1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "compile/Image.h"
18 
19 #include <sstream>
20 #include <string>
21 #include <vector>
22 
23 #include "androidfw/ResourceTypes.h"
24 #include "androidfw/StringPiece.h"
25 
26 #include "util/Util.h"
27 
28 using android::StringPiece;
29 
30 namespace aapt {
31 
32 // Colors in the format 0xAARRGGBB (the way 9-patch expects it).
33 constexpr static const uint32_t kColorOpaqueWhite = 0xffffffffu;
34 constexpr static const uint32_t kColorOpaqueBlack = 0xff000000u;
35 constexpr static const uint32_t kColorOpaqueRed = 0xffff0000u;
36 
37 constexpr static const uint32_t kPrimaryColor = kColorOpaqueBlack;
38 constexpr static const uint32_t kSecondaryColor = kColorOpaqueRed;
39 
40 /**
41  * Returns the alpha value encoded in the 0xAARRGBB encoded pixel.
42  */
43 static uint32_t get_alpha(uint32_t color);
44 
45 /**
46  * Determines whether a color on an ImageLine is valid.
47  * A 9patch image may use a transparent color as neutral,
48  * or a fully opaque white color as neutral, based on the
49  * pixel color at (0,0) of the image. One or the other is fine,
50  * but we need to ensure consistency throughout the image.
51  */
52 class ColorValidator {
53  public:
54   virtual ~ColorValidator() = default;
55 
56   /**
57    * Returns true if the color specified is a neutral color
58    * (no padding, stretching, or optical bounds).
59    */
60   virtual bool IsNeutralColor(uint32_t color) const = 0;
61 
62   /**
63    * Returns true if the color is either a neutral color
64    * or one denoting padding, stretching, or optical bounds.
65    */
IsValidColor(uint32_t color) const66   bool IsValidColor(uint32_t color) const {
67     switch (color) {
68       case kPrimaryColor:
69       case kSecondaryColor:
70         return true;
71     }
72     return IsNeutralColor(color);
73   }
74 };
75 
76 // Walks an ImageLine and records Ranges of primary and secondary colors.
77 // The primary color is black and is used to denote a padding or stretching
78 // range,
79 // depending on which border we're iterating over.
80 // The secondary color is red and is used to denote optical bounds.
81 //
82 // An ImageLine is a templated-interface that would look something like this if
83 // it
84 // were polymorphic:
85 //
86 // class ImageLine {
87 // public:
88 //      virtual int32_t GetLength() const = 0;
89 //      virtual uint32_t GetColor(int32_t idx) const = 0;
90 // };
91 //
92 template <typename ImageLine>
FillRanges(const ImageLine * image_line,const ColorValidator * color_validator,std::vector<Range> * primary_ranges,std::vector<Range> * secondary_ranges,std::string * out_err)93 static bool FillRanges(const ImageLine* image_line,
94                        const ColorValidator* color_validator,
95                        std::vector<Range>* primary_ranges,
96                        std::vector<Range>* secondary_ranges,
97                        std::string* out_err) {
98   const int32_t length = image_line->GetLength();
99 
100   uint32_t last_color = 0xffffffffu;
101   for (int32_t idx = 1; idx < length - 1; idx++) {
102     const uint32_t color = image_line->GetColor(idx);
103     if (!color_validator->IsValidColor(color)) {
104       *out_err = "found an invalid color";
105       return false;
106     }
107 
108     if (color != last_color) {
109       // We are ending a range. Which range?
110       // note: encode the x offset without the final 1 pixel border.
111       if (last_color == kPrimaryColor) {
112         primary_ranges->back().end = idx - 1;
113       } else if (last_color == kSecondaryColor) {
114         secondary_ranges->back().end = idx - 1;
115       }
116 
117       // We are starting a range. Which range?
118       // note: encode the x offset without the final 1 pixel border.
119       if (color == kPrimaryColor) {
120         primary_ranges->push_back(Range(idx - 1, length - 2));
121       } else if (color == kSecondaryColor) {
122         secondary_ranges->push_back(Range(idx - 1, length - 2));
123       }
124       last_color = color;
125     }
126   }
127   return true;
128 }
129 
130 /**
131  * Iterates over a row in an image. Implements the templated ImageLine
132  * interface.
