1 /*
2  * Copyright (c) 2021-2023 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #ifndef RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
17 #define RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
18 
19 #define USE_MATH_DEFINES
20 #include <cmath>
21 
22 #include "common/rs_macros.h"
23 #include "common/rs_vector2.h"
24 #include "common/rs_vector3.h"
25 
26 // column-major order
27 namespace OHOS {
28 namespace Rosen {
29 template<typename T>
30 class Matrix3 {
31 public:
32     static const Matrix3 ZERO;
33     static const Matrix3 IDENTITY;
34     Matrix3();
35     Matrix3(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22);
36 
37     Matrix3(const Matrix3& matrix) noexcept = default;
38 
39     explicit Matrix3(const T* v);
40 
41     ~Matrix3();
42     T Trace() const;
43     static int Index(int row, int col);
44     void SetIdentity();
45     void SetZero();
46     bool IsIdentity() const;
47     Matrix3 Inverse() const;
48     Matrix3 Multiply(const Matrix3& other) const;
49 
50     Matrix3 operator+(const Matrix3& other) const;
51     Matrix3 operator-(const Matrix3& other) const;
52     Matrix3 operator-() const;
53     Matrix3 operator*(const Matrix3& other) const;
54     Vector3<T> operator*(const Vector3<T>& other) const;
55     Matrix3 operator*(T scale) const;
56     T* operator[](int col);
57     Matrix3& operator=(const Matrix3& other);
58     Matrix3& operator+=(const Matrix3& other);
59     Matrix3& operator-=(const Matrix3& other);
60     Matrix3& operator*=(const Matrix3& other);
61     Matrix3& operator*=(T scale);
62     bool operator==(const Matrix3& other) const;
63     bool operator!=(const Matrix3& other) const;
64     bool IsNearEqual(const Matrix3& other, T threshold = std::numeric_limits<T>::epsilon()) const;
65     T* GetData();
66     const T* GetConstData() const;
67     T Determinant() const;
68     Matrix3 Transpose() const;
69     Matrix3 Translate(const Vector2<T>& vec) const;
70     Matrix3 Rotate(T angle) const;
71     Matrix3 Rotate(T angle, T pivotx, T pivoty) const;
72     Matrix3 Scale(const Vector2<T>& vec) const;
73     Matrix3 Scale(const Vector2<T>& vec, T pivotx, T pivoty) const;
74     Matrix3 ShearX(T y) const;
75     Matrix3 ShearY(T x) const;
76 
77 protected:
78     T data_[9] = { 0 };
79 };
80 
81 typedef Matrix3<float> Matrix3f;
82 typedef Matrix3<double> Matrix3d;
83 
84 template<typename T>
85 const Matrix3<T> Matrix3<T>::ZERO(0, 0, 0, 0, 0, 0, 0, 0, 0);
86 
87 template<typename T>
88 const Matrix3<T> Matrix3<T>::IDENTITY(1, 0, 0, 0, 1, 0, 0, 0, 1);
89 
90 template<typename T>
Matrix3()91 Matrix3<T>::Matrix3()
92 {}
93 
94 template<typename T>
Matrix3(T m00,T m01,T m02,T m10,T m11,T m12,T m20,T m21,T m22)95 Matrix3<T>::Matrix3(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22)
96 {
97     data_[0] = m00;
98     data_[1] = m01;
99     data_[2] = m02;
100 
101     data_[3] = m10;
102     data_[4] = m11;
103     data_[5] = m12;
104 
105     data_[6] = m20;
106     data_[7] = m21;
107     data_[8] = m22;
108 }
109 
110 template<typename T>
Matrix3(const T * v)111 Matrix3<T>::Matrix3(const T* v)
112 {
113     std::copy_n(v, std::size(data_), data_);
114 }
115 
116 template<typename T>
~Matrix3()117 Matrix3<T>::~Matrix3()
118 {}
119 
