1 /*
2 * Copyright (c) 2024 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15 #include "socperf_thread_wrap.h"
16 #include <set> // for set
17 #include <unistd.h> // for open, write
18 #include <fcntl.h> // for O_RDWR, O_CLOEXEC
19 #include "hisysevent.h"
20 #include "hitrace_meter.h"
21 #include "res_exe_type.h"
22 #include "res_sched_exe_client.h"
23
24 namespace OHOS {
25 namespace SOCPERF {
26 #ifdef SOCPERF_ADAPTOR_FFRT
SocPerfThreadWrap()27 SocPerfThreadWrap::SocPerfThreadWrap() : socperfQueue_("socperf", ffrt::queue_attr().qos(ffrt::qos_user_interactive))
28 #else
29 SocPerfThreadWrap::SocPerfThreadWrap(
30 const std::shared_ptr<AppExecFwk::EventRunner>& runner) : AppExecFwk::EventHandler(runner)
31 #endif
32 {
33 }
34
~SocPerfThreadWrap()35 SocPerfThreadWrap::~SocPerfThreadWrap()
36 {
37 }
38
39 #ifndef SOCPERF_ADAPTOR_FFRT
ProcessEvent(const AppExecFwk::InnerEvent::Pointer & event)40 void SocPerfThreadWrap::ProcessEvent(const AppExecFwk::InnerEvent::Pointer &event)
41 {
42 if (event == nullptr) {
43 return;
44 }
45 switch (event->GetInnerEventId()) {
46 case INNER_EVENT_ID_INIT_RESOURCE_NODE_INFO: {
47 InitResourceNodeInfo(event->GetSharedObject<ResourceNode>());
48 break;
49 }
50 case INNER_EVENT_ID_DO_FREQ_ACTION_PACK: {
51 DoFreqActionPack(event->GetSharedObject<ResActionItem>());
52 break;
53 }
54 case INNER_EVENT_ID_DO_FREQ_ACTION_DELAYED: {
55 PostDelayTask(event->GetParam(), event->GetSharedObject<ResAction>());
56 break;
57 }
58 case INNER_EVENT_ID_DO_FREQ_ACTION:
59 case INNER_EVENT_ID_DO_FREQ_ACTION_LEVEL: {
60 UpdateLimitStatus(event->GetInnerEventId(), event->GetSharedObject<ResAction>(), event->GetParam());
61 break;
62 }
63 case INNER_EVENT_ID_POWER_LIMIT_BOOST_FREQ: {
64 UpdatePowerLimitBoostFreq(event->GetParam());
65 break;
66 }
67 case INNER_EVENT_ID_THERMAL_LIMIT_BOOST_FREQ: {
68 UpdateThermalLimitBoostFreq(event->GetParam());
69 break;
70 }
71 case INNER_EVENT_ID_CLEAR_ALL_ALIVE_REQUEST: {
72 ClearAllAliveRequest();
73 break;
74 }
75 default:
76 break;
77 }
78 }
79 #endif
80
InitResourceNodeInfo(std::shared_ptr<ResourceNode> resourceNode)81 void SocPerfThreadWrap::InitResourceNodeInfo(std::shared_ptr<ResourceNode> resourceNode)
82 {
83 if (resourceNode == nullptr) {
84 return;
85 }
86 #ifdef SOCPERF_ADAPTOR_FFRT
87 std::function<void()>&& initResourceNodeInfoFunc = [this, resourceNode]() {
88 #endif
89 auto resStatus = std::make_shared<ResStatus>();
90 resStatusInfo_.insert(std::pair<int32_t, std::shared_ptr<ResStatus>>(resourceNode->id, resStatus));
91 #ifdef SOCPERF_ADAPTOR_FFRT
92 };
93 socperfQueue_.submit(initResourceNodeInfoFunc);
94 #endif
95 }
96
DoFreqActionPack(std::shared_ptr<ResActionItem> head)97 void SocPerfThreadWrap::DoFreqActionPack(std::shared_ptr<ResActionItem> head)
98 {
99 if (head == nullptr) {
100 return;
101 }
102 #ifdef SOCPERF_ADAPTOR_FFRT
103 std::function<void()>&& doFreqActionPackFunc = [this, head]() {
104 #endif
105 std::shared_ptr<ResActionItem> queueHead = head;
106 while (queueHead) {
107 if (socPerfConfig_.IsValidResId(queueHead->resId)) {
108 UpdateResActionList(queueHead->resId, queueHead->resAction, false);
109 }
110 queueHead = queueHead->next;
111 }
112 SendResStatusToPerfSo();
113 #ifdef SOCPERF_ADAPTOR_FFRT
114 };
115 socperfQueue_.submit(doFreqActionPackFunc);
116 #endif
117 }
118
