1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.hardware; 18 19 import android.annotation.Nullable; 20 import android.annotation.SystemApi; 21 import android.annotation.SystemService; 22 import android.compat.annotation.UnsupportedAppUsage; 23 import android.content.Context; 24 import android.os.Build; 25 import android.os.Handler; 26 import android.os.MemoryFile; 27 import android.util.Log; 28 import android.util.SparseArray; 29 30 import java.util.ArrayList; 31 import java.util.Collections; 32 import java.util.List; 33 34 /** 35 * <p> 36 * SensorManager lets you access the device's {@link android.hardware.Sensor 37 * sensors}. 38 * </p> 39 * <p> 40 * Always make sure to disable sensors you don't need, especially when your 41 * activity is paused. Failing to do so can drain the battery in just a few 42 * hours. Note that the system will <i>not</i> disable sensors automatically when 43 * the screen turns off. 44 * </p> 45 * <p class="note"> 46 * Note: Don't use this mechanism with a Trigger Sensor, have a look 47 * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION} 48 * is an example of a trigger sensor. 49 * </p> 50 * <p> 51 * In order to access sensor data at high sampling rates (i.e. greater than 200 Hz 52 * for {@link SensorEventListener} and greater than {@link SensorDirectChannel#RATE_NORMAL} 53 * for {@link SensorDirectChannel}), apps must declare 54 * the {@link android.Manifest.permission#HIGH_SAMPLING_RATE_SENSORS} permission 55 * in their AndroidManifest.xml file. 56 * </p> 57 * <pre class="prettyprint"> 58 * public class SensorActivity extends Activity implements SensorEventListener { 59 * private final SensorManager mSensorManager; 60 * private final Sensor mAccelerometer; 61 * 62 * public SensorActivity() { 63 * mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE); 64 * mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 65 * } 66 * 67 * protected void onResume() { 68 * super.onResume(); 69 * mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL); 70 * } 71 * 72 * protected void onPause() { 73 * super.onPause(); 74 * mSensorManager.unregisterListener(this); 75 * } 76 * 77 * public void onAccuracyChanged(Sensor sensor, int accuracy) { 78 * } 79 * 80 * public void onSensorChanged(SensorEvent event) { 81 * } 82 * } 83 * </pre> 84 * 85 * @see SensorEventListener 86 * @see SensorEvent 87 * @see Sensor 88 * 89 */ 90 @SystemService(Context.SENSOR_SERVICE) 91 public abstract class SensorManager { 92 /** @hide */ 93 protected static final String TAG = "SensorManager"; 94 95 private static final float[] sTempMatrix = new float[16]; 96 97 // Cached lists of sensors by type. Guarded by mSensorListByType. 98 private final SparseArray<List<Sensor>> mSensorListByType = 99 new SparseArray<List<Sensor>>(); 100 101 // Legacy sensor manager implementation. Guarded by mSensorListByType during initialization. 102 private LegacySensorManager mLegacySensorManager; 103 104 /* NOTE: sensor IDs must be a power of 2 */ 105 106 /** 107 * A constant describing an orientation sensor. See 108 * {@link android.hardware.SensorListener SensorListener} for more details. 109 * 110 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 111 */ 112 @Deprecated 113 public static final int SENSOR_ORIENTATION = 1 << 0; 114 115 /** 116 * A constant describing an accelerometer. See 117 * {@link android.hardware.SensorListener SensorListener} for more details. 118 * 119 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 120 */ 121 @Deprecated 122 public static final int SENSOR_ACCELEROMETER = 1 << 1; 123 124 /** 125 * A constant describing a temperature sensor See 126 * {@link android.hardware.SensorListener SensorListener} for more details. 127 * 128 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 129 */ 130 @Deprecated 131 public static final int SENSOR_TEMPERATURE = 1 << 2; 132 133 /** 134 * A constant describing a magnetic sensor See 135 * {@link android.hardware.SensorListener SensorListener} for more details. 136 * 137 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 138 */ 139 @Deprecated 140 public static final int SENSOR_MAGNETIC_FIELD = 1 << 3; 141 142 /** 143 * A constant describing an ambient light sensor See 144 * {@link android.hardware.SensorListener SensorListener} for more details. 145 * 146 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 147 */ 148 @Deprecated 149 public static final int SENSOR_LIGHT = 1 << 4; 150 151 /** 152 * A constant describing a proximity sensor See 153 * {@link android.hardware.SensorListener SensorListener} for more details. 154 * 155 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 156 */ 157 @Deprecated 158 public static final int SENSOR_PROXIMITY = 1 << 5; 159 160 /** 161 * A constant describing a Tricorder See 162 * {@link android.hardware.SensorListener SensorListener} for more details. 163 * 164 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 165 */ 166 @Deprecated 167 public static final int SENSOR_TRICORDER = 1 << 6; 168 169 /** 170 * A constant describing an orientation sensor. See 171 * {@link android.hardware.SensorListener SensorListener} for more details. 172 * 173 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 174 */ 175 @Deprecated 176 public static final int SENSOR_ORIENTATION_RAW = 1 << 7; 177 178 /** 179 * A constant that includes all sensors 180 * 181 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 182 */ 183 @Deprecated 184 public static final int SENSOR_ALL = 0x7F; 185 186 /** 187 * Smallest sensor ID 188 * 189 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 190 */ 191 @Deprecated 192 public static final int SENSOR_MIN = SENSOR_ORIENTATION; 193 194 /** 195 * Largest sensor ID 196 * 197 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 198 */ 199 @Deprecated 200 public static final int SENSOR_MAX = ((SENSOR_ALL + 1) >> 1); 201 202 203 /** 204 * Index of the X value in the array returned by 205 * {@link android.hardware.SensorListener#onSensorChanged} 206 * 207 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 208 */ 209 @Deprecated 210 public static final int DATA_X = 0; 211 212 /** 213 * Index of the Y value in the array returned by 214 * {@link android.hardware.SensorListener#onSensorChanged} 215 * 216 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 217 */ 218 @Deprecated 219 public static final int DATA_Y = 1; 220 221 /** 222 * Index of the Z value in the array returned by 223 * {@link android.hardware.SensorListener#onSensorChanged} 224 * 225 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 226 */ 227 @Deprecated 228 public static final int DATA_Z = 2; 229 230 /** 231 * Offset to the untransformed values in the array returned by 232 * {@link android.hardware.SensorListener#onSensorChanged} 233 * 234 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 235 */ 236 @Deprecated 237 public static final int RAW_DATA_INDEX = 3; 238 239 /** 240 * Index of the untransformed X value in the array returned by 241 * {@link android.hardware.SensorListener#onSensorChanged} 242 * 243 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 244 */ 245 @Deprecated 246 public static final int RAW_DATA_X = 3; 247 248 /** 249 * Index of the untransformed Y value in the array returned by 250 * {@link android.hardware.SensorListener#onSensorChanged} 251 * 252 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 253 */ 254 @Deprecated 255 public static final int RAW_DATA_Y = 4; 256 257 /** 258 * Index of the untransformed Z value in the array returned by 259 * {@link android.hardware.SensorListener#onSensorChanged} 260 * 261 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 262 */ 263 @Deprecated 264 public static final int RAW_DATA_Z = 5; 265 266 /** Standard gravity (g) on Earth. This value is equivalent to 1G */ 267 public static final float STANDARD_GRAVITY = 9.80665f; 268 269 /** Sun's gravity in SI units (m/s^2) */ 270 public static final float GRAVITY_SUN = 275.0f; 271 /** Mercury's gravity in SI units (m/s^2) */ 272 public static final float GRAVITY_MERCURY = 3.70f; 273 /** Venus' gravity in SI units (m/s^2) */ 274 public static final float GRAVITY_VENUS = 8.87f; 275 /** Earth's gravity in SI units (m/s^2) */ 276 public static final float GRAVITY_EARTH = 9.80665f; 277 /** The Moon's gravity in SI units (m/s^2) */ 278 public static final float GRAVITY_MOON = 1.6f; 279 /** Mars' gravity in SI units (m/s^2) */ 280 public static final float GRAVITY_MARS = 3.71f; 281 /** Jupiter's gravity in SI units (m/s^2) */ 282 public static final float GRAVITY_JUPITER = 23.12f; 283 /** Saturn's gravity in SI units (m/s^2) */ 284 public static final float GRAVITY_SATURN = 8.96f; 285 /** Uranus' gravity in SI units (m/s^2) */ 286 public static final float GRAVITY_URANUS = 8.69f; 287 /** Neptune's gravity in SI units (m/s^2) */ 288 public static final float GRAVITY_NEPTUNE = 11.0f; 289 /** Pluto's gravity in SI units (m/s^2) */ 290 public static final float GRAVITY_PLUTO = 0.6f; 291 /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */ 292 public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f; 293 /** Gravity on the island */ 294 public static final float GRAVITY_THE_ISLAND = 4.815162342f; 295 296 297 /** Maximum magnetic field on Earth's surface */ 298 