1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include <algorithm>
17 #include <cstdlib>
18 #include <new>
19
20 #include "nn_tensor.h"
21 #include "validation.h"
22 #include "transform.h"
23 #include "common/log.h"
24 #include "mindir.h"
25 #include "mindir_types.h"
26 #include "quant_param.h"
27
28 namespace OHOS {
29 namespace NeuralNetworkRuntime {
30 const uint32_t SUPPORT_NUM_BIT = 8; // Currently support 8-bit quantization only
31
DestroyLiteGraphTensor(void * tensor)32 void DestroyLiteGraphTensor(void* tensor)
33 {
34 mindspore::lite::MindIR_Tensor_Destroy(&tensor);
35 }
36
~NNTensor()37 NNTensor::~NNTensor()
38 {
39 if (m_buffer != nullptr) {
40 delete [] reinterpret_cast<char*>(m_buffer);
41 }
42 }
43
NNTensor(NNTensor && tensor)44 NNTensor::NNTensor(NNTensor&& tensor) noexcept
45 {
46 *this = std::move(tensor);
47 }
48
operator =(NNTensor && tensor)49 NNTensor& NNTensor::operator=(NNTensor&& tensor) noexcept
50 {
51 if (this == &tensor) {
52 return *this;
53 }
54
55 m_type = tensor.m_type;
56 m_dataType = tensor.m_dataType;
57 m_format = tensor.m_format;
58 m_name = std::move(tensor.m_name);
59 m_dimensions = std::move(tensor.m_dimensions);
60 m_quantParams = std::move(tensor.m_quantParams);
61 m_elementCount = tensor.m_elementCount;
62 m_isDynamicShape = tensor.m_isDynamicShape;
63 m_isOpParameter = tensor.m_isOpParameter;
64 m_buffer = tensor.m_buffer;
65 m_bufferLength = tensor.m_bufferLength;
66 m_dataLength = tensor.m_dataLength;
67
68 tensor.m_buffer = nullptr;
69 tensor.m_bufferLength = 0;
70 tensor.m_dataLength = 0;
71
72 return *this;
73 }
74
Build(OH_NN_DataType dataType,const std::vector<int32_t> & dimensions,const std::vector<QuantParam> & quantParams,OH_NN_TensorType type)75 OH_NN_ReturnCode NNTensor::Build(OH_NN_DataType dataType,
76 const std::vector<int32_t>& dimensions,
77 const std::vector<QuantParam>& quantParams,
78 OH_NN_TensorType type)
79 {
80 m_type = type;
81
82 if (!Validation::ValidateTensorDataType(dataType)) {
83 LOGE("Build failed, passed invalid data type.");
84 return OH_NN_INVALID_PARAMETER;
85 }
86 m_dataType = dataType;
87
88 OH_NN_ReturnCode returnCode = ValidateDimensions(dimensions);
89 if (returnCode != OH_NN_SUCCESS) {
90 LOGE("Build failed, error happened when validating dimensions.");
91 return returnCode;
92 }
93 m_dimensions = dimensions;
94
95 returnCode = ValidateQuantParams(quantParams);
96 if (returnCode != OH_NN_SUCCESS) {
97 LOGE("Build failed, error happened when validating quantParams.");
98 return returnCode;
99 }
100 m_quantParams = quantParams;
101
102 return OH_NN_SUCCESS;
103 }
104
BuildFromOHNNTensor(const OH_NN_Tensor & nnTensor)105 OH_NN_ReturnCode NNTensor::BuildFromOHNNTensor(const OH_NN_Tensor& nnTensor)
106 {
107 m_type = nnTensor.type;
108
109 if (!Validation::ValidateTensorDataType(nnTensor.dataType)) {
110 LOGE("BuildFromOHNNTensor failed, passed invalid data type: %d.", nnTensor.dataType);
111 return OH_NN_INVALID_PARAMETER;
112 }
113 m_dataType = nnTensor.dataType;
114
115 if (!Validation::ValidateTensorType(nnTensor.type)) {
