1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "Png.h"
18
19 #include <png.h>
20 #include <zlib.h>
21
22 #include <iostream>
23 #include <sstream>
24 #include <string>
25 #include <vector>
26
27 #include "androidfw/BigBuffer.h"
28 #include "androidfw/ResourceTypes.h"
29 #include "androidfw/Source.h"
30 #include "trace/TraceBuffer.h"
31 #include "util/Util.h"
32
33 namespace aapt {
34
35 constexpr bool kDebug = false;
36
37 struct PngInfo {
~PngInfoaapt::PngInfo38 ~PngInfo() {
39 for (png_bytep row : rows) {
40 if (row != nullptr) {
41 delete[] row;
42 }
43 }
44
45 delete[] xDivs;
46 delete[] yDivs;
47 }
48
serialize9Patchaapt::PngInfo49 void* serialize9Patch() {
50 void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs,
51 yDivs, colors.data());
52 reinterpret_cast<android::Res_png_9patch*>(serialized)->deviceToFile();
53 return serialized;
54 }
55
56 uint32_t width = 0;
57 uint32_t height = 0;
58 std::vector<png_bytep> rows;
59
60 bool is9Patch = false;
61 android::Res_png_9patch info9Patch;
62 int32_t* xDivs = nullptr;
63 int32_t* yDivs = nullptr;
64 std::vector<uint32_t> colors;
65
66 // Layout padding.
67 bool haveLayoutBounds = false;
68 int32_t layoutBoundsLeft;
69 int32_t layoutBoundsTop;
70 int32_t layoutBoundsRight;
71 int32_t layoutBoundsBottom;
72
73 // Round rect outline description.
74 int32_t outlineInsetsLeft;
75 int32_t outlineInsetsTop;
76 int32_t outlineInsetsRight;
77 int32_t outlineInsetsBottom;
78 float outlineRadius;
79 uint8_t outlineAlpha;
80 };
81
readDataFromStream(png_structp readPtr,png_bytep data,png_size_t length)82 static void readDataFromStream(png_structp readPtr, png_bytep data,
83 png_size_t length) {
84 std::istream* input =
85 reinterpret_cast<std::istream*>(png_get_io_ptr(readPtr));
86 if (!input->read(reinterpret_cast<char*>(data), length)) {
87 png_error(readPtr, strerror(errno));
88 }
89 }
90
writeDataToStream(png_structp writePtr,png_bytep data,png_size_t length)91 static void writeDataToStream(png_structp writePtr, png_bytep data,
92 png_size_t length) {
93 android::BigBuffer* outBuffer = reinterpret_cast<android::BigBuffer*>(png_get_io_ptr(writePtr));
94 png_bytep buf = outBuffer->NextBlock<png_byte>(length);
95 memcpy(buf, data, length);
96 }
97
flushDataToStream(png_structp)98 static void flushDataToStream(png_structp /*writePtr*/) {}
99
logWarning(png_structp readPtr,png_const_charp warningMessage)100 static void logWarning(png_structp readPtr, png_const_charp warningMessage) {
101 android::IDiagnostics* diag =
102 reinterpret_cast<android::IDiagnostics*>(png_get_error_ptr(readPtr));
103 diag->Warn(android::DiagMessage() << warningMessage);
104 }
105
readPng(android::IDiagnostics * diag,png_structp readPtr,png_infop infoPtr,PngInfo * outInfo)106 static bool readPng(android::IDiagnostics* diag, png_structp readPtr, png_infop infoPtr,
107 PngInfo* outInfo) {
108 if (setjmp(png_jmpbuf(readPtr))) {
109 diag->Error(android::DiagMessage() << "failed reading png");
110 return false;
111 }
112
113 png_set_sig_bytes(readPtr, kPngSignatureSize);
114 png_read_info(readPtr, infoPtr);
115
116 int colorType, bitDepth, interlaceType, compressionType;
117 png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth,
118 &colorType, &interlaceType, &compressionType, nullptr);
119
120 if (colorType == PNG_COLOR_TYPE_PALETTE) {
121 png_set_palette_to_rgb(readPtr);
122 }
123
124 if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) {
125 png_set_expand_gray_1_2_4_to_8(readPtr);
126 }
127
128 if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) {
129 png_set_tRNS_to_alpha(readPtr);
130 }
131
132 if (bitDepth == 16) {
133 png_set_strip_16(readPtr);
134 }
135