120 template<typename T>
Trace()121 T Matrix3<T>::Trace() const
122 {
123     T rTrace = 0.0;
124     rTrace += data_[0];
125     rTrace += data_[4];
126     rTrace += data_[8];
127     return rTrace;
128 }
129 
130 template<typename T>
Index(int row,int col)131 int Matrix3<T>::Index(int row, int col)
132 {
133     return (col * 3) + row;
134 }
135 
136 template<typename T>
SetIdentity()137 void Matrix3<T>::SetIdentity()
138 {
139     *this = IDENTITY;
140 }
141 
142 template<typename T>
SetZero()143 void Matrix3<T>::SetZero()
144 {
145     *this = ZERO;
146 }
147 
148 template<typename T>
IsIdentity()149 bool Matrix3<T>::IsIdentity() const
150 {
151     return (ROSEN_EQ<T>(data_[0], 1.0)) && (ROSEN_EQ<T>(data_[1], 0.0)) && (ROSEN_EQ<T>(data_[2], 0.0)) &&
152            (ROSEN_EQ<T>(data_[3], 0.0)) && (ROSEN_EQ<T>(data_[4], 1.0)) && (ROSEN_EQ<T>(data_[5], 0.0)) &&
153            (ROSEN_EQ<T>(data_[6], 0.0)) && (ROSEN_EQ<T>(data_[7], 0.0)) && (ROSEN_EQ<T>(data_[8], 1.0));
154 }
155 
156 template<typename T>
Inverse()157 Matrix3<T> Matrix3<T>::Inverse() const
158 {
159     T det = Determinant();
160     if (ROSEN_EQ<T>(det, 0.0)) {
161         return Matrix3<T>(*this);
162     }
163 
164     const T invDet = 1.0f / det;
165     const T* data = data_;
166 
167     T iX = invDet * (data[4] * data[8] - data[5] * data[7]);
168     T iY = invDet * (data[2] * data[7] - data[1] * data[8]);
169     T iZ = invDet * (data[1] * data[5] - data[2] * data[4]);
170     T jX = invDet * (data[5] * data[6] - data[3] * data[8]);
171     T jY = invDet * (data[0] * data[8] - data[2] * data[6]);
172     T jZ = invDet * (data[2] * data[3] - data[0] * data[5]);
173     T kX = invDet * (data[3] * data[7] - data[4] * data[6]);
174     T kY = invDet * (data[1] * data[6] - data[0] * data[7]);
175     T kZ = invDet * (data[0] * data[4] - data[1] * data[3]);
176 
177     return Matrix3<T>(iX, iY, iZ, jX, jY, jZ, kX, kY, kZ);
178 }
179 
180 template<typename T>
Multiply(const Matrix3<T> & other)181 Matrix3<T> Matrix3<T>::Multiply(const Matrix3<T>& other) const
182 {
183     Matrix3<T> rMulti;
184     T* rData = rMulti.data_;
185     const T* oData = other.data_;
186 
187     rData[0] = data_[0] * oData[0] + data_[3] * oData[1] + data_[6] * oData[2];
188     rData[3] = data_[0] * oData[3] + data_[3] * oData[4] + data_[6] * oData[5];
189     rData[6] = data_[0] * oData[6] + data_[3] * oData[7] + data_[6] * oData[8];
190 
191     rData[1] = data_[1] * oData[0] + data_[4] * oData[1] + data_[7] * oData[2];
192     rData[4] = data_[1] * oData[3] + data_[4] * oData[4] + data_[7] * oData[5];
193     rData[7] = data_[1] * oData[6] + data_[4] * oData[7] + data_[7] * oData[8];
194 
195     rData[2] = data_[2] * oData[0] + data_[5] * oData[1] + data_[8] * oData[2];
196     rData[5] = data_[2] * oData[3] + data_[5] * oData[4] + data_[8] * oData[5];
197     rData[8] = data_[2] * oData[6] + data_[5] * oData[7] + data_[8] * oData[8];
198     return rMulti;
199 }
200 
201 template<typename T>
202 Matrix3<T> Matrix3<T>::operator+(const Matrix3<T>& other) const
203 {
204     Matrix3<T> rMat3Add;
205     T* rMat3Data = rMat3Add.data_;
206     const T* oData = other.data_;
207 
208     rMat3Data[0] = data_[0] + oData[0];
209     rMat3Data[1] = data_[1] + oData[1];