133  */
134 class HorizontalImageLine {
135  public:
HorizontalImageLine(uint8_t ** rows,int32_t xoffset,int32_t yoffset,int32_t length)136   explicit HorizontalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset,
137                                int32_t length)
138       : rows_(rows), xoffset_(xoffset), yoffset_(yoffset), length_(length) {}
139 
GetLength() const140   inline int32_t GetLength() const { return length_; }
141 
GetColor(int32_t idx) const142   inline uint32_t GetColor(int32_t idx) const {
143     return NinePatch::PackRGBA(rows_[yoffset_] + (idx + xoffset_) * 4);
144   }
145 
146  private:
147   uint8_t** rows_;
148   int32_t xoffset_, yoffset_, length_;
149 
150   DISALLOW_COPY_AND_ASSIGN(HorizontalImageLine);
151 };
152 
153 /**
154  * Iterates over a column in an image. Implements the templated ImageLine
155  * interface.
156  */
157 class VerticalImageLine {
158  public:
VerticalImageLine(uint8_t ** rows,int32_t xoffset,int32_t yoffset,int32_t length)159   explicit VerticalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset,
160                              int32_t length)
161       : rows_(rows), xoffset_(xoffset), yoffset_(yoffset), length_(length) {}
162 
GetLength() const163   inline int32_t GetLength() const { return length_; }
164 
GetColor(int32_t idx) const165   inline uint32_t GetColor(int32_t idx) const {
166     return NinePatch::PackRGBA(rows_[yoffset_ + idx] + (xoffset_ * 4));
167   }
168 
169  private:
170   uint8_t** rows_;
171   int32_t xoffset_, yoffset_, length_;
172 
173   DISALLOW_COPY_AND_ASSIGN(VerticalImageLine);
174 };
175 
176 class DiagonalImageLine {
177  public:
DiagonalImageLine(uint8_t ** rows,int32_t xoffset,int32_t yoffset,int32_t xstep,int32_t ystep,int32_t length)178   explicit DiagonalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset,
179                              int32_t xstep, int32_t ystep, int32_t length)
180       : rows_(rows),
181         xoffset_(xoffset),
182         yoffset_(yoffset),
183         xstep_(xstep),
184         ystep_(ystep),
185         length_(length) {}
186 
GetLength() const187   inline int32_t GetLength() const { return length_; }
188 
GetColor(int32_t idx) const189   inline uint32_t GetColor(int32_t idx) const {
190     return NinePatch::PackRGBA(rows_[yoffset_ + (idx * ystep_)] +
191                                ((idx + xoffset_) * xstep_) * 4);
192   }
193 
194  private:
195   uint8_t** rows_;
196   int32_t xoffset_, yoffset_, xstep_, ystep_, length_;
197 
198   DISALLOW_COPY_AND_ASSIGN(DiagonalImageLine);
199 };
200 
201 class TransparentNeutralColorValidator : public ColorValidator {
202  public:
IsNeutralColor(uint32_t color) const203   bool IsNeutralColor(uint32_t color) const override {
204     return get_alpha(color) == 0;
205   }
206 };
207 
208 class WhiteNeutralColorValidator : public ColorValidator {
209  public:
IsNeutralColor(uint32_t color) const210   bool IsNeutralColor(uint32_t color) const override {
211     return color == kColorOpaqueWhite;
212   }
213 };
214 
get_alpha(uint32_t color)215 inline static uint32_t get_alpha(uint32_t color) {
216   return (color & 0xff000000u) >> 24;
217 }
218 
PopulateBounds(const std::vector<Range> & padding,const std::vector<Range> & layout_bounds,const std::vector<Range> & stretch_regions,const int32_t length,int32_t * padding_start,int32_t * padding_end,int32_t * layout_start,int32_t * layout_end,StringPiece edge_name,std::string * out_err)219 static bool PopulateBounds(const std::vector<Range>& padding,
220                            const std::vector<Range>& layout_bounds,
221                            const std::vector<Range>& stretch_regions, const int32_t length,
222                            int32_t* padding_start, int32_t* padding_end, int32_t* layout_start,
223                            int32_t* layout_end, StringPiece edge_name, std::string* out_err) {
224   if (padding.size() > 1) {
225     std::stringstream err_stream;
226     err_stream << "too many padding sections on " << edge_name << " border";
227     *out_err = err_stream.str();
228     return false;
229   }
230 
231   *padding_start = 0;
232   *padding_end = 0;
233   if (!padding.empty()) {
234     const Range& range = padding.front();
235     *padding_start = range.start;
236     *padding_end = length - range.end;
237   } else if (!stretch_regions.empty()) {
238     // No padding was defined. Compute the padding from the first and last
239     // stretch regions.
