFailure("Image not supported.");
381         }
382 
383         if (!VerifyKtxInfo(ktx, formatInfo)) {
384             return ImageLoaderManager::ResultFailure("Invalid ktx data.");
385         }
386 
387         if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) == 0) {
388             uint32_t elementWidth = image->imageDesc_.width;
389             uint32_t elementHeight = image->imageDesc_.height;
390             uint32_t elementDepth = image->imageDesc_.depth;
391 
392             // Create buffer info for each mipmap level.
393             // NOTE: One BufferImageCopy can copy all the layers and faces in one step.
394             image->imageBuffers_.resize(static_cast<size_t>(inputMipCount));
395 
396             const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
397 
398             // for non-array cubemaps imageSize is the size of one face, but for other types the total size.
399             const auto iterations = (ktx.numberOfArrayElements == 0 && ktx.numberOfFaces == 6u) ? 6u : 1u;
400 
401             // Fill the image subelement buffer info.
402             size_t imageBufferIndex = 0;
403             for (uint32_t mipmapLevel = 0; mipmapLevel < inputMipCount; ++mipmapLevel) {
404                 if (data < ktxDataSection) {
405                     CORE_LOG_D("Trying to jump out of the parsed data.");
406                     return ImageLoaderManager::ResultFailure("Invalid ktx data.");
407                 }
408                 if (sizeof(uint32_t) >=
409                     image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get())) {
410                     CORE_LOG_D("Not enough data in the bytearray.");
411                     return ImageLoaderManager::ResultFailure("Invalid ktx data.");
412                 }
413 
414                 const size_t lodSize = myReadU32(&data);
415                 // Pad to to a multiple of 4.
416                 const size_t lodSizePadded = lodSize + ((~lodSize + 1) & (4u - 1u));
417 
418                 const uint64_t totalSizePadded = static_cast<uint64_t>(lodSizePadded) * iterations;
419                 if (totalSizePadded >= UINT32_MAX) {
420                     CORE_LOG_D("imageSize too big");
421                     return ImageLoaderManager::ResultFailure("Invalid ktx data.");
422                 }
423 
424                 const auto fileBytesLeft =
425                     image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get());
426                 if (totalSizePadded > fileBytesLeft) {
427                     CORE_LOG_D("Not enough data for the element");
428                     CORE_LOG_V(
429                         "  mips=%u faces=%u arrayElements=%u", inputMipCount, ktx.numberOfFaces, arrayElementCount);
430                     CORE_LOG_V("  mipmapLevel=%u lodsize=%zu end=%zu filesize=%zu.", mipmapLevel, lodSize,
431                         static_cast<size_t>(data - image->fileBytes_.get() + static_cast<ptrdiff_t>(lodSize)),
432                         image->fileBytesLength_);
433                     return ImageLoaderManager::ResultFailure("Invalid ktx data.");
434                 }
435 
436                 const uint32_t currentImageElementOffset = static_cast<uint32_t>(data - image->imageBytes_);
437                 CORE_ASSERT_MSG(currentImageElementOffset % 4u == 0, "Offset must be aligned to 4 bytes");
438                 ProcessMipmapLevel(image, imageBufferIndex, currentImageElementOffset, formatInfo, elementWidth,
439                     elementHeight, mipmapLevel, ktx.numberOfFaces, arrayElementCount, elementDepth,
440                     static_cast<uint32_t>(totalSizePadded));
441 
442                 // Move to the next buffer if any.
443                 imageBufferIndex++;
444 
445                 // Figure out the next mipmap level sizes. The dimentions of each level are half of the previous.
446                 elementWidth /= 2u;
447                 elementWidth = (elementWidth <= 1) ? 1 : elementWidth;
448 
449                 elementHeight /= 2u;
450                 elementHeight = (elementHeight <= 1) ? 1 : elementHeight;
451 
452                 elementDepth /= 2u;
453                 elementDepth = (elementDepth <= 1) ? 1 : elementDepth;
454 
455                 // Skip to the next lod level.
456                 // NOTE: in theory there could be packing here for each face. in that case we would need to
457                 // make a separate subelement of each face.
458                 data += totalSizePadded;
459             }
460 
461             if (data != (image->fileBytes_.get() + image->fileBytesLength_)) {
462                 CORE_LOG_D("File data left over.");
463                 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
464             }
465         }
466         return ImageLoaderManager::ResultSuccess(CORE_NS::move(image));
467     }
468 
469     // Actual ktx loading implementation.
Load(unique_ptr<uint8_t[]> fileBytes,uint64_t fileBytesLength,uint32_t loadFlags)470     static ImageLoaderManager::LoadResult Load(
471         unique_ptr<uint8_t[]> fileBytes, uint64_t fileBytesLength, uint32_t loadFlags)
472     {
473         if (!fileBytes) {
474             return ImageLoaderManager::ResultFailure("Input data must not be null.");
475         }
476         if (fileBytesLength < KTX_HEADER_LENGTH) {
477             return ImageLoaderManager::ResultFailure("Not enough data for parsing ktx.");
478         }
479 
480         // Populate the image object.