public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f; 299 /** Minimum magnetic field on Earth's surface */ 300 public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f; 301 302 303 /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */ 304 public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f; 305 306 307 /** Maximum luminance of sunlight in lux */ 308 public static final float LIGHT_SUNLIGHT_MAX = 120000.0f; 309 /** luminance of sunlight in lux */ 310 public static final float LIGHT_SUNLIGHT = 110000.0f; 311 /** luminance in shade in lux */ 312 public static final float LIGHT_SHADE = 20000.0f; 313 /** luminance under an overcast sky in lux */ 314 public static final float LIGHT_OVERCAST = 10000.0f; 315 /** luminance at sunrise in lux */ 316 public static final float LIGHT_SUNRISE = 400.0f; 317 /** luminance under a cloudy sky in lux */ 318 public static final float LIGHT_CLOUDY = 100.0f; 319 /** luminance at night with full moon in lux */ 320 public static final float LIGHT_FULLMOON = 0.25f; 321 /** luminance at night with no moon in lux*/ 322 public static final float LIGHT_NO_MOON = 0.001f; 323 324 325 /** get sensor data as fast as possible */ 326 public static final int SENSOR_DELAY_FASTEST = 0; 327 /** rate suitable for games */ 328 public static final int SENSOR_DELAY_GAME = 1; 329 /** rate suitable for the user interface */ 330 public static final int SENSOR_DELAY_UI = 2; 331 /** rate (default) suitable for screen orientation changes */ 332 public static final int SENSOR_DELAY_NORMAL = 3; 333 334 335 /** 336 * The values returned by this sensor cannot be trusted because the sensor 337 * had no contact with what it was measuring (for example, the heart rate 338 * monitor is not in contact with the user). 339 */ 340 public static final int SENSOR_STATUS_NO_CONTACT = -1; 341 342 /** 343 * The values returned by this sensor cannot be trusted, calibration is 344 * needed or the environment doesn't allow readings 345 */ 346 public static final int SENSOR_STATUS_UNRELIABLE = 0; 347 348 /** 349 * This sensor is reporting data with low accuracy, calibration with the 350 * environment is needed 351 */ 352 public static final int SENSOR_STATUS_ACCURACY_LOW = 1; 353 354 /** 355 * This sensor is reporting data with an average level of accuracy, 356 * calibration with the environment may improve the readings 357 */ 358 public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2; 359 360 /** This sensor is reporting data with maximum accuracy */ 361 public static final int SENSOR_STATUS_ACCURACY_HIGH = 3; 362 363 /** see {@link #remapCoordinateSystem} */ 364 public static final int AXIS_X = 1; 365 /** see {@link #remapCoordinateSystem} */ 366 public static final int AXIS_Y = 2; 367 /** see {@link #remapCoordinateSystem} */ 368 public static final int AXIS_Z = 3; 369 /** see {@link #remapCoordinateSystem} */ 370 public static final int AXIS_MINUS_X = AXIS_X | 0x80; 371 /** see {@link #remapCoordinateSystem} */ 372 public static final int AXIS_MINUS_Y = AXIS_Y | 0x80; 373 /** see {@link #remapCoordinateSystem} */ 374 public static final int AXIS_MINUS_Z = AXIS_Z | 0x80; 375 376 377 /** 378 * {@hide} 379 */ 380 @UnsupportedAppUsage SensorManager()381 public SensorManager() { 382 } 383 384 /** 385 * Gets the full list of sensors that are available. 386 * @hide 387 */ getFullSensorList()388 protected abstract List<Sensor> getFullSensorList(); 389 390 /** 391 * Gets the full list of dynamic sensors that are available. 392 * @hide 393 */ getFullDynamicSensorList()394 protected abstract List<Sensor> getFullDynamicSensorList(); 395 396 /** 397 * @return available sensors. 398 * @deprecated This method is deprecated, use 399 * {@link SensorManager#getSensorList(int)} instead 400 */ 401 @Deprecated getSensors()402 public int getSensors() { 403 return getLegacySensorManager().getSensors(); 404 } 405 406 /** 407 * Use this method to get the list of available sensors of a certain type. 408 * Make multiple calls to get sensors of different types or use 409 * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the 410 * sensors. Note that the {@link android.hardware.Sensor#getName()} is 411 * expected to yield a value that is unique across any sensors that return 412 * the same value for {@link android.hardware.Sensor#getType()}. 413 * 414 * <p class="note"> 415 * NOTE: Both wake-up and non wake-up sensors matching the given type are 416 * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties 417 * of the returned {@link Sensor}. 418 * </p> 419 * 420 * @param type 421 * of sensors requested 422 * 423 * @return a list of sensors matching the asked type. 424 * 425 * @see #getDefaultSensor(int) 426 * @see Sensor 427 */ getSensorList(int type)428 public List<Sensor> getSensorList(int type) { 429 // cache the returned lists the first time 430 List<Sensor> list; 431 final List<Sensor> fullList = getFullSensorList(); 432 synchronized (mSensorListByType) { 433 list = mSensorListByType.get(type); 434 if (list == null) { 435 if (type == Sensor.TYPE_ALL) { 436 list = fullList; 437 } else { 438 list = new ArrayList<Sensor>(); 439 for (Sensor i : fullList) { 440 if (i.getType() == type) { 441 list.add(i); 442 } 443 } 444 } 445 list = Collections.unmodifiableList(list); 446 mSensorListByType.append(type, list); 447 } 448 } 449 return list; 450 } 451 452 /** 453 * Returns the {@link Sensor} object identified by the given sensor handle. 454 * 455 * The raw sensor handle integer is an implementation detail and as such this method should only 456 * be used by internal system components. 457 * 458 * @param sensorHandle The integer handle uniquely identifying the sensor. 459 * @return A Sensor object identified by the given {@code sensorHandle}, if such a sensor 460 * exists, {@code null} otherwise. 461 * 462 * @hide 463 */ getSensorByHandle(int sensorHandle)464 public @Nullable Sensor getSensorByHandle(int sensorHandle) { 465 for (final Sensor sensor : getFullSensorList()) { 466 if (sensor.getHandle() == sensorHandle) { 467 return sensor; 468 } 469 } 470 return null; 471 } 472 473 /** 474 * Use this method to get a list of available dynamic sensors of a certain type. 475 * Make multiple calls to get sensors of different types or use 476 * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors. 477 * 478 * <p class="note"> 479 * NOTE: Both wake-up and non wake-up sensors matching the given type are 480 * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties 481 * of the returned {@link Sensor}. 482 * </p> 483 * 484 * @param type of sensors requested 485 * 486 * @return a list of dynamic sensors matching the requested type. 487 * 488 * @see Sensor 489 */ getDynamicSensorList(int type)490 public List<Sensor> getDynamicSensorList(int type) { 491 // cache the returned lists the first time 492 final List<Sensor> fullList = getFullDynamicSensorList(); 493 if (type == Sensor.TYPE_ALL) { 494 return Collections.unmodifiableList(fullList); 495 } else { 496 List<Sensor> list = new ArrayList(); 497 for (Sensor i : fullList) { 498 if (i.getType() == type) { 499 list.add(i); 500 } 501 } 502 return Collections.unmodifiableList(list); 503 } 504 } 505 506 /** 507 * Use this method to get the default sensor for a given type. Note that the 508 * returned sensor could be a composite sensor, and its data could be 509 * averaged or filtered. If you need to access the raw sensors use 510 * {@link SensorManager#getSensorList(int) getSensorList}. 511 * 512 * @param type 513 * of sensors requested 514 * 515 * @return the default sensor matching the requested type if one exists and the application 516 * has the necessary permissions, or null otherwise. 517 * 518 * @see #getSensorList(int) 519 * @see Sensor 520 */ getDefaultSensor(int type)521 public @Nullable Sensor getDefaultSensor(int type) { 522 // TODO: need to be smarter, for now, just return the 1st sensor 523 List<Sensor> l = getSensorList(type); 524 boolean wakeUpSensor = false; 525 // For the following sensor types, return a wake-up sensor. These types are by default 526 // defined as wake-up sensors. For the rest of the SDK defined sensor types return a 527 // non_wake-up version. 528 if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION 529 || type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE 530 || type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE 531 || type == Sensor.TYPE_LOW_LATENCY_OFFBODY_DETECT 532 || type == Sensor.TYPE_WRIST_TILT_GESTURE 533 || type == Sensor.TYPE_DYNAMIC_SENSOR_META || type == Sensor.TYPE_HINGE_ANGLE) { 534 wakeUpSensor = true; 535 } 536 537 for (Sensor sensor : l) { 538 if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor; 539 } 540 return null; 541 } 542 543 /** 544 * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this 545 * type exist, any one of them may be returned. 546 * <p> 547 * For example, 548 * <ul> 549 * <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up 550 * accelerometer sensor if it exists. </li> 551 * <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up 552 * proximity sensor if it exists. </li> 553 * <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity 554 * sensor which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li> 555 * </ul> 556 * </p> 557 * <p class="note"> 558 * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION} 559 * are declared as wake-up sensors by default. 