UpdatePowerLimitBoostFreq(bool powerLimitBoost)119 void SocPerfThreadWrap::UpdatePowerLimitBoostFreq(bool powerLimitBoost)
120 {
121 #ifdef SOCPERF_ADAPTOR_FFRT
122 std::function<void()>&& updatePowerLimitBoostFreqFunc = [this, powerLimitBoost]() {
123 #endif
124 this->powerLimitBoost_ = powerLimitBoost;
125 for (auto iter = resStatusInfo_.begin(); iter != resStatusInfo_.end(); ++iter) {
126 if (resStatusInfo_[iter->first] == nullptr) {
127 continue;
128 }
129 ArbitrateCandidate(iter->first);
130 }
131 SendResStatusToPerfSo();
132 #ifdef SOCPERF_ADAPTOR_FFRT
133 };
134 socperfQueue_.submit(updatePowerLimitBoostFreqFunc);
135 #endif
136 }
137
UpdateThermalLimitBoostFreq(bool thermalLimitBoost)138 void SocPerfThreadWrap::UpdateThermalLimitBoostFreq(bool thermalLimitBoost)
139 {
140 #ifdef SOCPERF_ADAPTOR_FFRT
141 std::function<void()>&& updateThermalLimitBoostFreqFunc = [this, thermalLimitBoost]() {
142 #endif
143 this->thermalLimitBoost_ = thermalLimitBoost;
144 for (auto iter = resStatusInfo_.begin(); iter != resStatusInfo_.end(); ++iter) {
145 if (resStatusInfo_[iter->first] == nullptr) {
146 continue;
147 }
148 ArbitrateCandidate(iter->first);
149 }
150 SendResStatusToPerfSo();
151 #ifdef SOCPERF_ADAPTOR_FFRT
152 };
153 socperfQueue_.submit(updateThermalLimitBoostFreqFunc);
154 #endif
155 }
156
UpdateLimitStatus(int32_t eventId,std::shared_ptr<ResAction> resAction,int32_t resId)157 void SocPerfThreadWrap::UpdateLimitStatus(int32_t eventId, std::shared_ptr<ResAction> resAction, int32_t resId)
158 {
159 if (resAction == nullptr) {
160 return;
161 }
162 #ifdef SOCPERF_ADAPTOR_FFRT
163 std::function<void()>&& updateLimitStatusFunc = [this, eventId, resId, resAction]() {
164 #endif
165 if (eventId == INNER_EVENT_ID_DO_FREQ_ACTION) {
166 DoFreqAction(resId, resAction);
167 } else if (eventId == INNER_EVENT_ID_DO_FREQ_ACTION_LEVEL) {
168 DoFreqActionLevel(resId, resAction);
169 }
170 SendResStatusToPerfSo();
171 if (resAction->onOff && resStatusInfo_[resId] != nullptr) {
172 HiSysEventWrite(OHOS::HiviewDFX::HiSysEvent::Domain::RSS, "LIMIT_REQUEST",
173 OHOS::HiviewDFX::HiSysEvent::EventType::BEHAVIOR,
174 "CLIENT_ID", resAction->type,
175 "RES_ID", resId,
176 "CONFIG", resStatusInfo_[resId]->candidate);
177 }
178 #ifdef SOCPERF_ADAPTOR_FFRT
179 };
180 socperfQueue_.submit(updateLimitStatusFunc);
181 #endif
182 }
183
ClearAllAliveRequest()184 void SocPerfThreadWrap::ClearAllAliveRequest()
185 {
186 #ifdef SOCPERF_ADAPTOR_FFRT
187 std::function<void()>&& updateLimitStatusFunc = [this]() {
188 #endif
189 for (const auto& item : this->resStatusInfo_) {
190 if (item.second == nullptr) {
191 continue;
192 }
193 std::list<std::shared_ptr<ResAction>>& resActionList = item.second->resActionList[ACTION_TYPE_PERF];
194 resActionList.clear();
195 UpdateCandidatesValue(item.first, ACTION_TYPE_PERF);
196 }
197 SendResStatusToPerfSo();
198 #ifdef SOCPERF_ADAPTOR_FFRT
199 };
200 socperfQueue_.submit(updateLimitStatusFunc);
201 #endif
202 }
203
DoFreqAction(int32_t resId,std::shared_ptr<ResAction> resAction)204 void SocPerfThreadWrap::DoFreqAction(int32_t resId, std::shared_ptr<ResAction> resAction)
205 {
206 if (!socPerfConfig_.IsValidResId(resId) || resAction == nullptr) {
207 return;
208 }
209 UpdateResActionList(resId, resAction, false);
210 }
211
SendResStatusToPerfSo()212 void SocPerfThreadWrap::SendResStatusToPerfSo()
