1 /*
2 * Copyright (c) 2021-2023 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #ifndef RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
17 #define RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
18
19 #define USE_MATH_DEFINES
20 #include <cmath>
21
22 #include "common/rs_macros.h"
23 #include "common/rs_vector2.h"
24 #include "common/rs_vector3.h"
25
26 // column-major order
27 namespace OHOS {
28 namespace Rosen {
29 template<typename T>
30 class Matrix3 {
31 public:
32 static const Matrix3 ZERO;
33 static const Matrix3 IDENTITY;
34 Matrix3();
35 Matrix3(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22);
36
37 Matrix3(const Matrix3& matrix) noexcept = default;
38
39 explicit Matrix3(const T* v);
40
41 ~Matrix3();
42 T Trace() const;
43 static int Index(int row, int col);
44 void SetIdentity();
45 void SetZero();
46 bool IsIdentity() const;
47 Matrix3 Inverse() const;
48 Matrix3 Multiply(const Matrix3& other) const;
49
50 Matrix3 operator+(const Matrix3& other) const;
51 Matrix3 operator-(const Matrix3& other) const;
52 Matrix3 operator-() const;
53 Matrix3 operator*(const Matrix3& other) const;
54 Vector3<T> operator*(const Vector3<T>& other) const;
55 Matrix3 operator*(T scale) const;
56 T* operator[](int col);
57 Matrix3& operator=(const Matrix3& other);
58 Matrix3& operator+=(const Matrix3& other);
59 Matrix3& operator-=(const Matrix3& other);
60 Matrix3& operator*=(const Matrix3& other);
61 Matrix3& operator*=(T scale);
62 bool operator==(const Matrix3& other) const;
63 bool operator!=(const Matrix3& other) const;
64 bool IsNearEqual(const Matrix3& other, T threshold = std::numeric_limits<T>::epsilon()) const;
65 T* GetData();
66 const T* GetConstData() const;
67 T Determinant() const;
68 Matrix3 Transpose() const;
69 Matrix3 Translate(const Vector2<T>& vec) const;
70 Matrix3 Rotate(T angle) const;
71 Matrix3 Rotate(T angle, T pivotx, T pivoty) const;
72 Matrix3 Scale(const Vector2<T>& vec) const;
73 Matrix3 Scale(const Vector2<T>& vec, T pivotx, T pivoty) const;
74 Matrix3 ShearX(T y) const;
75 Matrix3 ShearY(T x) const;
76
77 protected:
78 T data_[9] = { 0 };
79 };
80
81 typedef Matrix3<float> Matrix3f;
82 typedef Matrix3<double> Matrix3d;
83
84 template<typename T>
85 const Matrix3<T> Matrix3<T>::ZERO(0, 0, 0, 0, 0, 0, 0, 0, 0);
86
87 template<typename T>
88 const Matrix3<T> Matrix3<T>::IDENTITY(1, 0, 0, 0, 1, 0, 0, 0, 1);
89
90 template<typename T>
Matrix3()91 Matrix3<T>::Matrix3()
92 {}
93
94 template<typename T>
Matrix3(T m00,T m01,T m02,T m10,T m11,T m12,T m20,T m21,T m22)95 Matrix3<T>::Matrix3(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22)
96 {
97 data_[0] = m00;
98 data_[1] = m01;
99 data_[2] = m02;
100
101 data_[3] = m10;
102 data_[4] = m11;
103 data_[5] = m12;
104
105 data_[6] = m20;
106 data_[7] = m21;
107 data_[8] = m22;
108 }
109
110 template<typename T>
Matrix3(const T * v)111 Matrix3<T>::Matrix3(const T* v)
112 {
113 std::copy_n(v, std::size(data_), data_);
114 }
115
116 template<typename T>
~Matrix3()117 Matrix3<T>::~Matrix3()