560 * </p> 561 * @param type 562 * type of sensor requested 563 * @param wakeUp 564 * flag to indicate whether the Sensor is a wake-up or non wake-up sensor. 565 * @return the default sensor matching the requested type and wakeUp properties if one exists 566 * and the application has the necessary permissions, or null otherwise. 567 * @see Sensor#isWakeUpSensor() 568 */ getDefaultSensor(int type, boolean wakeUp)569 public @Nullable Sensor getDefaultSensor(int type, boolean wakeUp) { 570 List<Sensor> l = getSensorList(type); 571 for (Sensor sensor : l) { 572 if (sensor.isWakeUpSensor() == wakeUp) { 573 return sensor; 574 } 575 } 576 return null; 577 } 578 579 /** 580 * Registers a listener for given sensors. 581 * 582 * @deprecated This method is deprecated, use 583 * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} 584 * instead. 585 * 586 * @param listener 587 * sensor listener object 588 * 589 * @param sensors 590 * a bit masks of the sensors to register to 591 * 592 * @return <code>true</code> if the sensor is supported and successfully 593 * enabled 594 */ 595 @Deprecated registerListener(SensorListener listener, int sensors)596 public boolean registerListener(SensorListener listener, int sensors) { 597 return registerListener(listener, sensors, SENSOR_DELAY_NORMAL); 598 } 599 600 /** 601 * Registers a SensorListener for given sensors. 602 * 603 * @deprecated This method is deprecated, use 604 * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} 605 * instead. 606 * 607 * @param listener 608 * sensor listener object 609 * 610 * @param sensors 611 * a bit masks of the sensors to register to 612 * 613 * @param rate 614 * rate of events. This is only a hint to the system. events may be 615 * received faster or slower than the specified rate. Usually events 616 * are received faster. The value must be one of 617 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 618 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. 619 * 620 * @return <code>true</code> if the sensor is supported and successfully 621 * enabled 622 */ 623 @Deprecated registerListener(SensorListener listener, int sensors, int rate)624 public boolean registerListener(SensorListener listener, int sensors, int rate) { 625 return getLegacySensorManager().registerListener(listener, sensors, rate); 626 } 627 628 /** 629 * Unregisters a listener for all sensors. 630 * 631 * @deprecated This method is deprecated, use 632 * {@link SensorManager#unregisterListener(SensorEventListener)} 633 * instead. 634 * 635 * @param listener 636 * a SensorListener object 637 */ 638 @Deprecated unregisterListener(SensorListener listener)639 public void unregisterListener(SensorListener listener) { 640 unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW); 641 } 642 643 /** 644 * Unregisters a listener for the sensors with which it is registered. 645 * 646 * @deprecated This method is deprecated, use 647 * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)} 648 * instead. 649 * 650 * @param listener 651 * a SensorListener object 652 * 653 * @param sensors 654 * a bit masks of the sensors to unregister from 655 */ 656 @Deprecated unregisterListener(SensorListener listener, int sensors)657 public void unregisterListener(SensorListener listener, int sensors) { 658 getLegacySensorManager().unregisterListener(listener, sensors); 659 } 660 661 /** 662 * Unregisters a listener for the sensors with which it is registered. 663 * 664 * <p class="note"> 665 * Note: Don't use this method with a one shot trigger sensor such as 666 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. 667 * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead. 668 * </p> 669 * 670 * @param listener 671 * a SensorEventListener object 672 * 673 * @param sensor 674 * the sensor to unregister from 675 * 676 * @see #unregisterListener(SensorEventListener) 677 * @see #registerListener(SensorEventListener, Sensor, int) 678 */ unregisterListener(SensorEventListener listener, Sensor sensor)679 public void unregisterListener(SensorEventListener listener, Sensor sensor) { 680 if (listener == null || sensor == null) { 681 return; 682 } 683 684 unregisterListenerImpl(listener, sensor); 685 } 686 687 /** 688 * Unregisters a listener for all sensors. 689 * 690 * @param listener 691 * a SensorListener object 692 * 693 * @see #unregisterListener(SensorEventListener, Sensor) 694 * @see #registerListener(SensorEventListener, Sensor, int) 695 * 696 */ unregisterListener(SensorEventListener listener)697 public void unregisterListener(SensorEventListener listener) { 698 if (listener == null) { 699 return; 700 } 701 702 unregisterListenerImpl(listener, null); 703 } 704 705 /** @hide */ unregisterListenerImpl(SensorEventListener listener, Sensor sensor)706 protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor); 707 708 /** 709 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 710 * sensor at the given sampling frequency. 711 * <p> 712 * The events will be delivered to the provided {@code SensorEventListener} as soon as they are 713 * available. To reduce the power consumption, applications can use 714 * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a 715 * positive non-zero maximum reporting latency. 716 * </p> 717 * <p> 718 * In the case of non-wake-up sensors, the events are only delivered while the Application 719 * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details. 720 * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the 721 * application registering to the sensor must hold a partial wake-lock to keep the AP awake, 722 * otherwise some events might be lost while the AP is asleep. Note that although events might 723 * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly 724 * deactivated by the application. Applications must unregister their {@code 725 * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power 726 * while the device is inactive. See {@link #registerListener(SensorEventListener, Sensor, int, 727 * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events 728 * might be lost. 729 * </p> 730 * <p> 731 * In the case of wake-up sensors, each event generated by the sensor will cause the AP to 732 * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up 733 * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check 734 * whether a sensor is a wake-up sensor. See 735 * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to 736 * reduce the power impact of registering to wake-up sensors. 737 * </p> 738 * <p class="note"> 739 * Note: Don't use this method with one-shot trigger sensors such as 740 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 741 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use 742 * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor. 743 * </p> 744 * 745 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. 746 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 747 * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are 748 * delivered at. This is only a hint to the system. Events may be received faster or 749 * slower than the specified rate. Usually events are received faster. The value must 750 * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 751 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay 752 * between events in microseconds. Specifying the delay in microseconds only works 753 * from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of 754 * the {@code SENSOR_DELAY_*} constants. 755 * @return <code>true</code> if the sensor is supported and successfully enabled. 756 * @see #registerListener(SensorEventListener, Sensor, int, Handler) 757 * @see #unregisterListener(SensorEventListener) 758 * @see #unregisterListener(SensorEventListener, Sensor) 759 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs)760 public boolean registerListener(SensorEventListener listener, Sensor sensor, 761 int samplingPeriodUs) { 762 return registerListener(listener, sensor, samplingPeriodUs, null); 763 } 764 765 /** 766 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 767 * sensor at the given sampling frequency and the given maximum reporting latency. 768 * <p> 769 * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but 770 * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The 771 * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once 772 * one of the events in the FIFO needs to be reported, all of the events in the FIFO are 773 * reported sequentially. This means that some events will be reported before the maximum 774 * reporting latency has elapsed. 775 * </p><p> 776 * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to 777 * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be 778 * delivered as soon as possible. 779 * </p><p> 780 * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call 781 * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}. 782 * </p><p> 783 * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of 784 * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the 785 * AP can switch to a lower power state while the sensor is capturing the data. This is 786 * especially important when registering to wake-up sensors, for which each interrupt causes the 787 * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more 788 * information on wake-up sensors. 