240     *padding_start = stretch_regions.front().start;
241     *padding_end = length - stretch_regions.back().end;
242   }
243 
244   if (layout_bounds.size() > 2) {
245     std::stringstream err_stream;
246     err_stream << "too many layout bounds sections on " << edge_name
247                << " border";
248     *out_err = err_stream.str();
249     return false;
250   }
251 
252   *layout_start = 0;
253   *layout_end = 0;
254   if (layout_bounds.size() >= 1) {
255     const Range& range = layout_bounds.front();
256     // If there is only one layout bound segment, it might not start at 0, but
257     // then it should
258     // end at length.
259     if (range.start != 0 && range.end != length) {
260       std::stringstream err_stream;
261       err_stream << "layout bounds on " << edge_name
262                  << " border must start at edge";
263       *out_err = err_stream.str();
264       return false;
265     }
266     *layout_start = range.end;
267 
268     if (layout_bounds.size() >= 2) {
269       const Range& range = layout_bounds.back();
270       if (range.end != length) {
271         std::stringstream err_stream;
272         err_stream << "layout bounds on " << edge_name
273                    << " border must start at edge";
274         *out_err = err_stream.str();
275         return false;
276       }
277       *layout_end = length - range.start;
278     }
279   }
280   return true;
281 }
282 
CalculateSegmentCount(const std::vector<Range> & stretch_regions,int32_t length)283 static int32_t CalculateSegmentCount(const std::vector<Range>& stretch_regions,
284                                      int32_t length) {
285   if (stretch_regions.size() == 0) {
286     return 0;
287   }
288 
289   const bool start_is_fixed = stretch_regions.front().start != 0;
290   const bool end_is_fixed = stretch_regions.back().end != length;
291   int32_t modifier = 0;
292   if (start_is_fixed && end_is_fixed) {
293     modifier = 1;
294   } else if (!start_is_fixed && !end_is_fixed) {
295     modifier = -1;
296   }
297   return static_cast<int32_t>(stretch_regions.size()) * 2 + modifier;
298 }
299 
GetRegionColor(uint8_t ** rows,const Bounds & region)300 static uint32_t GetRegionColor(uint8_t** rows, const Bounds& region) {
301   // Sample the first pixel to compare against.
302   const uint32_t expected_color =
303       NinePatch::PackRGBA(rows[region.top] + region.left * 4);
304   for (int32_t y = region.top; y < region.bottom; y++) {
305     const uint8_t* row = rows[y];
306     for (int32_t x = region.left; x < region.right; x++) {
307       const uint32_t color = NinePatch::PackRGBA(row + x * 4);
308       if (get_alpha(color) == 0) {
309         // The color is transparent.
310         // If the expectedColor is not transparent, NO_COLOR.
311         if (get_alpha(expected_color) != 0) {
312           return android::Res_png_9patch::NO_COLOR;
313         }
314       } else if (color != expected_color) {
315         return android::Res_png_9patch::NO_COLOR;
316       }
317     }
318   }
319 
320   if (get_alpha(expected_color) == 0) {
321     return android::Res_png_9patch::TRANSPARENT_COLOR;
322   }
323   return expected_color;
324 }
325 
326 // Fills out_colors with each 9-patch section's color. If the whole section is
327 // transparent,
328 // it gets the special TRANSPARENT color. If the whole section is the same
329 // color, it is assigned
330 // that color. Otherwise it gets the special NO_COLOR color.