213 {
214 std::vector<int32_t> qosId;
215 std::vector<int64_t> value;
216 std::vector<int64_t> endTime;
217 std::vector<int32_t> qosIdToRssEx;
218 std::vector<int64_t> valueToRssEx;
219 std::vector<int64_t> endTimeToRssEx;
220 for (auto iter = resStatusInfo_.begin(); iter != resStatusInfo_.end(); ++iter) {
221 int32_t resId = iter->first;
222 std::shared_ptr<ResStatus> resStatus = iter->second;
223 if (socPerfConfig_.resourceNodeInfo_.find(resId) != socPerfConfig_.resourceNodeInfo_.end() &&
224 (resStatus->previousValue != resStatus->currentValue ||
225 resStatus->previousEndTime != resStatus->currentEndTime)) {
226 if (socPerfConfig_.resourceNodeInfo_[resId]->persistMode == REPORT_TO_PERFSO) {
227 qosId.push_back(resId);
228 value.push_back(resStatus->currentValue);
229 endTime.push_back(resStatus->currentEndTime);
230 } else {
231 qosIdToRssEx.push_back(resId);
232 valueToRssEx.push_back(resStatus->currentValue);
233 endTimeToRssEx.push_back(resStatus->currentEndTime);
234 }
235 resStatus->previousValue = resStatus->currentValue;
236 resStatus->previousEndTime = resStatus->currentEndTime;
237 }
238 }
239 ReportToPerfSo(qosId, value, endTime);
240 ReportToRssExe(qosIdToRssEx, valueToRssEx, endTimeToRssEx);
241 }
242
ReportToPerfSo(std::vector<int32_t> & qosId,std::vector<int64_t> & value,std::vector<int64_t> & endTime)243 void SocPerfThreadWrap::ReportToPerfSo(std::vector<int32_t>& qosId, std::vector<int64_t>& value,
244 std::vector<int64_t>& endTime)
245 {
246 if (!socPerfConfig_.reportFunc_) {
247 return;
248 }
249 if (qosId.size() > 0) {
250 socPerfConfig_.reportFunc_(qosId, value, endTime, "");
251 std::string log("send data to perf so");
252 for (unsigned long i = 0; i < qosId.size(); i++) {
253 log.append(",[id:").append(std::to_string(qosId[i]));
254 log.append(", value:").append(std::to_string(value[i])).append("]");
255 }
256 StartTrace(HITRACE_TAG_OHOS, log.c_str());
257 FinishTrace(HITRACE_TAG_OHOS);
258 }
259 }
260
ReportToRssExe(std::vector<int32_t> & qosId,std::vector<int64_t> & value,std::vector<int64_t> & endTime)261 void SocPerfThreadWrap::ReportToRssExe(std::vector<int32_t>& qosId, std::vector<int64_t>& value,
262 std::vector<int64_t>& endTime)
263 {
264 if (qosId.size() > 0) {
265 nlohmann::json payload;
266 payload[QOSID_STRING] = qosId;
267 payload[VALUE_STRING] = value;
268 ResourceSchedule::ResSchedExeClient::GetInstance().SendRequestAsync(
269 ResourceSchedule::ResExeType::EWS_TYPE_SOCPERF_EXECUTOR_ASYNC_EVENT, SOCPERF_EVENT_WIRTE_NODE, payload);
270 std::string log("send data to rssexe so");
271 for (unsigned long i = 0; i < qosId.size(); i++) {
272 log.append(",[id:").append(std::to_string(qosId[i]));
273 log.append(", value:").append(std::to_string(value[i])).append("]");
274 }
275 StartTrace(HITRACE_TAG_OHOS, log.c_str());
276 FinishTrace(HITRACE_TAG_OHOS);
277 }
278 }
279
DoFreqActionLevel(int32_t resId,std::shared_ptr<ResAction> resAction)280 void SocPerfThreadWrap::DoFreqActionLevel(int32_t resId, std::shared_ptr<ResAction> resAction)
281 {
282 int32_t realResId = resId - RES_ID_ADDITION;
283 if (!socPerfConfig_.IsValidResId(realResId) || !resAction) {
284 return;
285 }
286 int32_t level = (int32_t)resAction->value;
287 if (!GetResValueByLevel(realResId, level, resAction->value)) {
288 return;
289 }
290 UpdateResActionList(realResId, resAction, false);