789 * </p> 790 * <p class="note"> 791 * </p> 792 * Note: Don't use this method with one-shot trigger sensors such as 793 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 794 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p> 795 * 796 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 797 * that will receive the sensor events. If the application is interested in receiving 798 * flush complete notifications, it should register with 799 * {@link android.hardware.SensorEventListener SensorEventListener2} instead. 800 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 801 * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. 802 * This is only a hint to the system. Events may be received faster or slower than 803 * the specified rate. Usually events are received faster. Can be one of 804 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 805 * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in 806 * microseconds. 807 * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before 808 * being reported to the application. A large value allows reducing the power 809 * consumption associated with the sensor. If maxReportLatencyUs is set to zero, 810 * events are delivered as soon as they are available, which is equivalent to calling 811 * {@link #registerListener(SensorEventListener, Sensor, int)}. 812 * @return <code>true</code> if the sensor is supported and successfully enabled. 813 * @see #registerListener(SensorEventListener, Sensor, int) 814 * @see #unregisterListener(SensorEventListener) 815 * @see #flush(SensorEventListener) 816 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs)817 public boolean registerListener(SensorEventListener listener, Sensor sensor, 818 int samplingPeriodUs, int maxReportLatencyUs) { 819 int delay = getDelay(samplingPeriodUs); 820 return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0); 821 } 822 823 /** 824 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 825 * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the 826 * power consumption, applications can use 827 * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a 828 * positive non-zero maximum reporting latency. 829 * <p class="note"> 830 * </p> 831 * Note: Don't use this method with a one shot trigger sensor such as 832 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 833 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p> 834 * 835 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. 836 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 837 * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are 838 * delivered at. This is only a hint to the system. Events may be received faster or 839 * slower than the specified rate. Usually events are received faster. The value must 840 * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 841 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired 842 * delay between events in microseconds. Specifying the delay in microseconds only 843 * works from Android 2.3 (API level 9) onwards. For earlier releases, you must use 844 * one of the {@code SENSOR_DELAY_*} constants. 845 * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent 846 * sensor events} will be delivered to. 847 * @return <code>true</code> if the sensor is supported and successfully enabled. 848 * @see #registerListener(SensorEventListener, Sensor, int) 849 * @see #unregisterListener(SensorEventListener) 850 * @see #unregisterListener(SensorEventListener, Sensor) 851 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, Handler handler)852 public boolean registerListener(SensorEventListener listener, Sensor sensor, 853 int samplingPeriodUs, Handler handler) { 854 int delay = getDelay(samplingPeriodUs); 855 return registerListenerImpl(listener, sensor, delay, handler, 0, 0); 856 } 857 858 /** 859 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 860 * sensor at the given sampling frequency and the given maximum reporting latency. 861 * 862 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 863 * that will receive the sensor events. If the application is interested in receiving 864 * flush complete notifications, it should register with 865 * {@link android.hardware.SensorEventListener SensorEventListener2} instead. 866 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 867 * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. 868 * This is only a hint to the system. Events may be received faster or slower than 869 * the specified rate. Usually events are received faster. Can be one of 870 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 871 * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in 872 * microseconds. 873 * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before 874 * being reported to the application. A large value allows reducing the power 875 * consumption associated with the sensor. If maxReportLatencyUs is set to zero, 876 * events are delivered as soon as they are available, which is equivalent to calling 877 * {@link #registerListener(SensorEventListener, Sensor, int)}. 878 * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent 879 * sensor events} will be delivered to. 880 * @return <code>true</code> if the sensor is supported and successfully enabled. 881 * @see #registerListener(SensorEventListener, Sensor, int, int) 882 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs, Handler handler)883 public boolean registerListener(SensorEventListener listener, Sensor sensor, 884 int samplingPeriodUs, int maxReportLatencyUs, Handler handler) { 885 int delayUs = getDelay(samplingPeriodUs); 886 return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0); 887 } 888 889 /** @hide */ registerListenerImpl(SensorEventListener listener, Sensor sensor, int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags)890 protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor, 891 int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags); 892 893 894 /** 895 * Flushes the FIFO of all the sensors registered for this listener. If there are events 896 * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has 897 * expired. Events are returned in the usual way through the SensorEventListener. 898 * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and 899 * returns immediately. 900 * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called 901 * after all the events in the batch at the time of calling this method have been delivered 902 * successfully. If the hardware doesn't support flush, it still returns true and a trivial 903 * flush complete event is sent after the current event for all the clients registered for this 904 * sensor. 905 * 906 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 907 * which was previously used in a registerListener call. 908 * @return <code>true</code> if the flush is initiated successfully on all the sensors 909 * registered for this listener, false if no sensor is previously registered for this 910 * listener or flush on one of the sensors fails. 911 * @see #registerListener(SensorEventListener, Sensor, int, int) 912 * @throws IllegalArgumentException when listener is null. 913 */ flush(SensorEventListener listener)914 public boolean flush(SensorEventListener listener) { 915 return flushImpl(listener); 916 } 917 918 /** @hide */ flushImpl(SensorEventListener listener)919 protected abstract boolean flushImpl(SensorEventListener listener); 920 921 922 /** 923 * Create a sensor direct channel backed by shared memory wrapped in MemoryFile object. 924 * 925 * The resulting channel can be used for delivering sensor events to native code, other 926 * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded 927 * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz) 928 * and cares about sensor event latency. 929 * 930 * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct 931 * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()} 932 * to free up resource in sensor system associated with the direct channel. 933 * 934 * @param mem A {@link android.os.MemoryFile} shared memory object. 935 * @return A {@link android.hardware.SensorDirectChannel} object. 936 * @throws NullPointerException when mem is null. 937 * @throws UncheckedIOException if not able to create channel. 938 * @see SensorDirectChannel#close() 939 */ createDirectChannel(MemoryFile mem)940 public SensorDirectChannel createDirectChannel(MemoryFile mem) { 941 return createDirectChannelImpl(mem, null); 942 } 943 944 /** 945 * Create a sensor direct channel backed by shared memory wrapped in HardwareBuffer object. 946 * 947 * The resulting channel can be used for delivering sensor events to native code, other 948 * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded 949 * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz) 950 * and cares about sensor event latency. 951 * 952 * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct 953 * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()} 954 * to free up resource in sensor system associated with the direct channel. 