331 //
332 // Note that the rows contain the 9-patch 1px border, and the indices in the
333 // stretch regions are
334 // already offset to exclude the border. This means that each time the rows are
335 // accessed,
336 // the indices must be offset by 1.
337 //
338 // width and height also include the 9-patch 1px border.
CalculateRegionColors(uint8_t ** rows,const std::vector<Range> & horizontal_stretch_regions,const std::vector<Range> & vertical_stretch_regions,const int32_t width,const int32_t height,std::vector<uint32_t> * out_colors)339 static void CalculateRegionColors(
340     uint8_t** rows, const std::vector<Range>& horizontal_stretch_regions,
341     const std::vector<Range>& vertical_stretch_regions, const int32_t width,
342     const int32_t height, std::vector<uint32_t>* out_colors) {
343   int32_t next_top = 0;
344   Bounds bounds;
345   auto row_iter = vertical_stretch_regions.begin();
346   while (next_top != height) {
347     if (row_iter != vertical_stretch_regions.end()) {
348       if (next_top != row_iter->start) {
349         // This is a fixed segment.
350         // Offset the bounds by 1 to accommodate the border.
351         bounds.top = next_top + 1;
352         bounds.bottom = row_iter->start + 1;
353         next_top = row_iter->start;
354       } else {
355         // This is a stretchy segment.
356         // Offset the bounds by 1 to accommodate the border.
357         bounds.top = row_iter->start + 1;
358         bounds.bottom = row_iter->end + 1;
359         next_top = row_iter->end;
360         ++row_iter;
361       }
362     } else {
363       // This is the end, fixed section.
364       // Offset the bounds by 1 to accommodate the border.
365       bounds.top = next_top + 1;
366       bounds.bottom = height + 1;
367       next_top = height;
368     }
369 
370     int32_t next_left = 0;
371     auto col_iter = horizontal_stretch_regions.begin();
372     while (next_left != width) {
373       if (col_iter != horizontal_stretch_regions.end()) {
374         if (next_left != col_iter->start) {
375           // This is a fixed segment.
376           // Offset the bounds by 1 to accommodate the border.
377           bounds.left = next_left + 1;
378           bounds.right = col_iter->start + 1;
379           next_left = col_iter->start;
380         } else {
381           // This is a stretchy segment.
382           // Offset the bounds by 1 to accommodate the border.
383           bounds.left = col_iter->start + 1;
384           bounds.right = col_iter->end + 1;
385           next_left = col_iter->end;
386           ++col_iter;
387         }
388       } else {
389         // This is the end, fixed section.
390         // Offset the bounds by 1 to accommodate the border.
391         bounds.left = next_left + 1;
392         bounds.right = width + 1;
393         next_left = width;
394       }
395       out_colors->push_back(GetRegionColor(rows, bounds));
396     }
397   }
398 }
399 
400 // Calculates the insets of a row/column of pixels based on where the largest
401 // alpha value begins
402 // (on both sides).
403 template <typename ImageLine>
FindOutlineInsets(const ImageLine * image_line,int32_t * out_start,int32_t * out_end)404 static void FindOutlineInsets(const ImageLine* image_line, int32_t* out_start,
405                               int32_t* out_end) {
406   *out_start = 0;
407   *out_end = 0;
408 
409   const int32_t length = image_line->GetLength();
410   if (length < 3) {
411     return;
412   }
413 
414   // If the length is odd, we want both sides to process the center pixel,
415   // so we use two different midpoints (to account for < and <= in the different
416   // loops).