116 LOGE("BuildFromOHNNTensor failed, passed invalid nnTensor type: %d.", nnTensor.type);
117 return OH_NN_INVALID_PARAMETER;
118 }
119
120 OH_NN_ReturnCode returnCode = ParseDimensions(nnTensor.dimensions, nnTensor.dimensionCount);
121 if (returnCode != OH_NN_SUCCESS) {
122 LOGE("BuildFromOHNNTensor failed, passed invalid nnTensor dimensions.");
123 return returnCode;
124 }
125
126 returnCode = ParseQuantParams(nnTensor.quantParam);
127 if (returnCode != OH_NN_SUCCESS) {
128 LOGE("BuildFromOHNNTensor failed, please check quantParam in nnTensor.");
129 return returnCode;
130 }
131
132 return OH_NN_SUCCESS;
133 }
134
BuildFromOHNNTensorInfo(const OH_NN_TensorInfo & nnTensorInfo)135 OH_NN_ReturnCode NNTensor::BuildFromOHNNTensorInfo(const OH_NN_TensorInfo& nnTensorInfo)
136 {
137 if (!Validation::ValidateTensorDataType(nnTensorInfo.dataType)) {
138 LOGE("BuildFromOHNNTensorInfo failed, passed invalid data type: %d.", nnTensorInfo.dataType);
139 return OH_NN_INVALID_PARAMETER;
140 }
141 m_dataType = nnTensorInfo.dataType;
142
143 if (!Validation::ValidateTensorFormat(nnTensorInfo.format)) {
144 LOGE("BuildFromOHNNTensorInfo failed, passed invalid nnTensorInfo format: %d.", nnTensorInfo.format);
145 return OH_NN_INVALID_PARAMETER;
146 }
147 m_format = nnTensorInfo.format;
148 m_name = nnTensorInfo.name;
149
150 OH_NN_ReturnCode returnCode = ParseDimensions(nnTensorInfo.dimensions, nnTensorInfo.dimensionCount);
151 if (returnCode != OH_NN_SUCCESS) {
152 LOGE("BuildFromOHNNTensorInfo failed, passed invalid nnTensorInfo dimensions.");
153 return returnCode;
154 }
155
156 return OH_NN_SUCCESS;
157 }
158
BuildFromTensorDesc(const NN_TensorDesc * tensorDesc)159 OH_NN_ReturnCode NNTensor::BuildFromTensorDesc(const NN_TensorDesc* tensorDesc)
160 {
161 if (tensorDesc == nullptr) {
162 LOGE("BuildFromTensorDesc failed, passed nullptr to tensorDesc.");
163 return OH_NN_INVALID_PARAMETER;
164 }
165
166 const auto* tensorDescImpl = reinterpret_cast<const OHOS::NeuralNetworkRuntime::TensorDesc*>(tensorDesc);
167
168 // Get datatype from TensorDesc
169 OH_NN_DataType dataType;
170 OH_NN_ReturnCode returnCode = tensorDescImpl->GetDataType(&dataType);
171 if (returnCode != OH_NN_SUCCESS) {
172 LOGE("BuildFromTensorDesc failed, error happened when get dataType.");
173 return returnCode;
174 }
175 if (!OHOS::NeuralNetworkRuntime::Validation::ValidateTensorDataType(dataType)) {
176 LOGE("BuildFromTensorDesc failed, passed invalid dataType.");
177 return OH_NN_INVALID_PARAMETER;
178 }
179
180 // Get Dimensions from TensorDesc and transform to std::vector
181 int32_t* shape {nullptr};
182 size_t shapeNum {0};
183 returnCode = tensorDescImpl->GetShape(&shape, &shapeNum);
184 if (returnCode != OH_NN_SUCCESS) {
185 LOGE("BuildFromTensorDesc failed, error happened when get shape.");
186 return returnCode;
187 }
188 std::vector<int32_t> dimensions(shape, shape + shapeNum);
189
190 // OH_NNCore_TensorDesc does not include quant parameters and tensor type,
191 // should be setted by using indenpendent interface.