955 * 956 * @param mem A {@link android.hardware.HardwareBuffer} shared memory object. 957 * @return A {@link android.hardware.SensorDirectChannel} object. 958 * @throws NullPointerException when mem is null. 959 * @throws UncheckedIOException if not able to create channel. 960 * @see SensorDirectChannel#close() 961 */ createDirectChannel(HardwareBuffer mem)962 public SensorDirectChannel createDirectChannel(HardwareBuffer mem) { 963 return createDirectChannelImpl(null, mem); 964 } 965 966 /** @hide */ createDirectChannelImpl( MemoryFile memoryFile, HardwareBuffer hardwareBuffer)967 protected abstract SensorDirectChannel createDirectChannelImpl( 968 MemoryFile memoryFile, HardwareBuffer hardwareBuffer); 969 970 /** @hide */ destroyDirectChannel(SensorDirectChannel channel)971 void destroyDirectChannel(SensorDirectChannel channel) { 972 destroyDirectChannelImpl(channel); 973 } 974 975 /** @hide */ destroyDirectChannelImpl(SensorDirectChannel channel)976 protected abstract void destroyDirectChannelImpl(SensorDirectChannel channel); 977 978 /** @hide */ configureDirectChannelImpl( SensorDirectChannel channel, Sensor s, int rate)979 protected abstract int configureDirectChannelImpl( 980 SensorDirectChannel channel, Sensor s, int rate); 981 982 /** 983 * Used for receiving notifications from the SensorManager when dynamic sensors are connected or 984 * disconnected. 985 */ 986 public abstract static class DynamicSensorCallback { 987 /** 988 * Called when there is a dynamic sensor being connected to the system. 989 * 990 * @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}. 991 */ onDynamicSensorConnected(Sensor sensor)992 public void onDynamicSensorConnected(Sensor sensor) {} 993 994 /** 995 * Called when there is a dynamic sensor being disconnected from the system. 996 * 997 * @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}. 998 */ onDynamicSensorDisconnected(Sensor sensor)999 public void onDynamicSensorDisconnected(Sensor sensor) {} 1000 } 1001 1002 1003 /** 1004 * Add a {@link android.hardware.SensorManager.DynamicSensorCallback 1005 * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat 1006 * registration with the already registered callback object will have no additional effect. 1007 * 1008 * @param callback An object that implements the 1009 * {@link android.hardware.SensorManager.DynamicSensorCallback 1010 * DynamicSensorCallback} 1011 * interface for receiving callbacks. 1012 * @see #registerDynamicSensorCallback(DynamicSensorCallback, Handler) 1013 * 1014 * @throws IllegalArgumentException when callback is null. 1015 */ registerDynamicSensorCallback(DynamicSensorCallback callback)1016 public void registerDynamicSensorCallback(DynamicSensorCallback callback) { 1017 registerDynamicSensorCallback(callback, null); 1018 } 1019 1020 /** 1021 * Add a {@link android.hardware.SensorManager.DynamicSensorCallback 1022 * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat 1023 * registration with the already registered callback object will have no additional effect. 1024 * 1025 * @param callback An object that implements the 1026 * {@link android.hardware.SensorManager.DynamicSensorCallback 1027 * DynamicSensorCallback} interface for receiving callbacks. 1028 * @param handler The {@link android.os.Handler Handler} the {@link 1029 * android.hardware.SensorManager.DynamicSensorCallback 1030 * sensor connection events} will be delivered to. 1031 * 1032 * @throws IllegalArgumentException when callback is null. 1033 */ registerDynamicSensorCallback( DynamicSensorCallback callback, Handler handler)1034 public void registerDynamicSensorCallback( 1035 DynamicSensorCallback callback, Handler handler) { 1036 registerDynamicSensorCallbackImpl(callback, handler); 1037 } 1038 1039 /** 1040 * Remove a {@link android.hardware.SensorManager.DynamicSensorCallback 1041 * DynamicSensorCallback} to stop sending dynamic sensor connection events to that 1042 * callback. 1043 * 1044 * @param callback An object that implements the 1045 * {@link android.hardware.SensorManager.DynamicSensorCallback 1046 * DynamicSensorCallback} 1047 * interface for receiving callbacks. 1048 */ unregisterDynamicSensorCallback(DynamicSensorCallback callback)1049 public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) { 1050 unregisterDynamicSensorCallbackImpl(callback); 1051 } 1052 1053 /** 1054 * Tell if dynamic sensor discovery feature is supported by system. 1055 * 1056 * @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code> 1057 * otherwise. 1058 */ isDynamicSensorDiscoverySupported()1059 public boolean isDynamicSensorDiscoverySupported() { 1060 List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META); 1061 return sensors.size() > 0; 1062 } 1063 1064 /** @hide */ registerDynamicSensorCallbackImpl( DynamicSensorCallback callback, Handler handler)1065 protected abstract void registerDynamicSensorCallbackImpl( 1066 DynamicSensorCallback callback, Handler handler); 1067 1068 /** @hide */ unregisterDynamicSensorCallbackImpl( DynamicSensorCallback callback)1069 protected abstract void unregisterDynamicSensorCallbackImpl( 1070 DynamicSensorCallback callback); 1071 1072 /** 1073 * <p> 1074 * Computes the inclination matrix <b>I</b> as well as the rotation matrix 1075 * <b>R</b> transforming a vector from the device coordinate system to the 1076 * world's coordinate system which is defined as a direct orthonormal basis, 1077 * where: 1078 * </p> 1079 * 1080 * <ul> 1081 * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to 1082 * the ground at the device's current location and roughly points East).</li> 1083 * <li>Y is tangential to the ground at the device's current location and 1084 * points towards the magnetic North Pole.</li> 1085 * <li>Z points towards the sky and is perpendicular to the ground.</li> 1086 * </ul> 1087 * 1088 * <p> 1089 * <center><img src="../../../images/axis_globe.png" 1090 * alt="World coordinate-system diagram." border="0" /></center> 1091 * </p> 1092 * 1093 * <p> 1094 * <hr> 1095 * <p> 1096 * By definition: 1097 * <p> 1098 * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity) 1099 * <p> 1100 * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of 1101 * geomagnetic field) 1102 * <p> 1103 * <b>R</b> is the identity matrix when the device is aligned with the 1104 * world's coordinate system, that is, when the device's X axis points 1105 * toward East, the Y axis points to the North Pole and the device is facing 1106 * the sky. 1107 * 1108 * <p> 1109 * <b>I</b> is a rotation matrix transforming the geomagnetic vector into 1110 * the same coordinate space as gravity (the world's coordinate space). 1111 * <b>I</b> is a simple rotation around the X axis. The inclination angle in 1112 * radians can be computed with {@link #getInclination}. 1113 * <hr> 1114 * 1115 * <p> 1116 * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending 1117 * on the length of the passed array: 1118 * <p> 1119 * <u>If the array length is 16:</u> 1120 * 1121 * <pre> 1122 * / M[ 0] M[ 1] M[ 2] M[ 3] \ 1123 * | M[ 4] M[ 5] M[ 6] M[ 7] | 1124 * | M[ 8] M[ 9] M[10] M[11] | 1125 * \ M[12] M[13] M[14] M[15] / 1126 *</pre> 1127 * 1128 * This matrix is ready to be used by OpenGL ES's 1129 * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int) 1130 * glLoadMatrixf(float[], int)}. 1131 * <p> 1132 * Note that because OpenGL matrices are column-major matrices you must 1133 * transpose the matrix before using it. However, since the matrix is a 1134 * rotation matrix, its transpose is also its inverse, conveniently, it is 1135 * often the inverse of the rotation that is needed for rendering; it can 1136 * therefore be used with OpenGL ES directly. 1137 * <p> 1138 * Also note that the returned matrices always have this form: 1139 * 1140 * <pre> 1141 * / M[ 0] M[ 1] M[ 2] 0 \ 1142 * | M[ 4] M[ 5] M[ 6] 0 | 1143 * | M[ 8] M[ 9] M[10] 0 | 1144 * \ 0 0 0 1 / 1145 *</pre> 1146 * 1147 * <p> 1148 * <u>If the array length is 9:</u> 1149 * 1150 * <pre> 1151 * / M[ 0] M[ 1] M[ 2] \ 1152 * | M[ 3] M[ 4] M[ 5] | 1153 * \ M[ 6] M[ 7] M[ 8] / 1154 *</pre> 1155 * 1156 * <hr> 1157 * <p> 1158 * The inverse of each matrix can be computed easily by taking its 1159 * transpose. 1160 * 1161 * <p> 1162 * The matrices returned by this function are meaningful only when the 1163 * device is not free-falling and it is not close to the magnetic north. If 1164 * the device is accelerating, or placed into a strong magnetic field, the 1165 * returned matrices may be inaccurate. 1166 * 1167 * @param R 1168 * is an array of 9 floats holding the rotation matrix <b>R</b> when 1169 * this function returns. R can be null. 1170 * <p> 1171 * 1172 * @param I 1173 * is an array of 9 floats holding the rotation matrix <b>I</b> when 1174 * this function returns. I can be null. 1175 * <p> 1176 * 1177 * @param gravity 1178 * is an array of 3 floats containing the gravity vector expressed in 1179 * the device's coordinate. You can simply use the 1180 * {@link android.hardware.SensorEvent#values values} returned by a 1181 * {@link android.hardware.SensorEvent SensorEvent} of a 1182 * {@link android.hardware.Sensor Sensor} of type 1183 * {@link android.hardware.Sensor#TYPE_ACCELEROMETER 1184 * TYPE_ACCELEROMETER}. 