417   const int32_t mid2 = length / 2;
418   const int32_t mid1 = mid2 + (length % 2);
419 
420   uint32_t max_alpha = 0;
421   for (int32_t i = 0; i < mid1 && max_alpha != 0xff; i++) {
422     uint32_t alpha = get_alpha(image_line->GetColor(i));
423     if (alpha > max_alpha) {
424       max_alpha = alpha;
425       *out_start = i;
426     }
427   }
428 
429   max_alpha = 0;
430   for (int32_t i = length - 1; i >= mid2 && max_alpha != 0xff; i--) {
431     uint32_t alpha = get_alpha(image_line->GetColor(i));
432     if (alpha > max_alpha) {
433       max_alpha = alpha;
434       *out_end = length - (i + 1);
435     }
436   }
437   return;
438 }
439 
440 template <typename ImageLine>
FindMaxAlpha(const ImageLine * image_line)441 static uint32_t FindMaxAlpha(const ImageLine* image_line) {
442   const int32_t length = image_line->GetLength();
443   uint32_t max_alpha = 0;
444   for (int32_t idx = 0; idx < length && max_alpha != 0xff; idx++) {
445     uint32_t alpha = get_alpha(image_line->GetColor(idx));
446     if (alpha > max_alpha) {
447       max_alpha = alpha;
448     }
449   }
450   return max_alpha;
451 }
452 
453 // Pack the pixels in as 0xAARRGGBB (as 9-patch expects it).
PackRGBA(const uint8_t * pixel)454 uint32_t NinePatch::PackRGBA(const uint8_t* pixel) {
455   return (pixel[3] << 24) | (pixel[0] << 16) | (pixel[1] << 8) | pixel[2];
456 }
457 
Create(uint8_t ** rows,const int32_t width,const int32_t height,std::string * out_err)458 std::unique_ptr<NinePatch> NinePatch::Create(uint8_t** rows,
459                                              const int32_t width,
460                                              const int32_t height,
461                                              std::string* out_err) {
462   if (width < 3 || height < 3) {
463     *out_err = "image must be at least 3x3 (1x1 image with 1 pixel border)";
464     return {};
465   }
466 
467   std::vector<Range> horizontal_padding;
468   std::vector<Range> horizontal_layout_bounds;
469   std::vector<Range> vertical_padding;
470   std::vector<Range> vertical_layout_bounds;
471   std::vector<Range> unexpected_ranges;
472   std::unique_ptr<ColorValidator> color_validator;
473 
474   if (rows[0][3] == 0) {
475     color_validator = util::make_unique<TransparentNeutralColorValidator>();
476   } else if (PackRGBA(rows[0]) == kColorOpaqueWhite) {
477     color_validator = util::make_unique<WhiteNeutralColorValidator>();
478   } else {
479     *out_err =
480         "top-left corner pixel must be either opaque white or transparent";
481     return {};
482   }
483 
484   // Private constructor, can't use make_unique.
485   auto nine_patch = std::unique_ptr<NinePatch>(new NinePatch());
486 
487   HorizontalImageLine top_row(rows, 0, 0, width);
488   if (!FillRanges(&top_row, color_validator.get(),
489                   &nine_patch->horizontal_stretch_regions, &unexpected_ranges,
490                   out_err)) {
491     return {};
492   }
493 
494   if (!unexpected_ranges.empty()) {
495     const Range& range = unexpected_ranges[0];
496     std::stringstream err_stream;
497     err_stream << "found unexpected optical bounds (red pixel) on top border "
498                << "at x=" << range.start + 1;
499     *out_err = err_stream.str();
500     return {};
501   }
502 
503   VerticalImageLine left_col(rows, 0, 0, height);
504   if (!FillRanges(&left_col, color_validator.get(),
505                   &nine_patch->vertical_stretch_regions, &unexpected_ranges,
506                   out_err)) {
507     return {};
508   }
509 
510   if (!unexpected_ranges.empty()) {
511     const Range& range = unexpected_ranges[0];
512     std::stringstream err_stream;
513     err_stream << "found unexpected optical bounds (red pixel) on left border "
514                << "at y=" << range.start + 1;
515     return {};
516   }
517 
518   HorizontalImageLine bottom_row(rows, 0, height - 1, width);
519   if (!FillRanges(&bottom_row, color_validator.get(), &horizontal_padding,
520                   &horizontal_layout_bounds, out_err)) {
521     return {};
522   }
523 
524   if (!PopulateBounds(horizontal_padding, horizontal_layout_bounds,
525                       nine_patch->horizontal_stretch_regions, width - 2,
526                       &nine_patch->padding.left, &nine_patch->padding.right,
527                       &nine_patch->layout_bounds.left,
528                       &nine_patch->layout_bounds.right, "bottom", out_err)) {
529     return {};
530   }
531 
532   VerticalImageLine right_col(rows, width - 1, 0, height);
533   if (!FillRanges(&right_col, color_validator.get(), &vertical_padding,
534                   &vertical_layout_bounds, out_err)) {
535     return {};
536   }
537 
538   if (!PopulateBounds(vertical_padding, vertical_layout_bounds,
539                       nine_patch->vertical_stretch_regions, height - 2,
540                       &nine_patch->padding.top, &nine_patch->padding.bottom,
541                       &nine_patch->layout_bounds.top,
542                       &nine_patch->layout_bounds.bottom, "right", out_err)) {
543     return {};
544   }
545 
546   // Fill the region colors of the 9-patch.