192 returnCode = Build(dataType, dimensions, {}, OH_NN_TENSOR);
193 if (returnCode != OH_NN_SUCCESS) {
194 LOGE("BuildFromTensorDesc failed, error happened when building NNTensor.");
195 }
196
197 return returnCode;
198 }
199
SetQuantParam(const NN_QuantParam * quantParam)200 OH_NN_ReturnCode NNTensor::SetQuantParam(const NN_QuantParam* quantParam)
201 {
202 if (quantParam == nullptr) {
203 LOGE("SetQuantParam failed, quantParam is nullptr.");
204 return OH_NN_INVALID_PARAMETER;
205 }
206
207 const auto* quantParamImpl = reinterpret_cast<const OHOS::NeuralNetworkRuntime::QuantParams*>(quantParam);
208 m_quantParams.clear();
209 OH_NN_ReturnCode returnCode = quantParamImpl->CopyToCompat(m_quantParams);
210 if (returnCode != OH_NN_SUCCESS) {
211 LOGE("SetQuantParam failed, error happened when converting quantization parameters.");
212 return returnCode;
213 }
214
215 returnCode = ValidateQuantParams(m_quantParams);
216 if (returnCode != OH_NN_SUCCESS) {
217 m_quantParams.clear();
218 LOGE("SetQuantParam failed, error happened when parsing quantization parameters.");
219 }
220
221 return returnCode;
222 }
223
SetTensorType(OH_NN_TensorType tensorType)224 OH_NN_ReturnCode NNTensor::SetTensorType(OH_NN_TensorType tensorType)
225 {
226 m_type = tensorType;
227 return OH_NN_SUCCESS;
228 }
229
ValidateDimensions(const std::vector<int32_t> & dimensions)230 OH_NN_ReturnCode NNTensor::ValidateDimensions(const std::vector<int32_t>& dimensions)
231 {
232 // Temporary variable to check overflow.
233 uint64_t absoluteDim {0};
234 uint64_t elementCount {1};
235 uint64_t dataLength {static_cast<uint64_t>(GetTypeSize(m_dataType))};
236 m_isDynamicShape = false;
237 for (int32_t dim : dimensions) {
238 if (dim < -1 || dim == 0) {
239 LOGE("ParseDimension failed, dimension of OH_NN_Tensor cannot be 0 or less than -1, receive %d.", dim);
240 return OH_NN_INVALID_PARAMETER;
241 }
242
243 m_isDynamicShape = m_isDynamicShape || (dim == -1);
244 absoluteDim = static_cast<uint64_t>(abs(dim));
245 elementCount *= absoluteDim;
246 dataLength *= absoluteDim;
247
248 if (dataLength > UINT32_MAX) {
249 LOGE("ParseDimension failed, expected data length of tensor exceed limit %u.", UINT32_MAX);
250 return OH_NN_INVALID_PARAMETER;
251 }
252 }
253
254 if (m_isDynamicShape) {
255 // If tensor has dynamic shape, m_elementCount and m_dataLength take 0.
256 m_elementCount = 0;
257 m_dataLength = 0;
258 } else {
259 m_elementCount = static_cast<uint32_t>(elementCount);
260 m_dataLength = static_cast<size_t>(dataLength);
261 }
262
263 return OH_NN_SUCCESS;
264 }
265
ParseDimensions(const int32_t * dimensions,uint32_t dimensionCount)266 OH_NN_ReturnCode NNTensor::ParseDimensions(const int32_t* dimensions, uint32_t dimensionCount)
267 {
268 OH_NN_ReturnCode returnCode = Validation::ValidateArray(dimensions, dimensionCount);
269 if (returnCode != OH_NN_SUCCESS) {
270 LOGE("BuildFromOHNNTensor failed, please check dimension and dimensionCount in NNTensor.");
271 return returnCode;
272 }
273 std::vector<int32_t> dimensionsVec = ConstructVectorFromArray(dimensions, dimensionCount);
274
275 returnCode = ValidateDimensions(dimensionsVec);
276 if (returnCode != OH_NN_SUCCESS) {
277 LOGE("BuildFromOHNNTensor failed, passed invalid dimension info.");
278 return returnCode;
279 }
280 m_dimensions = std::move(dimensionsVec);
281
282 return OH_NN_SUCCESS;
283 }
284
ParseQuantParams(const OH_NN_QuantParam * quantParam)285 OH_NN_ReturnCode NNTensor::ParseQuantParams(const OH_NN_QuantParam* quantParam)
286 {
287 if (quantParam == nullptr) {
288 return OH_NN_SUCCESS;
289 }
290
291 if ((quantParam->numBits == nullptr) || (quantParam->scale == nullptr) || (quantParam->zeroPoint == nullptr)) {