210     rMat3Data[2] = data_[2] + oData[2];
211     rMat3Data[3] = data_[3] + oData[3];
212     rMat3Data[4] = data_[4] + oData[4];
213     rMat3Data[5] = data_[5] + oData[5];
214     rMat3Data[6] = data_[6] + oData[6];
215     rMat3Data[7] = data_[7] + oData[7];
216     rMat3Data[8] = data_[8] + oData[8];
217 
218     return rMat3Add;
219 }
220 
221 template<typename T>
222 Matrix3<T> Matrix3<T>::operator-(const Matrix3<T>& other) const
223 {
224     return *this + (-other);
225 }
226 
227 template<typename T>
228 Matrix3<T> Matrix3<T>::operator-() const
229 {
230     Matrix3<T> rMat3Sub;
231     T* rMat3Data = rMat3Sub.data_;
232 
233     rMat3Data[0] = -data_[0];
234     rMat3Data[1] = -data_[1];
235     rMat3Data[2] = -data_[2];
236     rMat3Data[3] = -data_[3];
237     rMat3Data[4] = -data_[4];
238     rMat3Data[5] = -data_[5];
239     rMat3Data[6] = -data_[6];
240     rMat3Data[7] = -data_[7];
241     rMat3Data[8] = -data_[8];
242 
243     return rMat3Sub;
244 }
245 
246 template<typename T>
247 Matrix3<T> Matrix3<T>::operator*(const Matrix3<T>& other) const
248 {
249     return Multiply(other);
250 }
251 
252 template<typename T>
253 Vector3<T> Matrix3<T>::operator*(const Vector3<T>& other) const
254 {
255     Vector3<T> rMulti;
256     T* rData = rMulti.data_;
257     const T* oData = other.data_;
258     rData[0] = data_[0] * oData[0] + data_[3] * oData[1] + data_[6] * oData[2];
259 
260     rData[1] = data_[1] * oData[0] + data_[4] * oData[1] + data_[7] * oData[2];
261 
262     rData[2] = data_[2] * oData[0] + data_[5] * oData[1] + data_[8] * oData[2];
263     return rMulti;
264 }
265 
266 template<typename T>
267 Matrix3<T> Matrix3<T>::operator*(T scale) const
268 {
269     Matrix3<T> rMulti;
270     T* rData = rMulti.data_;
271     rData[0] = data_[0] * scale;
272     rData[1] = data_[1] * scale;
273     rData[2] = data_[2] * scale;
274     rData[3] = data_[3] * scale;
275     rData[4] = data_[4] * scale;
276     rData[5] = data_[5] * scale;
277     rData[6] = data_[6] * scale;
278     rData[7] = data_[7] * scale;
279     rData[8] = data_[8] * scale;
280 
281     return rMulti;
282 }
283 
284 template<typename T>
285 T* Matrix3<T>::operator[](int col)
286 {
287     return &data_[col * 3];
288 }
289 
290 template<typename T>
291 Matrix3<T>& Matrix3<T>::operator=(const Matrix3<T>& other)
292 {
293     const T* oMat3Data = other.data_;
294     data_[0] = oMat3Data[0];
295     data_[1] = oMat3Data[1];
296     data_[2] = oMat3Data[2];
297     data_[3] = oMat3Data[3];
298     data_[4] = oMat3Data[4];
299     data_[5] = oMat3Data[5];
300     data_[6] = oMat3Data[6];
301     data_[7] = oMat3Data[7];
302     data_[8] = oMat3Data[8];
303 
304     return *this;
305 }
306 
307 template<typename T>
308 Matrix3<T>& Matrix3<T>::operator+=(const Matrix3<T>& other)
309 {
310     const T* oData = other.data_;
311 
312     data_[0] += oData[0];
313     data_[1] += oData[1];
314     data_[2] += oData[2];
315     data_[3] += oData[3];
316     data_[4] += oData[4];
317     data_[5] += oData[5];
318     data_[6] += oData[6];
319     data_[7] += oData[7];
320     data_[8] += oData[8];
321 
322     return *this;
323 }
324 
325 template<typename T>
326 Matrix3<T>& Matrix3<T>::operator-=(const Matrix3<T>& other)
327 {
328     const T* oData = other.data_;