547   const int32_t num_rows =
548       CalculateSegmentCount(nine_patch->horizontal_stretch_regions, width - 2);
549   const int32_t num_cols =
550       CalculateSegmentCount(nine_patch->vertical_stretch_regions, height - 2);
551   if ((int64_t)num_rows * (int64_t)num_cols > 0x7f) {
552     *out_err = "too many regions in 9-patch";
553     return {};
554   }
555 
556   nine_patch->region_colors.reserve(num_rows * num_cols);
557   CalculateRegionColors(rows, nine_patch->horizontal_stretch_regions,
558                         nine_patch->vertical_stretch_regions, width - 2,
559                         height - 2, &nine_patch->region_colors);
560 
561   // Compute the outline based on opacity.
562 
563   // Find left and right extent of 9-patch content on center row.
564   HorizontalImageLine mid_row(rows, 1, height / 2, width - 2);
565   FindOutlineInsets(&mid_row, &nine_patch->outline.left,
566                     &nine_patch->outline.right);
567 
568   // Find top and bottom extent of 9-patch content on center column.
569   VerticalImageLine mid_col(rows, width / 2, 1, height - 2);
570   FindOutlineInsets(&mid_col, &nine_patch->outline.top,
571                     &nine_patch->outline.bottom);
572 
573   const int32_t outline_width =
574       (width - 2) - nine_patch->outline.left - nine_patch->outline.right;
575   const int32_t outline_height =
576       (height - 2) - nine_patch->outline.top - nine_patch->outline.bottom;
577 
578   // Find the largest alpha value within the outline area.
579   HorizontalImageLine outline_mid_row(
580       rows, 1 + nine_patch->outline.left,
581       1 + nine_patch->outline.top + (outline_height / 2), outline_width);
582   VerticalImageLine outline_mid_col(
583       rows, 1 + nine_patch->outline.left + (outline_width / 2),
584       1 + nine_patch->outline.top, outline_height);
585   nine_patch->outline_alpha =
586       std::max(FindMaxAlpha(&outline_mid_row), FindMaxAlpha(&outline_mid_col));
587 
588   // Assuming the image is a round rect, compute the radius by marching
589   // diagonally from the top left corner towards the center.
590   DiagonalImageLine diagonal(rows, 1 + nine_patch->outline.left,
591                              1 + nine_patch->outline.top, 1, 1,
592                              std::min(outline_width, outline_height));
593   int32_t top_left, bottom_right;
594   FindOutlineInsets(&diagonal, &top_left, &bottom_right);
595 
596   /* Determine source radius based upon inset:
597    *     sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
598    *     sqrt(2) * r = sqrt(2) * i + r
599    *     (sqrt(2) - 1) * r = sqrt(2) * i
600    *     r = sqrt(2) / (sqrt(2) - 1) * i
601    */
602   nine_patch->outline_radius = 3.4142f * top_left;
603   return nine_patch;
604 }
605 
SerializeBase(size_t * outLen) const606 std::unique_ptr<uint8_t[]> NinePatch::SerializeBase(size_t* outLen) const {
607   android::Res_png_9patch data;
608   data.numXDivs = static_cast<uint8_t>(horizontal_stretch_regions.size()) * 2;
609   data.numYDivs = static_cast<uint8_t>(vertical_stretch_regions.size()) * 2;
610   data.numColors = static_cast<uint8_t>(region_colors.size());
611   data.paddingLeft = padding.left;
612   data.paddingRight = padding.right;
613   data.paddingTop = padding.top;
614   data.paddingBottom = padding.bottom;
615 
616   auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[data.serializedSize()]);
617   android::Res_png_9patch::serialize(
618       data, (const int32_t*)horizontal_stretch_regions.data(),
619       (const int32_t*)vertical_stretch_regions.data(), region_colors.data(),
620       buffer.get());
621   // Convert to file endianness.