118 {}
119
120 template<typename T>
Trace()121 T Matrix3<T>::Trace() const
122 {
123 T rTrace = 0.0;
124 rTrace += data_[0];
125 rTrace += data_[4];
126 rTrace += data_[8];
127 return rTrace;
128 }
129
130 template<typename T>
Index(int row,int col)131 int Matrix3<T>::Index(int row, int col)
132 {
133 return (col * 3) + row;
134 }
135
136 template<typename T>
SetIdentity()137 void Matrix3<T>::SetIdentity()
138 {
139 *this = IDENTITY;
140 }
141
142 template<typename T>
SetZero()143 void Matrix3<T>::SetZero()
144 {
145 *this = ZERO;
146 }
147
148 template<typename T>
IsIdentity()149 bool Matrix3<T>::IsIdentity() const
150 {
151 return (ROSEN_EQ<T>(data_[0], 1.0)) && (ROSEN_EQ<T>(data_[1], 0.0)) && (ROSEN_EQ<T>(data_[2], 0.0)) &&
152 (ROSEN_EQ<T>(data_[3], 0.0)) && (ROSEN_EQ<T>(data_[4], 1.0)) && (ROSEN_EQ<T>(data_[5], 0.0)) &&
153 (ROSEN_EQ<T>(data_[6], 0.0)) && (ROSEN_EQ<T>(data_[7], 0.0)) && (ROSEN_EQ<T>(data_[8], 1.0));
154 }
155
156 template<typename T>
Inverse()157 Matrix3<T> Matrix3<T>::Inverse() const
158 {
159 T det = Determinant();
160 if (ROSEN_EQ<T>(det, 0.0)) {
161 return Matrix3<T>(*this);
162 }
163
164 const T invDet = 1.0f / det;
165 const T* data = data_;
166
167 T iX = invDet * (data[4] * data[8] - data[5] * data[7]);
168 T iY = invDet * (data[2] * data[7] - data[1] * data[8]);
169 T iZ = invDet * (data[1] * data[5] - data[2] * data[4]);
170 T jX = invDet * (data[5] * data[6] - data[3] * data[8]);
171 T jY = invDet * (data[0] * data[8] - data[2] * data[6]);
172 T jZ = invDet * (data[2] * data[3] - data[0] * data[5]);
173 T kX = invDet * (data[3] * data[7] - data[4] * data[6]);
174 T kY = invDet * (data[1] * data[6] - data[0] * data[7]);
175 T kZ = invDet * (data[0] * data[4] - data[1] * data[3]);
176
177 return Matrix3<T>(iX, iY, iZ, jX, jY, jZ, kX, kY, kZ);
178 }
179
180 template<typename T>
Multiply(const Matrix3<T> & other)181 Matrix3<T> Matrix3<T>::Multiply(const Matrix3<T>& other) const
182 {
183 Matrix3<T> rMulti;
184 T* rData = rMulti.data_;
185 const T* oData = other.data_;
186
187 rData[0] = data_[0] * oData[0] + data_[3] * oData[1] + data_[6] * oData[2];
188 rData[3] = data_[0] * oData[3] + data_[3] * oData[4] + data_[6] * oData[5];
189 rData[6] = data_[0] * oData[6] + data_[3] * oData[7] + data_[6] * oData[8];
190
191 rData[1] = data_[1] * oData[0] + data_[4] * oData[1] + data_[7] * oData[2];
192 rData[4] = data_[1] * oData[3] + data_[4] * oData[4] + data_[7] * oData[5];
193 rData[7] = data_[1] * oData[6] + data_[4] * oData[7] + data_[7] * oData[8];
194
195 rData[2] = data_[2] * oData[0] + data_[5] * oData[1] + data_[8] * oData[2];
196 rData[5] = data_[2] * oData[3] + data_[5] * oData[4] + data_[8] * oData[5];
197 rData[8] = data_[2] * oData[6] + data_[5] * oData[7] + data_[8] * oData[8];
198 return rMulti;
199 }
200
201 template<typename T>
202 Matrix3<T> Matrix3<T>::operator+(const Matrix3<T>& other) const
203 {
204 Matrix3<T> rMat3Add;
205 T* rMat3Data = rMat3Add.data_;
206 const T* oData = other.data_;
207
208 rMat3Data[0] = data_[0] + oData[0];
