1 /* 2 * Copyright (C) 2022 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 package com.android.systemui.surfaceeffects.shaderutil 17 18 /** Common utility functions that are used for computing shaders. */ 19 object ShaderUtilLibrary { 20 // language=AGSL 21 const val SHADER_LIB = 22 """ 23 float triangleNoise(vec2 n) { 24 n = fract(n * vec2(5.3987, 5.4421)); 25 n += dot(n.yx, n.xy + vec2(21.5351, 14.3137)); 26 float xy = n.x * n.y; 27 // compute in [0..2[ and remap to [-1.0..1.0[ 28 return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0; 29 } 30 31 const float PI = 3.1415926535897932384626; 32 33 float sparkles(vec2 uv, float t) { 34 float n = triangleNoise(uv); 35 float s = 0.0; 36 for (float i = 0; i < 4; i += 1) { 37 float l = i * 0.01; 38 float h = l + 0.1; 39 float o = smoothstep(n - l, h, n); 40 o *= abs(sin(PI * o * (t + 0.55 * i))); 41 s += o; 42 } 43 return s; 44 } 45 46 vec2 distort(vec2 p, float time, float distort_amount_radial, 47 float distort_amount_xy) { 48 float angle = atan(p.y, p.x); 49 return p + vec2(sin(angle * 8 + time * 0.003 + 1.641), 50 cos(angle * 5 + 2.14 + time * 0.00412)) * distort_amount_radial 51 + vec2(sin(p.x * 0.01 + time * 0.00215 + 0.8123), 52 cos(p.y * 0.01 + time * 0.005931)) * distort_amount_xy; 53 } 54 55 // Perceived luminosity (L′), not absolute luminosity. 56 half getLuminosity(vec3 c) { 57 return 0.3 * c.r + 0.59 * c.g + 0.11 * c.b; 58 } 59 60 // Creates a luminosity mask and clamp to the legal range. 61 vec3 maskLuminosity(vec3 dest, float lum) { 62 dest.rgb *= vec3(lum); 63 // Clip back into the legal range 64 dest = clamp(dest, vec3(0.), vec3(1.0)); 65 return dest; 66 } 67 68 // Return range [-1, 1]. 69 vec3 hash(vec3 p) { 70 p = fract(p * vec3(.3456, .1234, .9876)); 71 p += dot(p, p.yxz + 43.21); 72 p = (p.xxy + p.yxx) * p.zyx; 73 return (fract(sin(p) * 4567.1234567) - .5) * 2.; 74 } 75 76 // Skew factors (non-uniform). 77 const half SKEW = 0.3333333; // 1/3 78 const half UNSKEW = 0.1666667; // 1/6 79 80 // Return range roughly [-1,1]. 81 // It's because the hash function (that returns a random gradient vector) returns 82 // different magnitude of vectors. Noise doesn't have to be in the precise range thus 83 // skipped normalize. 84 half simplex3d(vec3 p) { 85 // Skew the input coordinate, so that we get squashed cubical grid 86 vec3 s = floor(p + (p.x + p.y + p.z) * SKEW); 87 88 // Unskew back 89 vec3 u = s - (s.x + s.y + s.z) * UNSKEW; 90 91 // Unskewed coordinate that is relative to p, to compute the noise contribution 92 // based on the distance. 93 vec3 c0 = p - u; 94 95 // We have six simplices (in this case tetrahedron, since we are in 3D) that we 96 // could possibly in. 97 // Here, we are finding the correct tetrahedron (simplex shape), and traverse its 98 // four vertices (c0..3) when computing noise contribution. 99 // The way we find them is by comparing c0's x,y,z values. 