622   reinterpret_cast<android::Res_png_9patch*>(buffer.get())->deviceToFile();
623 
624   *outLen = data.serializedSize();
625   return buffer;
626 }
627 
SerializeLayoutBounds(size_t * out_len) const628 std::unique_ptr<uint8_t[]> NinePatch::SerializeLayoutBounds(
629     size_t* out_len) const {
630   size_t chunk_len = sizeof(uint32_t) * 4;
631   auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunk_len]);
632   uint8_t* cursor = buffer.get();
633 
634   memcpy(cursor, &layout_bounds.left, sizeof(layout_bounds.left));
635   cursor += sizeof(layout_bounds.left);
636 
637   memcpy(cursor, &layout_bounds.top, sizeof(layout_bounds.top));
638   cursor += sizeof(layout_bounds.top);
639 
640   memcpy(cursor, &layout_bounds.right, sizeof(layout_bounds.right));
641   cursor += sizeof(layout_bounds.right);
642 
643   memcpy(cursor, &layout_bounds.bottom, sizeof(layout_bounds.bottom));
644   cursor += sizeof(layout_bounds.bottom);
645 
646   *out_len = chunk_len;
647   return buffer;
648 }
649 
SerializeRoundedRectOutline(size_t * out_len) const650 std::unique_ptr<uint8_t[]> NinePatch::SerializeRoundedRectOutline(
651     size_t* out_len) const {
652   size_t chunk_len = sizeof(uint32_t) * 6;
653   auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunk_len]);
654   uint8_t* cursor = buffer.get();
655 
656   memcpy(cursor, &outline.left, sizeof(outline.left));
657   cursor += sizeof(outline.left);
658 
659   memcpy(cursor, &outline.top, sizeof(outline.top));
660   cursor += sizeof(outline.top);
661 
662   memcpy(cursor, &outline.right, sizeof(outline.right));
663   cursor += sizeof(outline.right);
664 
665   memcpy(cursor, &outline.bottom, sizeof(outline.bottom));
666   cursor += sizeof(outline.bottom);
667 
668   *((float*)cursor) = outline_radius;
669   cursor += sizeof(outline_radius);
670 
671   *((uint32_t*)cursor) = outline_alpha;
672 
673   *out_len = chunk_len;
674   return buffer;
675 }
676 
operator <<(::std::ostream & out,const Range & range)677 ::std::ostream& operator<<(::std::ostream& out, const Range& range) {
678   return out << "[" << range.start << ", " << range.end << ")";
679 }
680 
operator <<(::std::ostream & out,const Bounds & bounds)681 ::std::ostream& operator<<(::std::ostream& out, const Bounds& bounds) {
682   return out << "l=" << bounds.left << " t=" << bounds.top
683              << " r=" << bounds.right << " b=" << bounds.bottom;
684 }
685 
operator <<(::std::ostream & out,const NinePatch & nine_patch)686 ::std::ostream& operator<<(::std::ostream& out, const NinePatch& nine_patch) {
687   return out << "horizontalStretch:"
688              << util::Joiner(nine_patch.horizontal_stretch_regions, " ")
689              << " verticalStretch:"
690              << util::Joiner(nine_patch.vertical_stretch_regions, " ")
691              << " padding: " << nine_patch.padding
692              << ", bounds: " << nine_patch.layout_bounds
693              << ", outline: " << nine_patch.outline
694              << " rad=" << nine_patch.outline_radius
695              << " alpha=" << nine_patch.outline_alpha;
696 }
697 
698 }  // namespace aapt
699