1185 * <p> 1186 * 1187 * @param geomagnetic 1188 * is an array of 3 floats containing the geomagnetic vector 1189 * expressed in the device's coordinate. You can simply use the 1190 * {@link android.hardware.SensorEvent#values values} returned by a 1191 * {@link android.hardware.SensorEvent SensorEvent} of a 1192 * {@link android.hardware.Sensor Sensor} of type 1193 * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD 1194 * TYPE_MAGNETIC_FIELD}. 1195 * 1196 * @return <code>true</code> on success, <code>false</code> on failure (for 1197 * instance, if the device is in free fall). Free fall is defined as 1198 * condition when the magnitude of the gravity is less than 1/10 of 1199 * the nominal value. On failure the output matrices are not modified. 1200 * 1201 * @see #getInclination(float[]) 1202 * @see #getOrientation(float[], float[]) 1203 * @see #remapCoordinateSystem(float[], int, int, float[]) 1204 */ 1205 getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic)1206 public static boolean getRotationMatrix(float[] R, float[] I, 1207 float[] gravity, float[] geomagnetic) { 1208 // TODO: move this to native code for efficiency 1209 float Ax = gravity[0]; 1210 float Ay = gravity[1]; 1211 float Az = gravity[2]; 1212 1213 final float normsqA = (Ax * Ax + Ay * Ay + Az * Az); 1214 final float g = 9.81f; 1215 final float freeFallGravitySquared = 0.01f * g * g; 1216 if (normsqA < freeFallGravitySquared) { 1217 // gravity less than 10% of normal value 1218 return false; 1219 } 1220 1221 final float Ex = geomagnetic[0]; 1222 final float Ey = geomagnetic[1]; 1223 final float Ez = geomagnetic[2]; 1224 float Hx = Ey * Az - Ez * Ay; 1225 float Hy = Ez * Ax - Ex * Az; 1226 float Hz = Ex * Ay - Ey * Ax; 1227 final float normH = (float) Math.sqrt(Hx * Hx + Hy * Hy + Hz * Hz); 1228 1229 if (normH < 0.1f) { 1230 // device is close to free fall (or in space?), or close to 1231 // magnetic north pole. Typical values are > 100. 1232 return false; 1233 } 1234 final float invH = 1.0f / normH; 1235 Hx *= invH; 1236 Hy *= invH; 1237 Hz *= invH; 1238 final float invA = 1.0f / (float) Math.sqrt(Ax * Ax + Ay * Ay + Az * Az); 1239 Ax *= invA; 1240 Ay *= invA; 1241 Az *= invA; 1242 final float Mx = Ay * Hz - Az * Hy; 1243 final float My = Az * Hx - Ax * Hz; 1244 final float Mz = Ax * Hy - Ay * Hx; 1245 if (R != null) { 1246 if (R.length == 9) { 1247 R[0] = Hx; R[1] = Hy; R[2] = Hz; 1248 R[3] = Mx; R[4] = My; R[5] = Mz; 1249 R[6] = Ax; R[7] = Ay; R[8] = Az; 1250 } else if (R.length == 16) { 1251 R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0; 1252 R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0; 1253 R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0; 1254 R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1; 1255 } 1256 } 1257 if (I != null) { 1258 // compute the inclination matrix by projecting the geomagnetic 1259 // vector onto the Z (gravity) and X (horizontal component 1260 // of geomagnetic vector) axes. 1261 final float invE = 1.0f / (float) Math.sqrt(Ex * Ex + Ey * Ey + Ez * Ez); 1262 final float c = (Ex * Mx + Ey * My + Ez * Mz) * invE; 1263 final float s = (Ex * Ax + Ey * Ay + Ez * Az) * invE; 1264 if (I.length == 9) { 1265 I[0] = 1; I[1] = 0; I[2] = 0; 1266 I[3] = 0; I[4] = c; I[5] = s; 1267 I[6] = 0; I[7] = -s; I[8] = c; 1268 } else if (I.length == 16) { 1269 I[0] = 1; I[1] = 0; I[2] = 0; 1270 I[4] = 0; I[5] = c; I[6] = s; 1271 I[8] = 0; I[9] = -s; I[10] = c; 1272 I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0; 1273 I[15] = 1; 1274 } 1275 } 1276 return true; 1277 } 1278 1279 /** 1280 * Computes the geomagnetic inclination angle in radians from the 1281 * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}. 1282 * 1283 * @param I 1284 * inclination matrix see {@link #getRotationMatrix}. 1285 * 1286 * @return The geomagnetic inclination angle in radians. 1287 * 1288 * @see #getRotationMatrix(float[], float[], float[], float[]) 1289 * @see #getOrientation(float[], float[]) 1290 * @see GeomagneticField 1291 * 1292 */ getInclination(float[] I)1293 public static float getInclination(float[] I) { 1294 if (I.length == 9) { 1295 return (float) Math.atan2(I[5], I[4]); 1296 } else { 1297 return (float) Math.atan2(I[6], I[5]); 1298 } 1299 } 1300 1301 /** 1302 * <p> 1303 * Rotates the supplied rotation matrix so it is expressed in a different 1304 * coordinate system. This is typically used when an application needs to 1305 * compute the three orientation angles of the device (see 1306 * {@link #getOrientation}) in a different coordinate system. 1307 * </p> 1308 * 1309 * <p> 1310 * When the rotation matrix is used for drawing (for instance with OpenGL 1311 * ES), it usually <b>doesn't need</b> to be transformed by this function, 1312 * unless the screen is physically rotated, in which case you can use 1313 * {@link android.view.Display#getRotation() Display.getRotation()} to 1314 * retrieve the current rotation of the screen. Note that because the user 1315 * is generally free to rotate their screen, you often should consider the 1316 * rotation in deciding the parameters to use here. 1317 * </p> 1318 * 1319 * <p> 1320 * <u>Examples:</u> 1321 * <p> 1322 * 1323 * <ul> 1324 * <li>Using the camera (Y axis along the camera's axis) for an augmented 1325 * reality application where the rotation angles are needed:</li> 1326 * 1327 * <p> 1328 * <ul> 1329 * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code> 1330 * </ul> 1331 * </p> 1332 * 1333 * <li>Using the device as a mechanical compass when rotation is 1334 * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li> 1335 * 1336 * <p> 1337 * <ul> 1338 * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code> 1339 * </ul> 1340 * </p> 1341 * 1342 * Beware of the above example. This call is needed only to account for a 1343 * rotation from its natural orientation when calculating the rotation 1344 * angles (see {@link #getOrientation}). If the rotation matrix is also used 1345 * for rendering, it may not need to be transformed, for instance if your 1346 * {@link android.app.Activity Activity} is running in landscape mode. 1347 * </ul> 1348 * 1349 * <p> 1350 * Since the resulting coordinate system is orthonormal, only two axes need 1351 * to be specified. 1352 * 1353 * @param inR 1354 * the rotation matrix to be transformed. Usually it is the matrix 1355 * returned by {@link #getRotationMatrix}. 1356 * 1357 * @param X 1358 * defines the axis of the new cooridinate system that coincide with the X axis of the 1359 * original coordinate system. 1360 * 1361 * @param Y 1362 * defines the axis of the new cooridinate system that coincide with the Y axis of the 1363 * original coordinate system. 1364 * 1365 * @param outR 1366 * the transformed rotation matrix. inR and outR should not be the same 1367 * array. 1368 * 1369 * @return <code>true</code> on success. <code>false</code> if the input 1370 * parameters are incorrect, for instance if X and Y define the same 1371 * axis. Or if inR and outR don't have the same length. 1372 * 1373 * @see #getRotationMatrix(float[], float[], float[], float[]) 1374 */ 1375 remapCoordinateSystem(float[] inR, int X, int Y, float[] outR)1376 public static boolean remapCoordinateSystem(float[] inR, int X, int Y, float[] outR) { 1377 if (inR == outR) { 1378 final float[] temp = sTempMatrix; 1379 synchronized (temp) { 1380 // we don't expect to have a lot of contention 1381 if (remapCoordinateSystemImpl(inR, X, Y, temp)) { 1382 final int size = outR.length; 1383 for (int i = 0; i < size; i++) { 1384 outR[i] = temp[i]; 1385 } 1386 return true; 1387 } 1388 } 1389 } 1390 return remapCoordinateSystemImpl(inR, X, Y, outR); 1391 } 1392 remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR)1393 private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR) { 1394 /* 1395 * X and Y define a rotation matrix 'r': 1396 * 1397 * (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 (X==3)?((X&0x80)?-1:1):0 1398 * (Y==1)?((Y&0x80)?-1:1):0 (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0 1399 * r[0] ^ r[1] 1400 * 1401 * where the 3rd line is the vector product of the first 2 lines 1402 * 1403 */ 1404 1405 final int length = outR.length; 1406 if (inR.length != length) { 1407 return false; // invalid parameter 1408 } 1409 if ((X & 0x7C) != 0 || (Y & 0x7C) != 0) { 1410 return false; // invalid parameter 1411 } 1412 if (((X & 0x3) == 0) || ((Y & 0x3) == 0)) { 1413 return false; // no axis specified 1414 } 1415 if ((X & 0x3) == (Y & 0x3)) { 1416 return false; // same axis specified 1417 } 1418 1419 // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y) 1420 // this can be calculated by exclusive-or'ing X and Y; except for 1421 // the sign inversion (+/-) which is calculated below. 1422 int Z = X ^ Y; 1423 1424 // extract the axis (remove the sign), offset in the range 0 to 2. 1425 final int x = (X & 0x3) - 1; 1426 final int y = (Y & 0x3) - 1; 1427 final int z = (Z & 0x3) - 1; 1428 1429 // compute the sign of Z (whether it needs to be inverted) 1430 final int axis_y = (z + 1) % 3; 1431 final int axis_z = (z + 2) % 3; 1432 if (((x ^ axis_y) | (y ^ axis_z)) != 0) { 1433 Z ^= 0x80; 1434 } 1435 1436 final boolean sx = (X >= 0x80); 1437 final boolean sy = (Y >= 0x80); 1438 final boolean sz = (Z >= 0x80); 1439 1440 // Perform R * r, in avoiding actual muls and adds. 1441 final int rowLength = ((length == 16) ? 