136 if (!(colorType & PNG_COLOR_MASK_ALPHA)) {
137 png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER);
138 }
139
140 if (colorType == PNG_COLOR_TYPE_GRAY ||
141 colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
142 png_set_gray_to_rgb(readPtr);
143 }
144
145 png_set_interlace_handling(readPtr);
146 png_read_update_info(readPtr, infoPtr);
147
148 const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr);
149 outInfo->rows.resize(outInfo->height);
150 for (size_t i = 0; i < outInfo->height; i++) {
151 outInfo->rows[i] = new png_byte[rowBytes];
152 }
153
154 png_read_image(readPtr, outInfo->rows.data());
155 png_read_end(readPtr, infoPtr);
156 return true;
157 }
158
checkNinePatchSerialization(android::Res_png_9patch * inPatch,void * data)159 static void checkNinePatchSerialization(android::Res_png_9patch* inPatch,
160 void* data) {
161 size_t patchSize = inPatch->serializedSize();
162 void* newData = malloc(patchSize);
163 memcpy(newData, data, patchSize);
164 android::Res_png_9patch* outPatch = inPatch->deserialize(newData);
165 outPatch->fileToDevice();
166 // deserialization is done in place, so outPatch == newData
167 assert(outPatch == newData);
168 assert(outPatch->numXDivs == inPatch->numXDivs);
169 assert(outPatch->numYDivs == inPatch->numYDivs);
170 assert(outPatch->paddingLeft == inPatch->paddingLeft);
171 assert(outPatch->paddingRight == inPatch->paddingRight);
172 assert(outPatch->paddingTop == inPatch->paddingTop);
173 assert(outPatch->paddingBottom == inPatch->paddingBottom);
174 /* for (int i = 0; i < outPatch->numXDivs; i++) {
175 assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]);
176 }
177 for (int i = 0; i < outPatch->numYDivs; i++) {
178 assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]);
179 }
180 for (int i = 0; i < outPatch->numColors; i++) {
181 assert(outPatch->getColors()[i] == inPatch->getColors()[i]);
182 }*/
183 free(newData);
184 }
185
186 /*static void dump_image(int w, int h, const png_byte* const* rows, int
187 color_type) {
188 int i, j, rr, gg, bb, aa;
189
190 int bpp;
191 if (color_type == PNG_COLOR_TYPE_PALETTE || color_type ==
192 PNG_COLOR_TYPE_GRAY) {
193 bpp = 1;
194 } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
195 bpp = 2;
196 } else if (color_type == PNG_COLOR_TYPE_RGB || color_type ==
197 PNG_COLOR_TYPE_RGB_ALPHA) {
198 // We use a padding byte even when there is no alpha
199 bpp = 4;
200 } else {
201 printf("Unknown color type %d.\n", color_type);
202 }
203
204 for (j = 0; j < h; j++) {
205 const png_byte* row = rows[j];
206 for (i = 0; i < w; i++) {
207 rr = row[0];
208 gg = row[1];
209 bb = row[2];
210 aa = row[3];
211 row += bpp;
212
213 if (i == 0) {
214 printf("Row %d:", j);
215 }
216 switch (bpp) {
217 case 1:
218 printf(" (%d)", rr);
219 break;
220 case 2:
221 printf(" (%d %d", rr, gg);
222 break;
223 case 3:
224 printf(" (%d %d %d)", rr, gg, bb);
225 break;
226 case 4:
227 printf(" (%d %d %d %d)", rr, gg, bb, aa);
228 break;
229 }
230 if (i == (w - 1)) {
231 printf("\n");
232 }
233 }
234 }
235 }*/
236
237 #ifdef MAX
238 #undef MAX
239 #endif
240 #ifdef ABS
241 #undef ABS
242 #endif
243
244 #define MAX(a, b) ((a) > (b) ? (a) : (b))
245 #define ABS(a) ((a) < 0 ? -(a) : (a))
246
analyze_image(android::IDiagnostics * diag,const PngInfo & imageInfo,int grayscaleTolerance,png_colorp rgbPalette,png_bytep alphaPalette,int * paletteEntries,bool * hasTransparency,int * colorType,png_bytepp outRows)247 static void analyze_image(android::IDiagnostics* diag, const PngInfo& imageInfo,
248 int grayscaleTolerance, png_colorp rgbPalette, png_bytep alphaPalette,
249 int* paletteEntries, bool* hasTransparency, int* colorType,
250 png_bytepp outRows) {