291 }
292
293 #ifdef SOCPERF_ADAPTOR_FFRT
PostDelayTask(std::shared_ptr<ResActionItem> queueHead)294 void SocPerfThreadWrap::PostDelayTask(std::shared_ptr<ResActionItem> queueHead)
295 {
296 std::unordered_map<int32_t, std::vector<std::shared_ptr<ResActionItem>>> resActionMap;
297 std::shared_ptr<ResActionItem> head = queueHead;
298 while (head) {
299 if (!head->resAction || head->resAction->duration == 0) {
300 head = head->next;
301 continue;
302 }
303 resActionMap[head->resAction->duration].push_back(head);
304 head = head->next;
305 }
306 for (auto item : resActionMap) {
307 ffrt::task_attr taskAttr;
308 taskAttr.delay(item.first * SCALES_OF_MILLISECONDS_TO_MICROSECONDS);
309 std::function<void()>&& postDelayTaskFunc = [this, item]() {
310 for (uint32_t i = 0; i < item.second.size(); i++) {
311 UpdateResActionList(item.second[i]->resId, item.second[i]->resAction, true);
312 }
313 SendResStatusToPerfSo();
314 };
315 socperfQueue_.submit(postDelayTaskFunc, taskAttr);
316 }
317 }
318 #else
PostDelayTask(int32_t resId,std::shared_ptr<ResAction> resAction)319 void SocPerfThreadWrap::PostDelayTask(int32_t resId, std::shared_ptr<ResAction> resAction)
320 {
321 if (!socPerfConfig_.IsValidResId(resId) || resAction == nullptr) {
322 return;
323 }
324 UpdateResActionList(resId, resAction, true);
325 SendResStatusToPerfSo();
326 }
327 #endif
328
GetResValueByLevel(int32_t resId,int32_t level,int64_t & resValue)329 bool SocPerfThreadWrap::GetResValueByLevel(int32_t resId, int32_t level, int64_t& resValue)
330 {
331 if (socPerfConfig_.resourceNodeInfo_.find(resId) == socPerfConfig_.resourceNodeInfo_.end()
332 || socPerfConfig_.resourceNodeInfo_[resId]->available.empty()) {
333 SOC_PERF_LOGE("resId[%{public}d] is not valid.", resId);
334 return false;
335 }
336 if (level < 0) {
337 return false;
338 }
339
340 std::set<int64_t> available;
341 for (auto a : socPerfConfig_.resourceNodeInfo_[resId]->available) {
342 available.insert(a);
343 }
344 int32_t len = (int32_t)available.size();
345 auto iter = available.begin();
346 if (level < len) {
347 std::advance(iter, len - 1 - level);
348 }
349 resValue = *iter;
350 return true;
351 }
352
UpdateResActionList(int32_t resId,std::shared_ptr<ResAction> resAction,bool delayed)353 void SocPerfThreadWrap::UpdateResActionList(int32_t resId, std::shared_ptr<ResAction> resAction, bool delayed)
354 {
355 std::shared_ptr<ResStatus> resStatus = resStatusInfo_[resId];
356 int32_t type = resAction->type;
357
358 if (delayed) {
359 UpdateResActionListByDelayedMsg(resId, type, resAction, resStatus);
360 } else {
361 UpdateResActionListByInstantMsg(resId, type, resAction, resStatus);
362 }
363 }
364
UpdateResActionListByDelayedMsg(int32_t resId,int32_t type,std::shared_ptr<ResAction> resAction,std::shared_ptr<ResStatus> resStatus)365 void SocPerfThreadWrap::UpdateResActionListByDelayedMsg(int32_t resId, int32_t type,
366 std::shared_ptr<ResAction> resAction, std::shared_ptr<ResStatus> resStatus)
367 {
368 for (auto iter = resStatus->resActionList[type].begin();
369 iter != resStatus->resActionList[type].end(); ++iter) {
370 if (resAction == *iter) {
371 resStatus->resActionList[type].erase(iter);
372 UpdateCandidatesValue(resId, type);
373 break;
374 }
375 }
376 }
377