100 // For example in 2D, we can find the triangle (simplex shape in 2D) that we are in 101 // by comparing x and y values. i.e. x>y lower, x<y, upper triangle. 102 // Same applies in 3D. 103 // 104 // Below indicates the offsets (or offset directions) when c0=(x0,y0,z0) 105 // x0>y0>z0: (1,0,0), (1,1,0), (1,1,1) 106 // x0>z0>y0: (1,0,0), (1,0,1), (1,1,1) 107 // z0>x0>y0: (0,0,1), (1,0,1), (1,1,1) 108 // z0>y0>x0: (0,0,1), (0,1,1), (1,1,1) 109 // y0>z0>x0: (0,1,0), (0,1,1), (1,1,1) 110 // y0>x0>z0: (0,1,0), (1,1,0), (1,1,1) 111 // 112 // The rule is: 113 // * For offset1, set 1 at the max component, otherwise 0. 114 // * For offset2, set 0 at the min component, otherwise 1. 115 // * For offset3, set 1 for all. 116 // 117 // Encode x0-y0, y0-z0, z0-x0 in a vec3 118 vec3 en = c0 - c0.yzx; 119 // Each represents whether x0>y0, y0>z0, z0>x0 120 en = step(vec3(0.), en); 121 // en.zxy encodes z0>x0, x0>y0, y0>x0 122 vec3 offset1 = en * (1. - en.zxy); // find max 123 vec3 offset2 = 1. - en.zxy * (1. - en); // 1-(find min) 124 vec3 offset3 = vec3(1.); 125 126 vec3 c1 = c0 - offset1 + UNSKEW; 127 vec3 c2 = c0 - offset2 + UNSKEW * 2.; 128 vec3 c3 = c0 - offset3 + UNSKEW * 3.; 129 130 // Kernel summation: dot(max(0, r^2-d^2))^4, noise contribution) 131 // 132 // First compute d^2, squared distance to the point. 133 vec4 w; // w = max(0, r^2 - d^2)) 134 w.x = dot(c0, c0); 135 w.y = dot(c1, c1); 136 w.z = dot(c2, c2); 137 w.w = dot(c3, c3); 138 139 // Noise contribution should decay to zero before they cross the simplex boundary. 140 // Usually r^2 is 0.5 or 0.6; 141 // 0.5 ensures continuity but 0.6 increases the visual quality for the application 142 // where discontinuity isn't noticeable. 143 w = max(0.6 - w, 0.); 144 145 // Noise contribution from each point. 146 vec4 nc; 147 nc.x = dot(hash(s), c0); 148 nc.y = dot(hash(s + offset1), c1); 149 nc.z = dot(hash(s + offset2), c2); 150 nc.w = dot(hash(s + offset3), c3); 151 152 nc *= w*w*w*w; 153 154 // Add all the noise contributions. 155 // Should multiply by the possible max contribution to adjust the range in [-1,1]. 156 return dot(vec4(32.), nc); 157 } 158 159 // Random rotations. 160 // The way you create fractal noise is layering simplex noise with some rotation. 161 // To make random cloud looking noise, the rotations should not align. (Otherwise it 162 // creates patterned noise). 163 // Below rotations only rotate in one axis. 164 const mat3 rot1 = mat3(1.0, 0. ,0., 0., 0.15, -0.98, 0., 0.98, 0.15); 165 const mat3 rot2 = mat3(-0.95, 0. ,-0.3, 0., 1., 0., 0.3, 0., -0.95); 166 const mat3 rot3 = mat3(1.0, 0. ,0., 0., -0.44, -0.89, 0., 0.89, -0.44); 167 168 // Octave = 4 169 // Divide each coefficient by 3 to produce more grainy noise. 170 half simplex3d_fractal(vec3 p) { 171 return 0.675 * simplex3d(p * rot1) + 0.225 * simplex3d(2.0 * p * rot2) 172 + 0.075 * simplex3d(4.0 * p * rot3) + 0.025 * simplex3d(8.0 * p); 173 } 174 175 // Screen blend 176 vec3 screen(vec3 dest, vec3 src) { 177 return dest + src - dest * src; 178 } 179 """ 180 } 181