251 int w = imageInfo.width;
252 int h = imageInfo.height;
253 int i, j, rr, gg, bb, aa, idx;
254 uint32_t colors[256], col;
255 int num_colors = 0;
256 int maxGrayDeviation = 0;
257
258 bool isOpaque = true;
259 bool isPalette = true;
260 bool isGrayscale = true;
261
262 // Scan the entire image and determine if:
263 // 1. Every pixel has R == G == B (grayscale)
264 // 2. Every pixel has A == 255 (opaque)
265 // 3. There are no more than 256 distinct RGBA colors
266
267 if (kDebug) {
268 printf("Initial image data:\n");
269 // dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA);
270 }
271
272 for (j = 0; j < h; j++) {
273 const png_byte* row = imageInfo.rows[j];
274 png_bytep out = outRows[j];
275 for (i = 0; i < w; i++) {
276 rr = *row++;
277 gg = *row++;
278 bb = *row++;
279 aa = *row++;
280
281 int odev = maxGrayDeviation;
282 maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation);
283 maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation);
284 maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation);
285 if (maxGrayDeviation > odev) {
286 if (kDebug) {
287 printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n",
288 maxGrayDeviation, i, j, rr, gg, bb, aa);
289 }
290 }
291
292 // Check if image is really grayscale
293 if (isGrayscale) {
294 if (rr != gg || rr != bb) {
295 if (kDebug) {
296 printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", i, j,
297 rr, gg, bb, aa);
298 }
299 isGrayscale = false;
300 }
301 }
302
303 // Check if image is really opaque
304 if (isOpaque) {
305 if (aa != 0xff) {
306 if (kDebug) {
307 printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", i, j,
308 rr, gg, bb, aa);
309 }
310 isOpaque = false;
311 }
312 }
313
314 // Check if image is really <= 256 colors
315 if (isPalette) {
316 col = (uint32_t)((rr << 24) | (gg << 16) | (bb << 8) | aa);
317 bool match = false;
318 for (idx = 0; idx < num_colors; idx++) {
319 if (colors[idx] == col) {
320 match = true;
321 break;
322 }
323 }
324
325 // Write the palette index for the pixel to outRows optimistically
326 // We might overwrite it later if we decide to encode as gray or
327 // gray + alpha
328 *out++ = idx;
329 if (!match) {
330 if (num_colors == 256) {
331 if (kDebug) {
332 printf("Found 257th color at %d, %d\n", i, j);
333 }
334 isPalette = false;
335 } else {
336 colors[num_colors++] = col;
337 }
338 }
339 }
340 }
341 }
342
343 *paletteEntries = 0;
344 *hasTransparency = !isOpaque;
345 int bpp = isOpaque ? 3 : 4;
346 int paletteSize = w * h + bpp * num_colors;
347
348 if (kDebug) {
349 printf("isGrayscale = %s\n", isGrayscale ? "true" : "false");
350 printf("isOpaque = %s\n", isOpaque ? "true" : "false");
351 printf("isPalette = %s\n", isPalette ? "true" : "false");
352 printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", paletteSize,
353 2 * w * h, bpp * w * h);
354 printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation,
355 grayscaleTolerance);
356 }
357
358 // Choose the best color type for the image.
359 // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel
360 // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct
361 // combinations
362 // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA
363 // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is
364 // sufficiently
365 // small, otherwise use COLOR_TYPE_RGB{_ALPHA}
366 if (isGrayscale) {
367 if (isOpaque) {
368 *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel
369 } else {
370 // Use a simple heuristic to determine whether using a palette will
371 // save space versus using gray + alpha for each pixel.
372 // This doesn't take into account chunk overhead, filtering, LZ
373 // compression, etc.