HandleResAction(int32_t resId,int32_t type,std::shared_ptr<ResAction> resAction,std::shared_ptr<ResStatus> resStatus)378 void SocPerfThreadWrap::HandleResAction(int32_t resId, int32_t type,
379 std::shared_ptr<ResAction> resAction, std::shared_ptr<ResStatus> resStatus)
380 {
381 for (auto iter = resStatus->resActionList[type].begin();
382 iter != resStatus->resActionList[type].end(); ++iter) {
383 if (resAction->TotalSame(*iter)) {
384 resStatus->resActionList[type].erase(iter);
385 break;
386 }
387 }
388 resStatus->resActionList[type].push_back(resAction);
389 UpdateCandidatesValue(resId, type);
390 }
391
UpdateResActionListByInstantMsg(int32_t resId,int32_t type,std::shared_ptr<ResAction> resAction,std::shared_ptr<ResStatus> resStatus)392 void SocPerfThreadWrap::UpdateResActionListByInstantMsg(int32_t resId, int32_t type,
393 std::shared_ptr<ResAction> resAction, std::shared_ptr<ResStatus> resStatus)
394 {
395 switch (resAction->onOff) {
396 case EVENT_INVALID:
397 case EVENT_ON: {
398 HandleResAction(resId, type, resAction, resStatus);
399 break;
400 }
401 case EVENT_OFF: {
402 for (auto iter = resStatus->resActionList[type].begin();
403 iter != resStatus->resActionList[type].end(); ++iter) {
404 if (resAction->PartSame(*iter) && (*iter)->onOff == EVENT_ON) {
405 resStatus->resActionList[type].erase(iter);
406 UpdateCandidatesValue(resId, type);
407 break;
408 }
409 }
410 break;
411 }
412 default: {
413 break;
414 }
415 }
416 }
417
UpdateCandidatesValue(int32_t resId,int32_t type)418 void SocPerfThreadWrap::UpdateCandidatesValue(int32_t resId, int32_t type)
419 {
420 std::shared_ptr<ResStatus> resStatus = resStatusInfo_[resId];
421 int64_t prevValue = resStatus->candidatesValue[type];
422 int64_t prevEndTime = resStatus->candidatesEndTime[type];
423
424 if (resStatus->resActionList[type].empty()) {
425 resStatus->candidatesValue[type] = INVALID_VALUE;
426 resStatus->candidatesEndTime[type] = MAX_INT_VALUE;
427 } else {
428 InnerArbitrateCandidatesValue(type, resStatus);
429 }
430
431 if (resStatus->candidatesValue[type] != prevValue || resStatus->candidatesEndTime[type] != prevEndTime) {
432 ArbitrateCandidate(resId);
433 }
434 }
435
InnerArbitrateCandidatesValue(int32_t type,std::shared_ptr<ResStatus> resStatus)436 void SocPerfThreadWrap::InnerArbitrateCandidatesValue(int32_t type, std::shared_ptr<ResStatus> resStatus)
437 {
438 // perf first action type: ACTION_TYPE_PERF\ACTION_TYPE_PERFLVL
439 // power first action type: ACTION_TYPE_POWER\ACTION_TYPE_THERMAL
440 bool isPerfFirst = (type == ACTION_TYPE_PERF || type == ACTION_TYPE_PERFLVL);
441
442 int64_t res = isPerfFirst ? MIN_INT_VALUE : MAX_INT_VALUE;
443 int64_t endTime = MIN_INT_VALUE;
444 for (auto iter = resStatus->resActionList[type].begin();
445 iter != resStatus->resActionList[type].end(); ++iter) {
446 if (((*iter)->value > res && isPerfFirst)
447 || ((*iter)->value < res && !isPerfFirst)) {
448 res = (*iter)->value;
449 endTime = (*iter)->endTime;
450 } else if ((*iter)->value == res) {
451 endTime = Max(endTime, (*iter)->endTime);
452 }
453 }
454 resStatus->candidatesValue[type] = res;
455 resStatus->candidatesEndTime[type] = endTime;
456 }
457
ArbitrateCandidate(int32_t resId)458 void SocPerfThreadWrap::ArbitrateCandidate(int32_t resId)
459 {
460 std::shared_ptr<ResStatus> resStatus = resStatusInfo_[resId];
461 // if perf, power and thermal don't have valid value, send default value