4 : 3); 1442 for (int j = 0; j < 3; j++) { 1443 final int offset = j * rowLength; 1444 for (int i = 0; i < 3; i++) { 1445 if (x == i) outR[offset + i] = sx ? -inR[offset + 0] : inR[offset + 0]; 1446 if (y == i) outR[offset + i] = sy ? -inR[offset + 1] : inR[offset + 1]; 1447 if (z == i) outR[offset + i] = sz ? -inR[offset + 2] : inR[offset + 2]; 1448 } 1449 } 1450 if (length == 16) { 1451 outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0; 1452 outR[15] = 1; 1453 } 1454 return true; 1455 } 1456 1457 /** 1458 * Computes the device's orientation based on the rotation matrix. 1459 * <p> 1460 * When it returns, the array values are as follows: 1461 * <ul> 1462 * <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis. 1463 * This value represents the angle between the device's y 1464 * axis and the magnetic north pole. When facing north, this 1465 * angle is 0, when facing south, this angle is π. 1466 * Likewise, when facing east, this angle is π/2, and 1467 * when facing west, this angle is -π/2. The range of 1468 * values is -π to π.</li> 1469 * <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis. 1470 * This value represents the angle between a plane parallel 1471 * to the device's screen and a plane parallel to the ground. 1472 * Assuming that the bottom edge of the device faces the 1473 * user and that the screen is face-up, tilting the top edge 1474 * of the device toward the ground creates a positive pitch 1475 * angle. The range of values is -π/2 to π/2.</li> 1476 * <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This 1477 * value represents the angle between a plane perpendicular 1478 * to the device's screen and a plane perpendicular to the 1479 * ground. Assuming that the bottom edge of the device faces 1480 * the user and that the screen is face-up, tilting the left 1481 * edge of the device toward the ground creates a positive 1482 * roll angle. The range of values is -π to π.</li> 1483 * </ul> 1484 * <p> 1485 * Applying these three rotations in the azimuth, pitch, roll order 1486 * transforms an identity matrix to the rotation matrix passed into this 1487 * method. Also, note that all three orientation angles are expressed in 1488 * <b>radians</b>. 1489 * 1490 * @param R 1491 * rotation matrix see {@link #getRotationMatrix}. 1492 * 1493 * @param values 1494 * an array of 3 floats to hold the result. 1495 * 1496 * @return The array values passed as argument. 1497 * 1498 * @see #getRotationMatrix(float[], float[], float[], float[]) 1499 * @see GeomagneticField 1500 */ getOrientation(float[] R, float[] values)1501 public static float[] getOrientation(float[] R, float[] values) { 1502 /* 1503 * 4x4 (length=16) case: 1504 * / R[ 0] R[ 1] R[ 2] 0 \ 1505 * | R[ 4] R[ 5] R[ 6] 0 | 1506 * | R[ 8] R[ 9] R[10] 0 | 1507 * \ 0 0 0 1 / 1508 * 1509 * 3x3 (length=9) case: 1510 * / R[ 0] R[ 1] R[ 2] \ 1511 * | R[ 3] R[ 4] R[ 5] | 1512 * \ R[ 6] R[ 7] R[ 8] / 1513 * 1514 */ 1515 if (R.length == 9) { 1516 values[0] = (float) Math.atan2(R[1], R[4]); 1517 values[1] = (float) Math.asin(-R[7]); 1518 values[2] = (float) Math.atan2(-R[6], R[8]); 1519 } else { 1520 values[0] = (float) Math.atan2(R[1], R[5]); 1521 values[1] = (float) Math.asin(-R[9]); 1522 values[2] = (float) Math.atan2(-R[8], R[10]); 1523 } 1524 1525 return values; 1526 } 1527 1528 /** 1529 * Computes the Altitude in meters from the atmospheric pressure and the 1530 * pressure at sea level. 1531 * <p> 1532 * Typically the atmospheric pressure is read from a 1533 * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be 1534 * known, usually it can be retrieved from airport databases in the 1535 * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} 1536 * as an approximation, but absolute altitudes won't be accurate. 1537 * </p> 1538 * <p> 1539 * To calculate altitude differences, you must calculate the difference 1540 * between the altitudes at both points. If you don't know the altitude 1541 * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead, 1542 * which will give good results considering the range of pressure typically 1543 * involved. 1544 * </p> 1545 * <p> 1546 * <code><ul> 1547 * float altitude_difference = 1548 * getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2) 1549 * - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1); 1550 * </ul></code> 1551 * </p> 1552 * 1553 * @param p0 pressure at sea level 1554 * @param p atmospheric pressure 1555 * @return Altitude in meters 1556 */ getAltitude(float p0, float p)1557 public static float getAltitude(float p0, float p) { 1558 final float coef = 1.0f / 5.255f; 1559 return 44330.0f * (1.0f - (float) Math.pow(p / p0, coef)); 1560 } 1561 1562 /** Helper function to compute the angle change between two rotation matrices. 1563 * Given a current rotation matrix (R) and a previous rotation matrix 1564 * (prevR) computes the intrinsic rotation around the z, x, and y axes which 1565 * transforms prevR to R. 1566 * outputs a 3 element vector containing the z, x, and y angle 1567 * change at indexes 0, 1, and 2 respectively. 1568 * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix 1569 * depending on the length of the passed array: 1570 * <p>If the array length is 9, then the array elements represent this matrix 1571 * <pre> 1572 * / R[ 0] R[ 1] R[ 2] \ 1573 * | R[ 3] R[ 4] R[ 5] | 1574 * \ R[ 6] R[ 7] R[ 8] / 1575 *</pre> 1576 * <p>If the array length is 16, then the array elements represent this matrix 1577 * <pre> 1578 * / R[ 0] R[ 1] R[ 2] R[ 3] \ 1579 * | R[ 4] R[ 5] R[ 6] R[ 7] | 1580 * | R[ 8] R[ 9] R[10] R[11] | 1581 * \ R[12] R[13] R[14] R[15] / 1582 *</pre> 1583 * 1584 * See {@link #getOrientation} for more detailed definition of the output. 1585 * 1586 * @param R current rotation matrix 1587 * @param prevR previous rotation matrix 1588 * @param angleChange an an array of floats (z, x, and y) in which the angle change 1589 * (in radians) is stored 1590 */ 1591 getAngleChange(float[] angleChange, float[] R, float[] prevR)1592 public static void getAngleChange(float[] angleChange, float[] R, float[] prevR) { 1593 float rd1 = 0, rd4 = 0, rd6 = 0, rd7 = 0, rd8 = 0; 1594 float ri0 = 0, ri1 = 0, ri2 = 0, ri3 = 0, ri4 = 0, ri5 = 0, ri6 = 0, ri7 = 0, ri8 = 0; 1595 float pri0 = 0, pri1 = 0, pri2 = 0, pri3 = 0, pri4 = 0; 1596 float pri5 = 0, pri6 = 0, pri7 = 0, pri8 = 0; 1597 1598 if (R.length == 9) { 1599 ri0 = R[0]; 1600 ri1 = R[1]; 1601 ri2 = R[2]; 1602 ri3 = R[3]; 1603 ri4 = R[4]; 1604 ri5 = R[5]; 1605 ri6 = R[6]; 1606 ri7 = R[7]; 1607 ri8 = R[8]; 1608 } else if (R.length == 16) { 1609 ri0 = R[0]; 1610 ri1 = R[1]; 1611 ri2 = R[2]; 1612 ri3 = R[4]; 1613 ri4 = R[5]; 1614 ri5 = R[6]; 1615 ri6 = R[8]; 1616 ri7 = R[9]; 1617 ri8 = R[10]; 1618 } 1619 1620 if (prevR.length == 9) { 1621 pri0 = prevR[0]; 1622 pri1 = prevR[1]; 1623 pri2 = prevR[2]; 1624 pri3 = prevR[3]; 1625 pri4 = prevR[4]; 1626 pri5 = prevR[5]; 1627 pri6 = prevR[6]; 1628 pri7 = prevR[7]; 1629 pri8 = prevR[8]; 1630 } else if (prevR.length == 16) { 1631 pri0 = prevR[0]; 1632 pri1 = prevR[1]; 1633 pri2 = prevR[2]; 1634 pri3 = prevR[4]; 1635 pri4 = prevR[5]; 1636 pri5 = prevR[6]; 1637 pri6 = prevR[8]; 1638 pri7 = prevR[9]; 1639 pri8 = prevR[10]; 1640 } 1641 1642 // calculate the parts of the rotation difference matrix we need 1643 // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j]; 1644 1645 rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1] 1646 rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1] 1647 rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0] 1648 rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1] 1649 rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2] 1650 1651 angleChange[0] = (float) Math.atan2(rd1, rd4); 1652 angleChange[1] = (float) Math.asin(-rd7); 1653 angleChange[2] = (float) Math.atan2(-rd6, rd8); 1654 1655 } 1656 1657 /** Helper function to convert a rotation vector to a rotation matrix. 1658 * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a 1659 * 9 or 16 element rotation matrix in the array R. R must have length 9 or 16. 1660 * If R.length == 9, the following matrix is returned: 1661 * <pre> 1662 * / R[ 0] R[ 1] R[ 2] \ 1663 * | R[ 3] R[ 4] R[ 5] | 1664 * \ R[ 6] R[ 7] R[ 8] / 1665 *</pre> 1666 * If R.length == 16, the following matrix is returned: 1667 * <pre> 1668 * / R[ 0] R[ 1] R[ 2] 0 \ 1669 * | R[ 4] R[ 5] R[ 6] 0 | 1670 * | R[ 8] R[ 9] R[10] 0 | 1671 * \ 0 0 0 1 / 1672 *</pre> 1673 * @param rotationVector the rotation vector to convert 1674 * @param R an array of floats in which to store the rotation matrix 1675 */ getRotationMatrixFromVector(float[] R, float[] rotationVector)1676 public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) { 1677 1678 float q0; 1679 float q1 = rotationVector[0]; 1680 float q2 = rotationVector[1]; 1681 float q3 = rotationVector[2]; 1682 1683 if (rotationVector.length >= 4) { 1684 q0 = rotationVector[3]; 1685 } else { 1686 q0 = 1 - q1 * q1 - q2 * q2 - q3 * q3; 1687 q0 = (q0 > 0) ? (float) Math.sqrt(q0) : 0; 1688 } 1689 1690 float sq_q1 = 2 * q1 * q1; 1691 float sq_q2 = 2 * q2 * q2; 1692 float sq_q3 = 2 * q3 * q3; 1693 float q1_q2 = 2 * q1 * q2; 1694 float q3_q0 = 2 * q3 * q0; 1695 float q1_q3 = 2 * q1 * q3; 1696 float q2_q0 = 2 * q2 * q0; 1697 float q2_q3 = 2 * q2 * q3; 1698 float q1_q0 = 2 * q1 * q0; 1699 1700 if (R.length == 9) { 1701 R[0] = 1 - sq_q2 - sq_q3; 1702 R[1] = q1_q2 - q3_q0; 1703 R[2] = q1_q3 + q2_q0; 1704 1705 R[3] = q1_q2 + q3_q0; 1706 R[4] = 1 - sq_q1 - sq_q3; 1707 R[5] = q2_q3 - q1_q0; 1708 1709 R[6] = q1_q3 - q2_q0; 1710 R[7] = q2_q3 + q1_q0; 1711 R[8] = 1 - sq_q1 - sq_q2; 1712 } else if (R.length == 16) { 1713 R[0] = 1 - sq_q2 - sq_q3; 1714 R[1] = q1_q2 - q3_q0; 1715 R[2] = q1_q3 + q2_q0; 1716 R[3] = 0.0f; 1717 1718 R[4] = q1_q2 + q3_q0; 1719 R[5] = 1 - sq_q1 - sq_q3; 1720 R[6] = q2_q3 - q1_q0; 1721 R[7] = 0.0f; 1722 1723 R[8] = q1_q3 - q2_q0; 1724 R[9] = q2_q3 + q1_q0; 1725 R[10] = 1 - sq_q1 - sq_q2; 1726 R[11] = 0.0f; 1727 1728 R[12] = R[13] = R[14] = 0.0f; 1729 R[15] = 1.0f; 1730 } 1731 } 1732 1733 /** Helper function to convert a rotation vector to a normalized quaternion. 