374 if (isPalette && (paletteSize < 2 * w * h)) {
375 *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color
376 } else {
377 *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel
378 }
379 }
380 } else if (isPalette && (paletteSize < bpp * w * h)) {
381 *colorType = PNG_COLOR_TYPE_PALETTE;
382 } else {
383 if (maxGrayDeviation <= grayscaleTolerance) {
384 diag->Note(android::DiagMessage()
385 << "forcing image to gray (max deviation = " << maxGrayDeviation << ")");
386 *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA;
387 } else {
388 *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA;
389 }
390 }
391
392 // Perform postprocessing of the image or palette data based on the final
393 // color type chosen
394
395 if (*colorType == PNG_COLOR_TYPE_PALETTE) {
396 // Create separate RGB and Alpha palettes and set the number of colors
397 *paletteEntries = num_colors;
398
399 // Create the RGB and alpha palettes
400 for (int idx = 0; idx < num_colors; idx++) {
401 col = colors[idx];
402 rgbPalette[idx].red = (png_byte)((col >> 24) & 0xff);
403 rgbPalette[idx].green = (png_byte)((col >> 16) & 0xff);
404 rgbPalette[idx].blue = (png_byte)((col >> 8) & 0xff);
405 alphaPalette[idx] = (png_byte)(col & 0xff);
406 }
407 } else if (*colorType == PNG_COLOR_TYPE_GRAY ||
408 *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
409 // If the image is gray or gray + alpha, compact the pixels into outRows
410 for (j = 0; j < h; j++) {
411 const png_byte* row = imageInfo.rows[j];
412 png_bytep out = outRows[j];
413 for (i = 0; i < w; i++) {
414 rr = *row++;
415 gg = *row++;
416 bb = *row++;
417 aa = *row++;
418
419 if (isGrayscale) {
420 *out++ = rr;
421 } else {
422 *out++ = (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
423 }
424 if (!isOpaque) {
425 *out++ = aa;
426 }
427 }
428 }
429 }
430 }
431
writePng(android::IDiagnostics * diag,png_structp writePtr,png_infop infoPtr,PngInfo * info,int grayScaleTolerance)432 static bool writePng(android::IDiagnostics* diag, png_structp writePtr, png_infop infoPtr,
433 PngInfo* info, int grayScaleTolerance) {
434 if (setjmp(png_jmpbuf(writePtr))) {
435 diag->Error(android::DiagMessage() << "failed to write png");
436 return false;
437 }
438
439 uint32_t width, height;
440 int colorType, bitDepth, interlaceType, compressionType;
441
442 png_unknown_chunk unknowns[3];
443 unknowns[0].data = nullptr;
444 unknowns[1].data = nullptr;
445 unknowns[2].data = nullptr;
446
447 png_bytepp outRows =
448 (png_bytepp)malloc((int)info->height * sizeof(png_bytep));
449 if (outRows == (png_bytepp)0) {
450 printf("Can't allocate output buffer!\n");
451 exit(1);
452 }
453 for (uint32_t i = 0; i < info->height; i++) {
454 outRows[i] = (png_bytep)malloc(2 * (int)info->width);
455 if (outRows[i] == (png_bytep)0) {
456 printf("Can't allocate output buffer!\n");
457 exit(1);
458 }
459 }
460
461 png_set_compression_level(writePtr, Z_BEST_COMPRESSION);
462
463 if (kDebug) {
464 diag->Note(android::DiagMessage()
465 << "writing image: w = " << info->width << ", h = " << info->height);
466 }
467
468 png_color rgbPalette[256];
469 png_byte alphaPalette[256];
470 bool hasTransparency;
471 int paletteEntries;
472
473 analyze_image(diag, *info, grayScaleTolerance, rgbPalette, alphaPalette,
474 &paletteEntries, &hasTransparency, &colorType, outRows);
475
476 // If the image is a 9-patch, we need to preserve it as a ARGB file to make
477 // sure the pixels will not be pre-dithered/clamped until we decide they are
478 if (info->is9Patch &&