481         auto image = KtxImage::Ptr(new KtxImage(move(fileBytes), static_cast<size_t>(fileBytesLength)));
482         if (!image) {
483             return ImageLoaderManager::ResultFailure("Loading image failed.");
484         }
485 
486         const uint8_t* data = image->fileBytes_.get();
487         const auto ktxHeader = ReadHeader(&data);
488         // Check that the header values make sense.
489         if (memcmp(ktxHeader.identifier, KTX_IDENTIFIER_REFERENCE, KTX_IDENTIFIER_LENGTH) != 0) {
490             CORE_LOG_D("Ktx invalid file identifier.");
491             return ImageLoaderManager::ResultFailure("Invalid ktx data.");
492         }
493         if (ktxHeader.endianness != KTX_FILE_ENDIANNESS && ktxHeader.endianness != KTX_FILE_ENDIANNESS_FLIPPED) {
494             CORE_LOG_D("Ktx invalid endian marker.");
495             return ImageLoaderManager::ResultFailure("Invalid ktx data.");
496         }
497         if (ktxHeader.numberOfFaces != 1 && ktxHeader.numberOfFaces != 6u) { // 1 for regular, 6 for cubemaps
498             CORE_LOG_D("Ktx invalid numberOfFaces.");
499             return ImageLoaderManager::ResultFailure("Invalid ktx data.");
500         }
501         if (ktxHeader.pixelWidth == 0) {
502             CORE_LOG_D("Ktx pixelWidth can't be 0.");
503             return ImageLoaderManager::ResultFailure("Invalid ktx data.");
504         }
505 
506         if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) == 0) {
507             if (ktxHeader.bytesOfKeyValueData >
508                 image->fileBytesLength_ - static_cast<uintptr_t>(data - image->fileBytes_.get())) {
509                 CORE_LOG_D("Ktx bytesOfKeyValueData too large.");
510                 return ImageLoaderManager::ResultFailure("Invalid ktx data.");
511             }
512 
513             ReadKeyValueData(ktxHeader, &data);
514             // NOTE: Point to the start of the actual data of the first texture
515             // (Jump over the first lod offset uint32_t (4 bytes)
516             const size_t headerLength = static_cast<size_t>(data - image->fileBytes_.get()) + sizeof(uint32_t);
517             image->imageBytes_ = data + sizeof(uint32_t);
518             image->imageBytesLength_ = image->fileBytesLength_ - headerLength;
519         }
520         const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
521         if (isEndianFlipped && ktxHeader.glTypeSize > 1) {
522             CORE_ASSERT_MSG(true, "NOTE: must convert all data to correct endianness");
523             return ImageLoaderManager::ResultFailure("Image not supported.");
524         }
525 
526         return CreateImage(move(image), ktxHeader, loadFlags, data, isEndianFlipped);
527     }
528 
529 protected:
Destroy()530     void Destroy() override
531     {
532         delete this;
533     }
534 
535 private:
ReadHeader(const uint8_t ** data)536     static KtxHeader ReadHeader(const uint8_t** data)
537     {
538         // Read the identifier.
539         KtxHeader ktxHeader = {};
540 
541         CloneData(ktxHeader.identifier, sizeof(ktxHeader.identifier), *data, KTX_IDENTIFIER_LENGTH);
542         *data += KTX_IDENTIFIER_LENGTH;
543 
544         // Check file endianness.
545         ktxHeader.endianness = ReadU32(data);
546 
547         const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
548 
549         const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
550 
551         ktxHeader.glType = myReadU32(data);
552         ktxHeader.glTypeSize = myReadU32(data);
553         ktxHeader.glFormat = myReadU32(data);
554         ktxHeader.glInternalFormat = myReadU32(data);
555         ktxHeader.glBaseInternalFormat = myReadU32(data);
556         ktxHeader.pixelWidth = myReadU32(data);
557         ktxHeader.pixelHeight = myReadU32(data);
558         ktxHeader.pixelDepth = myReadU32(data);
559         ktxHeader.numberOfArrayElements = myReadU32(data);
560         ktxHeader.numberOfFaces = myReadU32(data);
561         ktxHeader.numberOfMipmapLevels = myReadU32(data);
562         ktxHeader.bytesOfKeyValueData = myReadU32(data);
563 
564         return ktxHeader;
565     }
566 
ReadKeyValueData(const KtxHeader & ktxHeader,const uint8_t ** data)567     static void ReadKeyValueData(const KtxHeader& ktxHeader, const uint8_t** data)
568     {
569 #ifndef CORE_READ_KTX_HEADER_STRING
570         // Skip reading the key-value data for now.
571         *data += ktxHeader.bytesOfKeyValueData;
572 #else
573         const bool isEndianFlipped = (ktxHeader.endianness == KTX_FILE_ENDIANNESS_FLIPPED);
574         const auto myReadU32 = isEndianFlipped ? ReadU32FlipEndian : ReadU32;
575 
576         // Read KTX key-value data.