292 LOGE("ParseQuantParams failed, scale or zeroPoint is nullptr.");
293 return OH_NN_INVALID_PARAMETER;
294 }
295
296 std::vector<QuantParam> tmpQuantParam;
297 uint32_t numBits{0};
298 double scale{0.0};
299 int32_t zeroPoint{0};
300 for (uint32_t i = 0; i < quantParam->quantCount; i++) {
301 numBits = quantParam->numBits[i];
302 scale = quantParam->scale[i];
303 zeroPoint = quantParam->zeroPoint[i];
304 tmpQuantParam.emplace_back((QuantParam){numBits, scale, zeroPoint});
305 }
306
307 OH_NN_ReturnCode returnCode = ValidateQuantParams(tmpQuantParam);
308 if (returnCode != OH_NN_SUCCESS) {
309 LOGE("ParseQuantParams failed, error happened when validating quantization parameters.");
310 return returnCode;
311 }
312 m_quantParams = std::move(tmpQuantParam);
313
314 return OH_NN_SUCCESS;
315 }
316
ValidateQuantParams(const std::vector<QuantParam> & quantParams)317 OH_NN_ReturnCode NNTensor::ValidateQuantParams(const std::vector<QuantParam>& quantParams)
318 {
319 // Only support 8-bit quantization in NNR version 1.0
320 auto paramIt = std::find_if(quantParams.begin(), quantParams.end(), [](QuantParam quant) {
321 return quant.numBits != SUPPORT_NUM_BIT;
322 });
323 if (paramIt != quantParams.end()) {
324 LOGE("ValidateQuantParams failed, get invalid numBits %d.", paramIt->numBits);
325 return OH_NN_INVALID_PARAMETER;
326 }
327
328 return OH_NN_SUCCESS;
329 }
330
IdentifyOpParameter()331 void NNTensor::IdentifyOpParameter()
332 {
333 m_isOpParameter = true;
334 }
335
SetName(const std::string & name)336 void NNTensor::SetName(const std::string& name)
337 {
338 m_name = name;
339 }
340
341 // Buffer set inside NNTensor will be released during deconstruction, make sure the buffer won't be released twice.
SetBuffer(const void * buffer,size_t length)342 void NNTensor::SetBuffer(const void* buffer, size_t length)
343 {
344 // copy pointer instead of memory copying
345 m_buffer = const_cast<void*>(buffer);
346 m_bufferLength = length;
347 }
348
SetFormat(const OH_NN_Format & format)349 void NNTensor::SetFormat(const OH_NN_Format& format)
350 {
351 m_format = format;
352 }
353
SetDimensions(const std::vector<int32_t> & dimensions)354 OH_NN_ReturnCode NNTensor::SetDimensions(const std::vector<int32_t>& dimensions)
355 {
356 size_t expectedDimensionCount = m_dimensions.size();
357 size_t dimensionCount = dimensions.size();
358 if (dimensionCount != expectedDimensionCount) {
359 LOGE("Passed dimensions have different dimension counts from NNTensor, expected %zu, but passed %zu.",
360 expectedDimensionCount, dimensionCount);
361 return OH_NN_INVALID_PARAMETER;
362 }
363
364 auto returnCode = ValidateDimensions(dimensions);
365 if (returnCode != OH_NN_SUCCESS) {
366 LOGE("SetDimemsions failed, error happened when validating dimensions.");
367 return returnCode;
368 }
369
370 m_dimensions = dimensions;
371 return OH_NN_SUCCESS;
372 }
373
GetType() const374 OH_NN_TensorType NNTensor::GetType() const
375 {
376 return m_type;
377 }
378
GetName() const379 std::string NNTensor::GetName() const
380 {
381 return m_name;
382 }
383
GetBuffer() const384 void* NNTensor::GetBuffer() const
385 {
386 return m_buffer;
387 }
388
GetBufferLength() const389 size_t NNTensor::GetBufferLength() const
390 {
391 return m_bufferLength;
392 }
393
GetDataLength() const394 size_t NNTensor::GetDataLength() const
395 {
396 return m_dataLength;
397 }
398
GetDataType() const399 OH_NN_DataType NNTensor::GetDataType() const
400 {
401 return m_dataType;
402 }
403
GetElementCount() const404 uint32_t NNTensor::GetElementCount() const
405 {
406 return m_elementCount;
407 }
408
GetDimensions() const409 std::vector<int32_t> NNTensor::GetDimensions() const
410 {
411 return m_dimensions;
412 }