479 (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_GRAY ||
480 colorType == PNG_COLOR_TYPE_PALETTE)) {
481 colorType = PNG_COLOR_TYPE_RGB_ALPHA;
482 }
483
484 if (kDebug) {
485 switch (colorType) {
486 case PNG_COLOR_TYPE_PALETTE:
487 diag->Note(android::DiagMessage() << "has " << paletteEntries << " colors"
488 << (hasTransparency ? " (with alpha)" : "")
489 << ", using PNG_COLOR_TYPE_PALLETTE");
490 break;
491 case PNG_COLOR_TYPE_GRAY:
492 diag->Note(android::DiagMessage() << "is opaque gray, using PNG_COLOR_TYPE_GRAY");
493 break;
494 case PNG_COLOR_TYPE_GRAY_ALPHA:
495 diag->Note(android::DiagMessage() << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA");
496 break;
497 case PNG_COLOR_TYPE_RGB:
498 diag->Note(android::DiagMessage() << "is opaque RGB, using PNG_COLOR_TYPE_RGB");
499 break;
500 case PNG_COLOR_TYPE_RGB_ALPHA:
501 diag->Note(android::DiagMessage() << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA");
502 break;
503 }
504 }
505
506 png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType,
507 PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
508 PNG_FILTER_TYPE_DEFAULT);
509
510 if (colorType == PNG_COLOR_TYPE_PALETTE) {
511 png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries);
512 if (hasTransparency) {
513 png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries,
514 (png_color_16p)0);
515 }
516 png_set_filter(writePtr, 0, PNG_NO_FILTERS);
517 } else {
518 png_set_filter(writePtr, 0, PNG_ALL_FILTERS);
519 }
520
521 if (info->is9Patch) {
522 int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0);
523 int pIndex = info->haveLayoutBounds ? 2 : 1;
524 int bIndex = 1;
525 int oIndex = 0;
526
527 // Chunks ordered thusly because older platforms depend on the base 9 patch
528 // data being last
529 png_bytep chunkNames = info->haveLayoutBounds
530 ? (png_bytep) "npOl\0npLb\0npTc\0"
531 : (png_bytep) "npOl\0npTc";
532
533 // base 9 patch data
534 if (kDebug) {
535 diag->Note(android::DiagMessage() << "adding 9-patch info..");
536 }
537 memcpy((char*)unknowns[pIndex].name, "npTc", 5);
538 unknowns[pIndex].data = (png_byte*)info->serialize9Patch();
539 unknowns[pIndex].size = info->info9Patch.serializedSize();
540 // TODO: remove the check below when everything works
541 checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data);
542
543 // automatically generated 9 patch outline data
544 int chunkSize = sizeof(png_uint_32) * 6;
545 memcpy((char*)unknowns[oIndex].name, "npOl", 5);
546 unknowns[oIndex].data = (png_byte*)calloc(chunkSize, 1);
547 png_byte outputData[chunkSize];
548 memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32));
549 ((float*)outputData)[4] = info->outlineRadius;
550 ((png_uint_32*)outputData)[5] = info->outlineAlpha;
551 memcpy(unknowns[oIndex].data, &outputData, chunkSize);
552 unknowns[oIndex].size = chunkSize;
553
554 // optional optical inset / layout bounds data
555 if (info->haveLayoutBounds) {
556 int chunkSize = sizeof(png_uint_32) * 4;
557 memcpy((char*)unknowns[bIndex].name, "npLb", 5);
558 unknowns[bIndex].data = (png_byte*)calloc(chunkSize, 1);
559 memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize);
560 unknowns[bIndex].size = chunkSize;
561 }
562
563 for (int i = 0; i < chunkCount; i++) {
564 unknowns[i].location = PNG_HAVE_PLTE;
565 }
566 png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, chunkNames,
567 chunkCount);
568 png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount);
569
570 #if PNG_LIBPNG_VER < 10600
571 // Deal with unknown chunk location bug in 1.5.x and earlier.