329 
330     data_[0] -= oData[0];
331     data_[1] -= oData[1];
332     data_[2] -= oData[2];
333     data_[3] -= oData[3];
334     data_[4] -= oData[4];
335     data_[5] -= oData[5];
336     data_[6] -= oData[6];
337     data_[7] -= oData[7];
338     data_[8] -= oData[8];
339 
340     return *this;
341 }
342 
343 template<typename T>
344 Matrix3<T>& Matrix3<T>::operator*=(const Matrix3<T>& other)
345 {
346     return (*this = *this * other);
347 }
348 
349 template<typename T>
350 Matrix3<T>& Matrix3<T>::operator*=(T scale)
351 {
352     data_[0] *= scale;
353     data_[1] *= scale;
354     data_[2] *= scale;
355     data_[3] *= scale;
356     data_[4] *= scale;
357     data_[5] *= scale;
358     data_[6] *= scale;
359     data_[7] *= scale;
360     data_[8] *= scale;
361     return *this;
362 }
363 
364 template<typename T>
365 bool Matrix3<T>::operator==(const Matrix3& other) const
366 {
367     const T* oData = other.data_;
368 
369     return (ROSEN_EQ<T>(data_[0], oData[0])) && (ROSEN_EQ<T>(data_[1], oData[1])) &&
370            (ROSEN_EQ<T>(data_[2], oData[2])) && (ROSEN_EQ<T>(data_[3], oData[3])) &&
371            (ROSEN_EQ<T>(data_[4], oData[4])) && (ROSEN_EQ<T>(data_[5], oData[5])) &&
372            (ROSEN_EQ<T>(data_[6], oData[6])) && (ROSEN_EQ<T>(data_[7], oData[7])) && (ROSEN_EQ<T>(data_[8], oData[8]));
373 }
374 
375 template<typename T>
376 bool Matrix3<T>::operator!=(const Matrix3& other) const
377 {
378     return !operator==(other);
379 }
380 
381 template<typename T>
IsNearEqual(const Matrix3 & other,T threshold)382 bool Matrix3<T>::IsNearEqual(const Matrix3& other, T threshold) const
383 {
384     const T* otherData = other.data_;
385     auto result = std::equal(data_, data_ + 8, otherData,
386         [&threshold](const T& left, const T& right) { return ROSEN_EQ<T>(left, right, threshold); });
387     return result;
388 }
389 
390 template<typename T>
GetData()391 inline T* Matrix3<T>::GetData()
392 {
393     return data_;
394 }
395 
396 template<typename T>
GetConstData()397 const T* Matrix3<T>::GetConstData() const
398 {
399     return data_;
400 }
401 
402 template<typename T>
Determinant()403 T Matrix3<T>::Determinant() const
404 {
405     T x = data_[0] * ((data_[4] * data_[8]) - (data_[5] * data_[7]));
406     T y = data_[1] * ((data_[3] * data_[8]) - (data_[5] * data_[6]));
407     T z = data_[2] * ((data_[3] * data_[7]) - (data_[4] * data_[6]));
408     return x - y + z;
409 }
410 
411 template<typename T>
Transpose()412 Matrix3<T> Matrix3<T>::Transpose() const
413 {
414     Matrix3<T> rTrans;
415     T* rData = rTrans.data_;
416     rData[0] = data_[0];
417     rData[1] = data_[3];
418     rData[2] = data_[6];
419     rData[3] = data_[1];
420     rData[4] = data_[4];
421     rData[5] = data_[7];
422     rData[6] = data_[2];
423     rData[7] = data_[5];
424     rData[8] = data_[8];
425     return rTrans;
426 }
427 
428 template<typename T>
Translate(const Vector2<T> & vec)429 Matrix3<T> Matrix3<T>::Translate(const Vector2<T>& vec) const
430 {
431     Matrix3<T> rTrans(*this);
432     T* rData = rTrans.data_;
433 
434     rData[6] = data_[0] * vec[0] + data_[3] * vec[1] + data_[6];
435     rData[7] = data_[1] * vec[0] + data_[4] * vec[1] + data_[7];