413
GetFormat() const414 OH_NN_Format NNTensor::GetFormat() const
415 {
416 return m_format;
417 }
418
GetQuantParam() const419 std::vector<QuantParam> NNTensor::GetQuantParam() const
420 {
421 return m_quantParams;
422 }
423
ConvertToLiteGraphTensor() const424 LiteGraphTensorPtr NNTensor::ConvertToLiteGraphTensor() const
425 {
426 mindspore::lite::DataType dataType = NNToMS::TransformDataType(m_dataType);
427 mindspore::lite::Format format = NNToMS::TransformFormat(m_format);
428 const uint8_t* buffer = static_cast<const uint8_t*>(m_buffer);
429 std::vector<uint8_t> data = ConstructVectorFromArray(buffer, m_dataLength);
430
431 std::vector<mindspore::lite::QuantParam> quantParams;
432 mindspore::lite::QuantParam msQuantParam;
433 for (const QuantParam& param : m_quantParams) {
434 msQuantParam = {param.zeroPoint, param.scale, param.numBits};
435 quantParams.emplace_back(std::move(msQuantParam));
436 }
437
438 mindspore::lite::TensorPtr tensor = mindspore::lite::MindIR_Tensor_Create(
439 m_name.c_str(), dataType, m_dimensions.data(), m_dimensions.size(), format,
440 data.data(), data.size(), quantParams.data(), quantParams.size());
441 if (tensor == nullptr) {
442 LOGE("ConvertToLiteGraphTensor failed, please check attributes of NNTensor.");
443 return {nullptr, DestroyLiteGraphTensor};
444 }
445
446 LiteGraphTensorPtr liteGraphTensor(tensor, DestroyLiteGraphTensor);
447 return liteGraphTensor;
448 }
449
ConvertToIOTensor(IOTensor & tensor) const450 void NNTensor::ConvertToIOTensor(IOTensor& tensor) const
451 {
452 tensor.dataType = m_dataType;
453 tensor.format = m_format;
454 tensor.dimensions = m_dimensions;
455 tensor.data = const_cast<void*>(m_buffer);
456 tensor.length = m_bufferLength;
457 }
458
ConvertToTensorDesc(TensorDesc & desc) const459 void NNTensor::ConvertToTensorDesc(TensorDesc& desc) const
460 {
461 desc.SetDataType(m_dataType);
462 desc.SetFormat(m_format);
463 desc.SetName(m_name.c_str());
464 desc.SetShape(m_dimensions.data(), m_dimensions.size());
465 }
466
IsDynamicShape() const467 bool NNTensor::IsDynamicShape() const
468 {
469 return m_isDynamicShape;
470 }
471
IsQuantTensor() const472 bool NNTensor::IsQuantTensor() const
473 {
474 return (m_quantParams.size() > 0);
475 }
476
IsScalar() const477 bool NNTensor::IsScalar() const
478 {
479 return (m_dimensions.empty());
480 }
481
IsOpParameter() const482 bool NNTensor::IsOpParameter() const
483 {
484 return m_isOpParameter;
485 }
486
CompareAttribute(const NNTensor & tensor) const487 bool NNTensor::CompareAttribute(const NNTensor& tensor) const
488 {
489 if (m_dataType != tensor.GetDataType()) {
490 LOGI("Tensors have different data type: %d and %d.", m_dataType, tensor.GetDataType());
491 return false;
492 }
493
494 if (m_format != tensor.GetFormat()) {
495 LOGI("Tensors have different format: %d and %d.", m_format, tensor.GetFormat());
496 return false;
497 }
498
499 const std::vector<int32_t> dimensions = tensor.GetDimensions();
500 if (m_dimensions.size() != dimensions.size()) {
501 LOGI("Tensors have differents dimension counts: %zu and %zu.", m_dimensions.size(), dimensions.size());
502 return false;
503 }
504
505 size_t dimensionsSize = dimensions.size();
506 for (size_t i = 0; i < dimensionsSize; i++) {
507 if ((m_dimensions[i] != -1) && (m_dimensions[i] != dimensions[i])) {
508 LOGI("Tensors have different dimension: dimension index: %zu, dimension value: %d and %d.",
509 i, m_dimensions[i], dimensions[i]);
510 return false;
511 }
512 }
513
514 if (m_type != tensor.GetType()) {
515 LOGI("Tensors have different type: %d and %d.", m_type, tensor.GetType());
516 return false;
517 }
518
519 return true;
520 }
521 } // NeuralNetworkRuntime
522 } // OHOS
523