462 if (ExistNoCandidate(resId, resStatus)) {
463 return;
464 }
465 // Arbitrate in perf, power and thermal
466 ProcessLimitCase(resId);
467 // perf request thermal level is highest priority in this freq adjuster
468 if (ArbitratePairResInPerfLvl(resId)) {
469 return;
470 }
471 // adjust resource value if it has 'max' config
472 ArbitratePairRes(resId, false);
473 }
474
ProcessLimitCase(int32_t resId)475 void SocPerfThreadWrap::ProcessLimitCase(int32_t resId)
476 {
477 std::shared_ptr<ResStatus> resStatus = resStatusInfo_[resId];
478 int64_t candidatePerfValue = resStatus->candidatesValue[ACTION_TYPE_PERF];
479 int64_t candidatePowerValue = resStatus->candidatesValue[ACTION_TYPE_POWER];
480 int64_t candidateThermalValue = resStatus->candidatesValue[ACTION_TYPE_THERMAL];
481 if (!powerLimitBoost_ && !thermalLimitBoost_) {
482 if (candidatePerfValue != INVALID_VALUE) {
483 resStatus->candidate = Max(candidatePerfValue, candidatePowerValue, candidateThermalValue);
484 } else {
485 resStatus->candidate = (candidatePowerValue == INVALID_VALUE) ? candidateThermalValue :
486 ((candidateThermalValue == INVALID_VALUE) ? candidatePowerValue :
487 Min(candidatePowerValue, candidateThermalValue));
488 }
489 } else if (!powerLimitBoost_ && thermalLimitBoost_) {
490 resStatus->candidate = (candidateThermalValue != INVALID_VALUE) ? candidateThermalValue :
491 Max(candidatePerfValue, candidatePowerValue);
492 } else if (powerLimitBoost_ && !thermalLimitBoost_) {
493 resStatus->candidate = (candidatePowerValue != INVALID_VALUE) ? candidatePowerValue :
494 Max(candidatePerfValue, candidateThermalValue);
495 } else {
496 if (candidatePowerValue == INVALID_VALUE && candidateThermalValue == INVALID_VALUE) {
497 resStatus->candidate = candidatePerfValue;
498 } else {
499 resStatus->candidate = (candidatePowerValue == INVALID_VALUE) ? candidateThermalValue :
500 ((candidateThermalValue == INVALID_VALUE) ? candidatePowerValue :
501 Min(candidatePowerValue, candidateThermalValue));
502 }
503 }
504 resStatus->currentEndTime = Min(resStatus->candidatesEndTime[ACTION_TYPE_PERF],
505 resStatus->candidatesEndTime[ACTION_TYPE_POWER], resStatus->candidatesEndTime[ACTION_TYPE_THERMAL]);
506 }
507
ArbitratePairResInPerfLvl(int32_t resId)508 bool SocPerfThreadWrap::ArbitratePairResInPerfLvl(int32_t resId)
509 {
510 std::shared_ptr<ResStatus> resStatus = resStatusInfo_[resId];
511 int32_t pairResId = INVALID_VALUE;
512 if (!socPerfConfig_.IsGovResId(resId)) {
513 pairResId = std::static_pointer_cast<ResNode>(socPerfConfig_.resourceNodeInfo_[resId])->pair;
514 }
515 // if resource self and resource's pair both not have perflvl value
516 if (resStatus->candidatesValue[ACTION_TYPE_PERFLVL] == INVALID_VALUE && (pairResId != INVALID_VALUE &&
517 resStatusInfo_[pairResId]->candidatesValue[ACTION_TYPE_PERFLVL] == INVALID_VALUE)) {
518 return false;
519 }
520 // if this resource has PerfRequestLvl value, the final arbitrate value change to PerfRequestLvl value
521 if (resStatus->candidatesValue[ACTION_TYPE_PERFLVL] != INVALID_VALUE) {
522 resStatus->candidate = resStatus->candidatesValue[ACTION_TYPE_PERFLVL];
523 }
524 // only limit max when PerfRequestLvl has max value
525 bool limit = false;
526 if (!socPerfConfig_.IsGovResId(resId) && (socPerfConfig_.resourceNodeInfo_[resId]->isMaxValue ||
527 (pairResId != INVALID_VALUE && socPerfConfig_.resourceNodeInfo_[pairResId]->isMaxValue))) {