436     rData[8] = data_[2] * vec[0] + data_[5] * vec[1] + data_[8];
437     return rTrans;
438 }
439 
440 template<typename T>
Rotate(T angle)441 Matrix3<T> Matrix3<T>::Rotate(T angle) const
442 {
443     T a = angle;
444     T c = cos(a);
445     T s = sin(a);
446 
447     Matrix3<T> rRotate(*this);
448     T* rData = rRotate.data_;
449     rData[0] = data_[0] * c + data_[3] * s;
450     rData[1] = data_[1] * c + data_[4] * s;
451     rData[2] = data_[2] * c + data_[5] * s;
452 
453     rData[3] = data_[0] * -s + data_[3] * c;
454     rData[4] = data_[1] * -s + data_[4] * c;
455     rData[5] = data_[2] * -s + data_[5] * c;
456     return rRotate;
457 }
458 
459 template<typename T>
Rotate(T angle,T pivotx,T pivoty)460 Matrix3<T> Matrix3<T>::Rotate(T angle, T pivotx, T pivoty) const
461 {
462     T a = angle;
463     T c = cos(a);
464     T s = sin(a);
465     T dx = s * pivoty + (1 - c) * pivotx;
466     T dy = -s * pivotx + (1 - c) * pivoty;
467 
468     Matrix3<T> rRotate(*this);
469     T* rData = rRotate.data_;
470     rData[0] = data_[0] * c + data_[3] * s;
471     rData[1] = data_[1] * c + data_[4] * s;
472     rData[2] = data_[2] * c + data_[5] * s;
473 
474     rData[3] = data_[0] * -s + data_[3] * c;
475     rData[4] = data_[1] * -s + data_[4] * c;
476     rData[5] = data_[2] * -s + data_[5] * c;
477 
478     rData[6] = data_[0] * dx + data_[3] * dy + data_[6];
479     rData[7] = data_[1] * dx + data_[4] * dy + data_[7];
480     rData[8] = data_[2] * dx + data_[5] * dy + data_[8];
481     return rRotate;
482 }
483 
484 template<typename T>
Scale(const Vector2<T> & vec)485 Matrix3<T> Matrix3<T>::Scale(const Vector2<T>& vec) const
486 {
487     Matrix3<T> rScale(*this);
488     T* rData = rScale.data_;
489     rData[0] = data_[0] * vec[0];
490     rData[1] = data_[1] * vec[0];
491     rData[2] = data_[2] * vec[0];
492 
493     rData[3] = data_[3] * vec[1];
494     rData[4] = data_[4] * vec[1];
495     rData[5] = data_[5] * vec[1];
496     return rScale;
497 }
498 
499 template<typename T>
Scale(const Vector2<T> & vec,T pivotx,T pivoty)500 Matrix3<T> Matrix3<T>::Scale(const Vector2<T>& vec, T pivotx, T pivoty) const
501 {
502     T dx = pivotx - vec[0] * pivotx;
503     T dy = pivoty - vec[1] * pivoty;
504 
505     Matrix3<T> rScale(*this);
506     T* rData = rScale.data_;
507     rData[0] = data_[0] * vec[0];
508     rData[1] = data_[1] * vec[0];
509     rData[2] = data_[2] * vec[0];
510 
511     rData[3] = data_[3] * vec[1];
512     rData[4] = data_[4] * vec[1];
513     rData[5] = data_[5] * vec[1];
514 
515     rData[6] = data_[0] * dx + data_[3] * dy + data_[6];
516     rData[7] = data_[1] * dx + data_[4] * dy + data_[7];
517     rData[8] = data_[2] * dx + data_[5] * dy + data_[8];
518     return rScale;
519 }
520 
521 template<typename T>
ShearX(T y)522 Matrix3<T> Matrix3<T>::ShearX(T y) const
523 {
524     Matrix3<T> rShear(Matrix3<T>::IDENTITY);
525     rShear.data_[1] = y;
526     return (*this) * rShear;
527 }
528 
529 template<typename T>
ShearY(T x)530 Matrix3<T> Matrix3<T>::ShearY(T x) const
531 {
532     Matrix3<T> rShear(Matrix3<T>::IDENTITY);
533     rShear.data_[3] = x;
534     return (*this) * rShear;
535 }
536 } // namespace Rosen
537 } // namespace OHOS
538 #endif // RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
539