209 rMat3Data[1] = data_[1] + oData[1];
210 rMat3Data[2] = data_[2] + oData[2];
211 rMat3Data[3] = data_[3] + oData[3];
212 rMat3Data[4] = data_[4] + oData[4];
213 rMat3Data[5] = data_[5] + oData[5];
214 rMat3Data[6] = data_[6] + oData[6];
215 rMat3Data[7] = data_[7] + oData[7];
216 rMat3Data[8] = data_[8] + oData[8];
217
218 return rMat3Add;
219 }
220
221 template<typename T>
222 Matrix3<T> Matrix3<T>::operator-(const Matrix3<T>& other) const
223 {
224 return *this + (-other);
225 }
226
227 template<typename T>
228 Matrix3<T> Matrix3<T>::operator-() const
229 {
230 Matrix3<T> rMat3Sub;
231 T* rMat3Data = rMat3Sub.data_;
232
233 rMat3Data[0] = -data_[0];
234 rMat3Data[1] = -data_[1];
235 rMat3Data[2] = -data_[2];
236 rMat3Data[3] = -data_[3];
237 rMat3Data[4] = -data_[4];
238 rMat3Data[5] = -data_[5];
239 rMat3Data[6] = -data_[6];
240 rMat3Data[7] = -data_[7];
241 rMat3Data[8] = -data_[8];
242
243 return rMat3Sub;
244 }
245
246 template<typename T>
247 Matrix3<T> Matrix3<T>::operator*(const Matrix3<T>& other) const
248 {
249 return Multiply(other);
250 }
251
252 template<typename T>
253 Vector3<T> Matrix3<T>::operator*(const Vector3<T>& other) const
254 {
255 Vector3<T> rMulti;
256 T* rData = rMulti.data_;
257 const T* oData = other.data_;
258 rData[0] = data_[0] * oData[0] + data_[3] * oData[1] + data_[6] * oData[2];
259
260 rData[1] = data_[1] * oData[0] + data_[4] * oData[1] + data_[7] * oData[2];
261
262 rData[2] = data_[2] * oData[0] + data_[5] * oData[1] + data_[8] * oData[2];
263 return rMulti;
264 }
265
266 template<typename T>
267 Matrix3<T> Matrix3<T>::operator*(T scale) const
268 {
269 Matrix3<T> rMulti;
270 T* rData = rMulti.data_;
271 rData[0] = data_[0] * scale;
272 rData[1] = data_[1] * scale;
273 rData[2] = data_[2] * scale;
274 rData[3] = data_[3] * scale;
275 rData[4] = data_[4] * scale;
276 rData[5] = data_[5] * scale;
277 rData[6] = data_[6] * scale;
278 rData[7] = data_[7] * scale;
279 rData[8] = data_[8] * scale;
280
281 return rMulti;
282 }
283
284 template<typename T>
285 T* Matrix3<T>::operator[](int col)
286 {
287 return &data_[col * 3];
288 }
289
290 template<typename T>
291 Matrix3<T>& Matrix3<T>::operator=(const Matrix3<T>& other)
292 {
293 const T* oMat3Data = other.data_;
294 data_[0] = oMat3Data[0];
295 data_[1] = oMat3Data[1];
296 data_[2] = oMat3Data[2];
297 data_[3] = oMat3Data[3];
298 data_[4] = oMat3Data[4];
299 data_[5] = oMat3Data[5];
300 data_[6] = oMat3Data[6];
301 data_[7] = oMat3Data[7];
302 data_[8] = oMat3Data[8];
303
304 return *this;
305 }
306
307 template<typename T>
308 Matrix3<T>& Matrix3<T>::operator+=(const Matrix3<T>& other)
309 {
310 const T* oData = other.data_;
311
312 data_[0] += oData[0];
313 data_[1] += oData[1];
314 data_[2] += oData[2];
315 data_[3] += oData[3];
316 data_[4] += oData[4];
317 data_[5] += oData[5];
318 data_[6] += oData[6];
319 data_[7] += oData[7];
320 data_[8] += oData[8];
321
322 return *this;
323 }
324
325 template<typename T>
326 Matrix3<T>& Matrix3<T>::operator-=(const Matrix3<T>& other)
327 {