528 limit = true;
529 }
530 ArbitratePairRes(resId, limit);
531 return true;
532 }
533
ArbitratePairRes(int32_t resId,bool perfRequestLimit)534 void SocPerfThreadWrap::ArbitratePairRes(int32_t resId, bool perfRequestLimit)
535 {
536 bool limit = powerLimitBoost_ || thermalLimitBoost_ || perfRequestLimit;
537 if (socPerfConfig_.IsGovResId(resId)) {
538 UpdateCurrentValue(resId, resStatusInfo_[resId]->candidate);
539 return;
540 }
541 int32_t pairResId = std::static_pointer_cast<ResNode>(socPerfConfig_.resourceNodeInfo_[resId])->pair;
542 if (pairResId == INVALID_VALUE) {
543 UpdateCurrentValue(resId, resStatusInfo_[resId]->candidate);
544 return;
545 }
546
547 if (resStatusInfo_[pairResId]->candidate == NODE_DEFAULT_VALUE) {
548 UpdateCurrentValue(resId, resStatusInfo_[resId]->candidate);
549 return;
550 }
551
552 if (socPerfConfig_.resourceNodeInfo_[resId]->isMaxValue) {
553 if (resStatusInfo_[resId]->candidate < resStatusInfo_[pairResId]->candidate) {
554 if (limit) {
555 UpdatePairResValue(pairResId,
556 resStatusInfo_[resId]->candidate, resId, resStatusInfo_[resId]->candidate);
557 } else {
558 UpdatePairResValue(pairResId,
559 resStatusInfo_[pairResId]->candidate, resId, resStatusInfo_[pairResId]->candidate);
560 }
561 } else {
562 UpdatePairResValue(pairResId,
563 resStatusInfo_[pairResId]->candidate, resId, resStatusInfo_[resId]->candidate);
564 }
565 } else {
566 if (resStatusInfo_[resId]->candidate > resStatusInfo_[pairResId]->candidate) {
567 if (limit) {
568 UpdatePairResValue(resId,
569 resStatusInfo_[pairResId]->candidate, pairResId, resStatusInfo_[pairResId]->candidate);
570 } else {
571 UpdatePairResValue(resId,
572 resStatusInfo_[resId]->candidate, pairResId, resStatusInfo_[resId]->candidate);
573 }
574 } else {
575 UpdatePairResValue(resId,
576 resStatusInfo_[resId]->candidate, pairResId, resStatusInfo_[pairResId]->candidate);
577 }
578 }
579 }
580
UpdatePairResValue(int32_t minResId,int64_t minResValue,int32_t maxResId,int64_t maxResValue)581 void SocPerfThreadWrap::UpdatePairResValue(int32_t minResId, int64_t minResValue, int32_t maxResId,
582 int64_t maxResValue)
583 {
584 UpdateCurrentValue(minResId, minResValue);
585 UpdateCurrentValue(maxResId, maxResValue);
586 }
587
UpdateCurrentValue(int32_t resId,int64_t currValue)588 void SocPerfThreadWrap::UpdateCurrentValue(int32_t resId, int64_t currValue)
589 {
590 resStatusInfo_[resId]->currentValue = currValue;
591 }
592
ExistNoCandidate(int32_t resId,std::shared_ptr<ResStatus> resStatus)593 bool SocPerfThreadWrap::ExistNoCandidate(int32_t resId, std::shared_ptr<ResStatus> resStatus)
594 {
595 int64_t perfCandidate = resStatus->candidatesValue[ACTION_TYPE_PERF];
596 int64_t powerCandidate = resStatus->candidatesValue[ACTION_TYPE_POWER];
597 int64_t thermalCandidate = resStatus->candidatesValue[ACTION_TYPE_THERMAL];
598 int64_t perfLvlCandidate = resStatus->candidatesValue[ACTION_TYPE_PERFLVL];
599 if (perfCandidate == INVALID_VALUE && powerCandidate == INVALID_VALUE && thermalCandidate == INVALID_VALUE
600 && perfLvlCandidate == INVALID_VALUE) {
601 resStatus->candidate = NODE_DEFAULT_VALUE;
602 resStatus->currentEndTime = MAX_INT_VALUE;
603 ArbitratePairRes(resId, false);
604 return true;
605 }
606 return false;
607 }
608 } // namespace SOCPERF
609 } // namespace OHOS
610