572 png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE);
573 if (info->haveLayoutBounds) {
574 png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE);
575 }
576 #endif
577 }
578
579 png_write_info(writePtr, infoPtr);
580
581 png_bytepp rows;
582 if (colorType == PNG_COLOR_TYPE_RGB ||
583 colorType == PNG_COLOR_TYPE_RGB_ALPHA) {
584 if (colorType == PNG_COLOR_TYPE_RGB) {
585 png_set_filler(writePtr, 0, PNG_FILLER_AFTER);
586 }
587 rows = info->rows.data();
588 } else {
589 rows = outRows;
590 }
591 png_write_image(writePtr, rows);
592
593 if (kDebug) {
594 printf("Final image data:\n");
595 // dump_image(info->width, info->height, rows, colorType);
596 }
597
598 png_write_end(writePtr, infoPtr);
599
600 for (uint32_t i = 0; i < info->height; i++) {
601 free(outRows[i]);
602 }
603 free(outRows);
604 free(unknowns[0].data);
605 free(unknowns[1].data);
606 free(unknowns[2].data);
607
608 png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType,
609 &interlaceType, &compressionType, nullptr);
610
611 if (kDebug) {
612 diag->Note(android::DiagMessage()
613 << "image written: w = " << width << ", h = " << height << ", d = " << bitDepth
614 << ", colors = " << colorType << ", inter = " << interlaceType
615 << ", comp = " << compressionType);
616 }
617 return true;
618 }
619
620 constexpr uint32_t kColorWhite = 0xffffffffu;
621 constexpr uint32_t kColorTick = 0xff000000u;
622 constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu;
623
624 enum class TickType { kNone, kTick, kLayoutBounds, kBoth };
625
tickType(png_bytep p,bool transparent,const char ** outError)626 static TickType tickType(png_bytep p, bool transparent, const char** outError) {
627 png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
628
629 if (transparent) {
630 if (p[3] == 0) {
631 return TickType::kNone;
632 }
633 if (color == kColorLayoutBoundsTick) {
634 return TickType::kLayoutBounds;
635 }
636 if (color == kColorTick) {
637 return TickType::kTick;
638 }
639
640 // Error cases
641 if (p[3] != 0xff) {
642 *outError =
643 "Frame pixels must be either solid or transparent "
644 "(not intermediate alphas)";
645 return TickType::kNone;
646 }
647
648 if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
649 *outError = "Ticks in transparent frame must be black or red";
650 }
651 return TickType::kTick;
652 }
653
654 if (p[3] != 0xFF) {
655 *outError = "White frame must be a solid color (no alpha)";
656 }
657 if (color == kColorWhite) {
658 return TickType::kNone;
659 }
660 if (color == kColorTick) {
661 return TickType::kTick;
662 }
663 if (color == kColorLayoutBoundsTick) {
664 return TickType::kLayoutBounds;
665 }
666
667 if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
668 *outError = "Ticks in white frame must be black or red";
669 return TickType::kNone;
670 }
671 return TickType::kTick;
672 }
673
674 enum class TickState { kStart, kInside1, kOutside1 };
675
getHorizontalTicks(png_bytep row,int width,bool transparent,bool required,int32_t * outLeft,int32_t * outRight,const char ** outError,uint8_t * outDivs,bool multipleAllowed)676 static bool getHorizontalTicks(png_bytep row, int width, bool transparent,
677 bool required, int32_t* outLeft,
678 int32_t* outRight, const char** outError,
679 uint8_t* outDivs, bool multipleAllowed) {
680 *outLeft = *outRight = -1;
681 TickState state = TickState::kStart;
682 bool found = false;
683
684 for (int i = 1; i < width - 1; i++) {
685 if (tickType(row + i * 4, transparent, outError) == TickType::kTick) {
686 if (state == TickState::kStart ||
687 (state == TickState::kOutside1 && multipleAllowed)) {
688 *outLeft = i - 1;
689 *outRight = width - 2;
690 found = true;
691 if (outDivs != NULL) {
692 *outDivs += 2;
693 }
694 state = TickState::kInside1;
695 } else if (state == TickState::kOutside1) {
696 *outError = "Can't have more than one marked region along edge";
697 *outLeft = i;
698 return false;
699 }
700 } else if (!*outError) {
701 if (state == TickState::kInside1) {
702 // We're done with this div. Move on to the next.