328 const T* oData = other.data_;
329
330 data_[0] -= oData[0];
331 data_[1] -= oData[1];
332 data_[2] -= oData[2];
333 data_[3] -= oData[3];
334 data_[4] -= oData[4];
335 data_[5] -= oData[5];
336 data_[6] -= oData[6];
337 data_[7] -= oData[7];
338 data_[8] -= oData[8];
339
340 return *this;
341 }
342
343 template<typename T>
344 Matrix3<T>& Matrix3<T>::operator*=(const Matrix3<T>& other)
345 {
346 return (*this = *this * other);
347 }
348
349 template<typename T>
350 Matrix3<T>& Matrix3<T>::operator*=(T scale)
351 {
352 data_[0] *= scale;
353 data_[1] *= scale;
354 data_[2] *= scale;
355 data_[3] *= scale;
356 data_[4] *= scale;
357 data_[5] *= scale;
358 data_[6] *= scale;
359 data_[7] *= scale;
360 data_[8] *= scale;
361 return *this;
362 }
363
364 template<typename T>
365 bool Matrix3<T>::operator==(const Matrix3& other) const
366 {
367 const T* oData = other.data_;
368
369 return (ROSEN_EQ<T>(data_[0], oData[0])) && (ROSEN_EQ<T>(data_[1], oData[1])) &&
370 (ROSEN_EQ<T>(data_[2], oData[2])) && (ROSEN_EQ<T>(data_[3], oData[3])) &&
371 (ROSEN_EQ<T>(data_[4], oData[4])) && (ROSEN_EQ<T>(data_[5], oData[5])) &&
372 (ROSEN_EQ<T>(data_[6], oData[6])) && (ROSEN_EQ<T>(data_[7], oData[7])) && (ROSEN_EQ<T>(data_[8], oData[8]));
373 }
374
375 template<typename T>
376 bool Matrix3<T>::operator!=(const Matrix3& other) const
377 {
378 return !operator==(other);
379 }
380
381 template<typename T>
IsNearEqual(const Matrix3 & other,T threshold)382 bool Matrix3<T>::IsNearEqual(const Matrix3& other, T threshold) const
383 {
384 const T* otherData = other.data_;
385 auto result = std::equal(data_, data_ + 8, otherData,
386 [&threshold](const T& left, const T& right) { return ROSEN_EQ<T>(left, right, threshold); });
387 return result;
388 }
389
390 template<typename T>
GetData()391 inline T* Matrix3<T>::GetData()
392 {
393 return data_;
394 }
395
396 template<typename T>
GetConstData()397 const T* Matrix3<T>::GetConstData() const
398 {
399 return data_;
400 }
401
402 template<typename T>
Determinant()403 T Matrix3<T>::Determinant() const
404 {
405 T x = data_[0] * ((data_[4] * data_[8]) - (data_[5] * data_[7]));
406 T y = data_[1] * ((data_[3] * data_[8]) - (data_[5] * data_[6]));
407 T z = data_[2] * ((data_[3] * data_[7]) - (data_[4] * data_[6]));
408 return x - y + z;
409 }
410
411 template<typename T>
Transpose()412 Matrix3<T> Matrix3<T>::Transpose() const
413 {
414 Matrix3<T> rTrans;
415 T* rData = rTrans.data_;
416 rData[0] = data_[0];
417 rData[1] = data_[3];
418 rData[2] = data_[6];
419 rData[3] = data_[1];
420 rData[4] = data_[4];
421 rData[5] = data_[7];
422 rData[6] = data_[2];
423 rData[7] = data_[5];
424 rData[8] = data_[8];
425 return rTrans;
426 }
427
428 template<typename T>
Translate(const Vector2<T> & vec)429 Matrix3<T> Matrix3<T>::Translate(const Vector2<T>& vec) const
430 {
431 Matrix3<T> rTrans(*this);
432 T* rData = rTrans.data_;
433
434 rData[6] = data_[0] * vec[0] + data_[3] * vec[1] + data_[6];
435 rData[7] = data_[1] * vec[0] + data_[4] * vec[1] + data_[7];