1734 * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized 1735 * quaternion in the array Q. The quaternion is stored as [w, x, y, z] 1736 * @param rv the rotation vector to convert 1737 * @param Q an array of floats in which to store the computed quaternion 1738 */ getQuaternionFromVector(float[] Q, float[] rv)1739 public static void getQuaternionFromVector(float[] Q, float[] rv) { 1740 if (rv.length >= 4) { 1741 Q[0] = rv[3]; 1742 } else { 1743 Q[0] = 1 - rv[0] * rv[0] - rv[1] * rv[1] - rv[2] * rv[2]; 1744 Q[0] = (Q[0] > 0) ? (float) Math.sqrt(Q[0]) : 0; 1745 } 1746 Q[1] = rv[0]; 1747 Q[2] = rv[1]; 1748 Q[3] = rv[2]; 1749 } 1750 1751 /** 1752 * Requests receiving trigger events for a trigger sensor. 1753 * 1754 * <p> 1755 * When the sensor detects a trigger event condition, such as significant motion in 1756 * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener 1757 * will be invoked once and then its request to receive trigger events will be canceled. 1758 * To continue receiving trigger events, the application must request to receive trigger 1759 * events again. 1760 * </p> 1761 * 1762 * @param listener The listener on which the 1763 * {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered. 1764 * @param sensor The sensor to be enabled. 1765 * 1766 * @return true if the sensor was successfully enabled. 1767 * 1768 * @throws IllegalArgumentException when sensor is null or not a trigger sensor. 1769 */ requestTriggerSensor(TriggerEventListener listener, Sensor sensor)1770 public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) { 1771 return requestTriggerSensorImpl(listener, sensor); 1772 } 1773 1774 /** 1775 * @hide 1776 */ requestTriggerSensorImpl(TriggerEventListener listener, Sensor sensor)1777 protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener, 1778 Sensor sensor); 1779 1780 /** 1781 * Cancels receiving trigger events for a trigger sensor. 1782 * 1783 * <p> 1784 * Note that a Trigger sensor will be auto disabled if 1785 * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered. 1786 * This method is provided in case the user wants to explicitly cancel the request 1787 * to receive trigger events. 1788 * </p> 1789 * 1790 * @param listener The listener on which the 1791 * {@link TriggerEventListener#onTrigger(TriggerEvent)} 1792 * is delivered.It should be the same as the one used 1793 * in {@link #requestTriggerSensor(TriggerEventListener, Sensor)} 1794 * @param sensor The sensor for which the trigger request should be canceled. 1795 * If null, it cancels receiving trigger for all sensors associated 1796 * with the listener. 1797 * 1798 * @return true if successfully canceled. 1799 * 1800 * @throws IllegalArgumentException when sensor is a trigger sensor. 1801 */ cancelTriggerSensor(TriggerEventListener listener, Sensor sensor)1802 public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) { 1803 return cancelTriggerSensorImpl(listener, sensor, true); 1804 } 1805 1806 /** 1807 * @hide 1808 */ cancelTriggerSensorImpl(TriggerEventListener listener, Sensor sensor, boolean disable)1809 protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener, 1810 Sensor sensor, boolean disable); 1811 1812 1813 /** 1814 * For testing purposes only. Not for third party applications. 1815 * 1816 * Initialize data injection mode and create a client for data injection. SensorService should 1817 * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into 1818 * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called 1819 * through adb. Typically this is done using a host side test. This mode is expected to be used 1820 * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input 1821 * from physical sensors and read sensor data that is injected from the test application. This 1822 * mode is used for testing vendor implementations for various algorithms like Rotation Vector, 1823 * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will 1824 * fail in those cases. Once this method succeeds, the test can call 1825 * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL. 1826 * 1827 * @param enable True to initialize a client in DATA_INJECTION mode. 1828 * False to clean up the native resources. 1829 * 1830 * @return true if the HAL supports data injection and false 1831 * otherwise. 1832 * @hide 1833 */ 1834 @SystemApi initDataInjection(boolean enable)1835 public boolean initDataInjection(boolean enable) { 1836 return initDataInjectionImpl(enable); 1837 } 1838 1839 /** 1840 * @hide 1841 */ initDataInjectionImpl(boolean enable)1842 protected abstract boolean initDataInjectionImpl(boolean enable); 1843 1844 /** 1845 * For testing purposes only. Not for third party applications. 1846 * 1847 * This method is used to inject raw sensor data into the HAL. Call {@link 1848 * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This 1849 * method should be called only if a previous call to initDataInjection has been successful and 1850 * the HAL and SensorService are already opreating in data injection mode. 1851 * 1852 * @param sensor The sensor to inject. 1853 * @param values Sensor values to inject. The length of this 1854 * array must be exactly equal to the number of 1855 * values reported by the sensor type. 1856 * @param accuracy Accuracy of the sensor. 1857 * @param timestamp Sensor timestamp associated with the event. 1858 * 1859 * @return boolean True if the data injection succeeds, false 1860 * otherwise. 1861 * @throws IllegalArgumentException when the sensor is null, 1862 * data injection is not supported by the sensor, values 1863 * are null, incorrect number of values for the sensor, 1864 * sensor accuracy is incorrect or timestamps are 1865 * invalid. 1866 * @hide 1867 */ 1868 @SystemApi injectSensorData(Sensor sensor, float[] values, int accuracy, long timestamp)1869 public boolean injectSensorData(Sensor sensor, float[] values, int accuracy, 1870 long timestamp) { 1871 if (sensor == null) { 1872 throw new IllegalArgumentException("sensor cannot be null"); 1873 } 1874 if (!sensor.isDataInjectionSupported()) { 1875 throw new IllegalArgumentException("sensor does not support data injection"); 1876 } 1877 if (values == null) { 1878 throw new IllegalArgumentException("sensor data cannot be null"); 1879 } 1880 int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M); 1881 if (values.length != expectedNumValues) { 1882 throw new IllegalArgumentException("Wrong number of values for sensor " 1883 + sensor.getName() + " actual=" + values.length + " expected=" 1884 + expectedNumValues); 1885 } 1886 if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) { 1887 throw new IllegalArgumentException("Invalid sensor accuracy"); 1888 } 1889 if (timestamp <= 0) { 1890 throw new IllegalArgumentException("Negative or zero sensor timestamp"); 1891 } 1892 return injectSensorDataImpl(sensor, values, accuracy, timestamp); 1893 } 1894 1895 /** 1896 * @hide 1897 */ injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, long timestamp)1898 protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, 1899 long timestamp); 1900 getLegacySensorManager()1901 private LegacySensorManager getLegacySensorManager() { 1902 synchronized (mSensorListByType) { 1903 if (mLegacySensorManager == null) { 1904 Log.i(TAG, "This application is using deprecated SensorManager API which will " 1905 + "be removed someday. Please consider switching to the new API."); 1906 mLegacySensorManager = new LegacySensorManager(this); 1907 } 1908 return mLegacySensorManager; 1909 } 1910 } 1911 getDelay(int rate)1912 private static int getDelay(int rate) { 1913 int delay = -1; 1914 switch (rate) { 1915 case SENSOR_DELAY_FASTEST: 1916 delay = 0; 1917 break; 1918 case SENSOR_DELAY_GAME: 1919 delay = 20000; 1920 break; 1921 case SENSOR_DELAY_UI: 1922 delay = 66667; 1923 break; 1924 case SENSOR_DELAY_NORMAL: 1925 delay = 200000; 1926 break; 1927 default: 1928 delay = rate; 1929 break; 1930 } 1931 return delay; 1932 } 1933 1934 /** @hide */ setOperationParameter(SensorAdditionalInfo parameter)1935 public boolean setOperationParameter(SensorAdditionalInfo parameter) { 1936 return setOperationParameterImpl(parameter); 1937 } 1938 1939 /** @hide */ setOperationParameterImpl(SensorAdditionalInfo parameter)1940 protected abstract boolean setOperationParameterImpl(SensorAdditionalInfo parameter); 1941 } 1942