703 *outRight = i - 1;
704 outRight += 2;
705 outLeft += 2;
706 state = TickState::kOutside1;
707 }
708 } else {
709 *outLeft = i;
710 return false;
711 }
712 }
713
714 if (required && !found) {
715 *outError = "No marked region found along edge";
716 *outLeft = -1;
717 return false;
718 }
719 return true;
720 }
721
getVerticalTicks(png_bytepp rows,int offset,int height,bool transparent,bool required,int32_t * outTop,int32_t * outBottom,const char ** outError,uint8_t * outDivs,bool multipleAllowed)722 static bool getVerticalTicks(png_bytepp rows, int offset, int height,
723 bool transparent, bool required, int32_t* outTop,
724 int32_t* outBottom, const char** outError,
725 uint8_t* outDivs, bool multipleAllowed) {
726 *outTop = *outBottom = -1;
727 TickState state = TickState::kStart;
728 bool found = false;
729
730 for (int i = 1; i < height - 1; i++) {
731 if (tickType(rows[i] + offset, transparent, outError) == TickType::kTick) {
732 if (state == TickState::kStart ||
733 (state == TickState::kOutside1 && multipleAllowed)) {
734 *outTop = i - 1;
735 *outBottom = height - 2;
736 found = true;
737 if (outDivs != NULL) {
738 *outDivs += 2;
739 }
740 state = TickState::kInside1;
741 } else if (state == TickState::kOutside1) {
742 *outError = "Can't have more than one marked region along edge";
743 *outTop = i;
744 return false;
745 }
746 } else if (!*outError) {
747 if (state == TickState::kInside1) {
748 // We're done with this div. Move on to the next.
749 *outBottom = i - 1;
750 outTop += 2;
751 outBottom += 2;
752 state = TickState::kOutside1;
753 }
754 } else {
755 *outTop = i;
756 return false;
757 }
758 }
759
760 if (required && !found) {
761 *outError = "No marked region found along edge";
762 *outTop = -1;
763 return false;
764 }
765 return true;
766 }
767
getHorizontalLayoutBoundsTicks(png_bytep row,int width,bool transparent,bool,int32_t * outLeft,int32_t * outRight,const char ** outError)768 static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width,
769 bool transparent,
770 bool /* required */,
771 int32_t* outLeft, int32_t* outRight,
772 const char** outError) {
773 *outLeft = *outRight = 0;
774
775 // Look for left tick
776 if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) {
777 // Starting with a layout padding tick
778 int i = 1;
779 while (i < width - 1) {
780 (*outLeft)++;
781 i++;
782 if (tickType(row + i * 4, transparent, outError) !=
783 TickType::kLayoutBounds) {
784 break;
785 }
786 }
787 }
788
789 // Look for right tick
790 if (tickType(row + (width - 2) * 4, transparent, outError) ==
791 TickType::kLayoutBounds) {
792 // Ending with a layout padding tick
793 int i = width - 2;
794 while (i > 1) {
795 (*outRight)++;
796 i--;
797 if (tickType(row + i * 4, transparent, outError) !=
798 TickType::kLayoutBounds) {
799 break;
800 }
801 }
802 }
803 return true;
804 }
805
getVerticalLayoutBoundsTicks(png_bytepp rows,int offset,int height,bool transparent,bool,int32_t * outTop,int32_t * outBottom,const char ** outError)806 static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset,
807 int height, bool transparent,
808 bool /* required */, int32_t* outTop,
809 int32_t* outBottom,
810 const char** outError) {
811 *outTop = *outBottom = 0;
812
813 // Look for top tick
814 if (tickType(rows[1] + offset, transparent, outError) ==
815 TickType::kLayoutBounds) {
816 // Starting with a layout padding tick
817 int i = 1;
818 while (i < height - 1) {
819 (*outTop)++;
820 i++;
821 if (tickType(rows[i] + offset, transparent, outError) !=
822 TickType::kLayoutBounds) {
823 break;
824 }
825 }
826 }
827
828 // Look for bottom tick
829 if (tickType(rows[height - 2] + offset, transparent, outError) ==
830 TickType::kLayoutBounds) {
831 // Ending with a layout padding tick
832 int i = height - 2;
833 while (i > 1) {
834 (*outBottom)++;
835 i--;
836 if (tickType(rows[i] + offset, transparent, outError) !=
837 TickType::kLayoutBounds) {
838 break;
839 }
840 }
841 }
842 return true;
843 }
844
findMaxOpacity(png_bytepp rows,int startX,int startY,int endX,int endY,int dX,int dY,int * outInset)845 static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX,