436 rData[8] = data_[2] * vec[0] + data_[5] * vec[1] + data_[8];
437 return rTrans;
438 }
439
440 template<typename T>
Rotate(T angle)441 Matrix3<T> Matrix3<T>::Rotate(T angle) const
442 {
443 T a = angle;
444 T c = cos(a);
445 T s = sin(a);
446
447 Matrix3<T> rRotate(*this);
448 T* rData = rRotate.data_;
449 rData[0] = data_[0] * c + data_[3] * s;
450 rData[1] = data_[1] * c + data_[4] * s;
451 rData[2] = data_[2] * c + data_[5] * s;
452
453 rData[3] = data_[0] * -s + data_[3] * c;
454 rData[4] = data_[1] * -s + data_[4] * c;
455 rData[5] = data_[2] * -s + data_[5] * c;
456 return rRotate;
457 }
458
459 template<typename T>
Rotate(T angle,T pivotx,T pivoty)460 Matrix3<T> Matrix3<T>::Rotate(T angle, T pivotx, T pivoty) const
461 {
462 T a = angle;
463 T c = cos(a);
464 T s = sin(a);
465 T dx = s * pivoty + (1 - c) * pivotx;
466 T dy = -s * pivotx + (1 - c) * pivoty;
467
468 Matrix3<T> rRotate(*this);
469 T* rData = rRotate.data_;
470 rData[0] = data_[0] * c + data_[3] * s;
471 rData[1] = data_[1] * c + data_[4] * s;
472 rData[2] = data_[2] * c + data_[5] * s;
473
474 rData[3] = data_[0] * -s + data_[3] * c;
475 rData[4] = data_[1] * -s + data_[4] * c;
476 rData[5] = data_[2] * -s + data_[5] * c;
477
478 rData[6] = data_[0] * dx + data_[3] * dy + data_[6];
479 rData[7] = data_[1] * dx + data_[4] * dy + data_[7];
480 rData[8] = data_[2] * dx + data_[5] * dy + data_[8];
481 return rRotate;
482 }
483
484 template<typename T>
Scale(const Vector2<T> & vec)485 Matrix3<T> Matrix3<T>::Scale(const Vector2<T>& vec) const
486 {
487 Matrix3<T> rScale(*this);
488 T* rData = rScale.data_;
489 rData[0] = data_[0] * vec[0];
490 rData[1] = data_[1] * vec[0];
491 rData[2] = data_[2] * vec[0];
492
493 rData[3] = data_[3] * vec[1];
494 rData[4] = data_[4] * vec[1];
495 rData[5] = data_[5] * vec[1];
496 return rScale;
497 }
498
499 template<typename T>
Scale(const Vector2<T> & vec,T pivotx,T pivoty)500 Matrix3<T> Matrix3<T>::Scale(const Vector2<T>& vec, T pivotx, T pivoty) const
501 {
502 T dx = pivotx - vec[0] * pivotx;
503 T dy = pivoty - vec[1] * pivoty;
504
505 Matrix3<T> rScale(*this);
506 T* rData = rScale.data_;
507 rData[0] = data_[0] * vec[0];
508 rData[1] = data_[1] * vec[0];
509 rData[2] = data_[2] * vec[0];
510
511 rData[3] = data_[3] * vec[1];
512 rData[4] = data_[4] * vec[1];
513 rData[5] = data_[5] * vec[1];
514
515 rData[6] = data_[0] * dx + data_[3] * dy + data_[6];
516 rData[7] = data_[1] * dx + data_[4] * dy + data_[7];
517 rData[8] = data_[2] * dx + data_[5] * dy + data_[8];
518 return rScale;
519 }
520
521 template<typename T>
ShearX(T y)522 Matrix3<T> Matrix3<T>::ShearX(T y) const
523 {
524 Matrix3<T> rShear(Matrix3<T>::IDENTITY);
525 rShear.data_[1] = y;
526 return (*this) * rShear;
527 }
528
529 template<typename T>
ShearY(T x)530 Matrix3<T> Matrix3<T>::ShearY(T x) const
531 {
532 Matrix3<T> rShear(Matrix3<T>::IDENTITY);
533 rShear.data_[3] = x;
534 return (*this) * rShear;
535 }
536 } // namespace Rosen
537 } // namespace OHOS
538 #endif // RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
539