577         size_t keyValueDataRead = 0;
578         while (keyValueDataRead < ktxHeader.bytesOfKeyValueData) {
579             uint32_t keyAndValueByteSize = myReadU32(data);
580             keyValueDataRead += sizeof(uint32_t);
581 
582             size_t keyBytesRead;
583             const auto key = ReadStringZ(data, keyAndValueByteSize, &keyBytesRead);
584             keyValueDataRead += keyBytesRead;
585 
586             size_t valueBytesRead;
587             const auto value = ReadStringZ(data, keyAndValueByteSize - keyBytesRead, &valueBytesRead);
588             keyValueDataRead += valueBytesRead;
589 
590             if (!key.empty() && !value.empty()) {
591                 // NOTE: The key-value data is not used for anything. Just printing to log.
592                 CORE_LOG_V("KTX metadata: '%s' : '%s'", key.data(), value.data());
593             }
594 
595             // Pad to a multiple of 4 bytes.
596             const size_t padding = (~keyAndValueByteSize + 1) & (4u - 1u);
597             keyValueDataRead += padding;
598             *data += padding;
599         }
600 #endif
601     }
602 
603     // Saving the whole image file data in one big chunk. This way we don't
604     // need to copy the data to a separate buffer after reading the file. We
605     // will be pointing to the file data anyway. Only downside is the wasted
606     // memory for the file header.
607     unique_ptr<uint8_t[]> fileBytes_;
608     size_t fileBytesLength_ { 0 };
609 
610     // The actual image data part of the file;
611     const uint8_t* imageBytes_ { nullptr };
612     size_t imageBytesLength_ { 0 };
613 
614     ImageDesc imageDesc_;
615     vector<SubImageDesc> imageBuffers_;
616 };
617 
618 class ImageLoaderKtx final : public IImageLoaderManager::IImageLoader {
619 public:
620     // Inherited via ImageManager::IImageLoader
Load(IFile & file,uint32_t loadFlags) const621     ImageLoaderManager::LoadResult Load(IFile& file, uint32_t loadFlags) const override
622     {
623         size_t byteLength = static_cast<size_t>(file.GetLength());
624 
625         if ((loadFlags & IImageLoaderManager::IMAGE_LOADER_METADATA_ONLY) != 0) {
626             // Only load header
627             byteLength = KTX_HEADER_LENGTH;
628         }
629 
630         // Read the file to a buffer.
631         unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(byteLength);
632         const uint64_t read = file.Read(buffer.get(), byteLength);
633         if (read != byteLength) {
634             CORE_LOG_D("Error loading image");
635             return ImageLoaderManager::ResultFailure("Reading file failed.");
636         }
637 
638         return KtxImage::Load(move(buffer), byteLength, loadFlags);
639     }
640 
Load(array_view<const uint8_t> imageFileBytes,uint32_t loadFlags) const641     ImageLoaderManager::LoadResult Load(array_view<const uint8_t> imageFileBytes, uint32_t loadFlags) const override
642     {
643         // NOTE: could reuse this and remove the extra copy here if the data would be given as a unique_ptr.
644         unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(static_cast<size_t>(imageFileBytes.size()));
645         if (buffer) {
646             std::copy(imageFileBytes.begin(), imageFileBytes.end(), buffer.get());
647         }
648 
649         return KtxImage::Load(move(buffer), imageFileBytes.size(), loadFlags);
650     }
651 
CanLoad(array_view<const uint8_t> imageFileBytes) const652     bool CanLoad(array_view<const uint8_t> imageFileBytes) const override
653     {
654         // Check for KTX
655         return (imageFileBytes.size() >= KTX_IDENTIFIER_LENGTH) &&
656                (memcmp(imageFileBytes.data(), KTX_IDENTIFIER_REFERENCE, KTX_IDENTIFIER_LENGTH) == 0);
657     }
658 
659     // No animated KTX
LoadAnimatedImage(IFile &,uint32_t)660     ImageLoaderManager::LoadAnimatedResult LoadAnimatedImage(IFile& /* file */, uint32_t /* loadFlags */) override
661     {
662         return ImageLoaderManager::ResultFailureAnimated("Animated KTX not supported.");
663     }
664 
LoadAnimatedImage(array_view<const uint8_t>,uint32_t)665     ImageLoaderManager::LoadAnimatedResult LoadAnimatedImage(
666         array_view<const uint8_t> /* imageFileBytes */, uint32_t /* loadFlags */) override
667     {
668         return ImageLoaderManager::ResultFailureAnimated("Animated KTX not supported.");
669     }
670 
GetSupportedTypes() const671     vector<IImageLoaderManager::ImageType> GetSupportedTypes() const override
672     {
673         return vector<IImageLoaderManager::ImageType>(std::begin(KTX_IMAGE_TYPES), std::end(KTX_IMAGE_TYPES));
674     }
675 
676 protected:
Destroy()677     void Destroy() final
678     {
679         delete this;
680     }
681 };
682 } // namespace
683 
CreateImageLoaderKtx(PluginToken)684 IImageLoaderManager::IImageLoader::Ptr CreateImageLoaderKtx(PluginToken)
685 {
686     return ImageLoaderManager::IImageLoader::Ptr { new ImageLoaderKtx() };
687 }
688 CORE_END_NAMESPACE()
689