846 int endY, int dX, int dY, int* outInset) {
847 uint8_t maxOpacity = 0;
848 int inset = 0;
849 *outInset = 0;
850 for (int x = startX, y = startY; x != endX && y != endY;
851 x += dX, y += dY, inset++) {
852 png_byte* color = rows[y] + x * 4;
853 uint8_t opacity = color[3];
854 if (opacity > maxOpacity) {
855 maxOpacity = opacity;
856 *outInset = inset;
857 }
858 if (opacity == 0xff) return;
859 }
860 }
861
maxAlphaOverRow(png_bytep row,int startX,int endX)862 static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) {
863 uint8_t maxAlpha = 0;
864 for (int x = startX; x < endX; x++) {
865 uint8_t alpha = (row + x * 4)[3];
866 if (alpha > maxAlpha) maxAlpha = alpha;
867 }
868 return maxAlpha;
869 }
870
maxAlphaOverCol(png_bytepp rows,int offsetX,int startY,int endY)871 static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY,
872 int endY) {
873 uint8_t maxAlpha = 0;
874 for (int y = startY; y < endY; y++) {
875 uint8_t alpha = (rows[y] + offsetX * 4)[3];
876 if (alpha > maxAlpha) maxAlpha = alpha;
877 }
878 return maxAlpha;
879 }
880
getOutline(PngInfo * image)881 static void getOutline(PngInfo* image) {
882 int midX = image->width / 2;
883 int midY = image->height / 2;
884 int endX = image->width - 2;
885 int endY = image->height - 2;
886
887 // find left and right extent of nine patch content on center row
888 if (image->width > 4) {
889 findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0,
890 &image->outlineInsetsLeft);
891 findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0,
892 &image->outlineInsetsRight);
893 } else {
894 image->outlineInsetsLeft = 0;
895 image->outlineInsetsRight = 0;
896 }
897
898 // find top and bottom extent of nine patch content on center column
899 if (image->height > 4) {
900 findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1,
901 &image->outlineInsetsTop);
902 findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1,
903 &image->outlineInsetsBottom);
904 } else {
905 image->outlineInsetsTop = 0;
906 image->outlineInsetsBottom = 0;
907 }
908
909 int innerStartX = 1 + image->outlineInsetsLeft;
910 int innerStartY = 1 + image->outlineInsetsTop;
911 int innerEndX = endX - image->outlineInsetsRight;
912 int innerEndY = endY - image->outlineInsetsBottom;
913 int innerMidX = (innerEndX + innerStartX) / 2;
914 int innerMidY = (innerEndY + innerStartY) / 2;
915
916 // assuming the image is a round rect, compute the radius by marching
917 // diagonally from the top left corner towards the center
918 image->outlineAlpha = std::max(
919 maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX),
920 maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY));
921
922 int diagonalInset = 0;
923 findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX,
924 innerMidY, 1, 1, &diagonalInset);
925
926 /* Determine source radius based upon inset:
927 * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
928 * sqrt(2) * r = sqrt(2) * i + r
929 * (sqrt(2) - 1) * r = sqrt(2) * i
930 * r = sqrt(2) / (sqrt(2) - 1) * i
931 */
932 image->outlineRadius = 3.4142f * diagonalInset;
933
934 if (kDebug) {
935 printf("outline insets %d %d %d %d, rad %f, alpha %x\n",
936 image->outlineInsetsLeft, image->outlineInsetsTop,
937 image->outlineInsetsRight, image->outlineInsetsBottom,
938 image->outlineRadius, image->outlineAlpha);
939 }
940 }
941
getColor(png_bytepp rows,int left,int top,int right,int bottom)942 static uint32_t getColor(png_bytepp rows, int left, int top, int right,
943 int bottom) {
944 png_bytep color = rows[top] + left * 4;
945
946 if (left > right || top > bottom) {
947 return android::Res_png_9patch::TRANSPARENT_COLOR;
948 }
949
950 while (top <= bottom) {
951 for (int i = left; i <= right; i++) {
952 png_bytep p = rows[top] + i * 4;
953 if (color[3] == 0) {
954 if (p[3] != 0) {
955 return android::Res_png_9patch::NO_COLOR;
956 }
957 } else if (p[0] != color[0] || p[1] != color[1] || p[2] != color[2] ||
958 p[3] != color[3]) {
959 return android::Res_png_9patch::NO_COLOR;
960 }
961 }
962 top++;
963 }
964
965 if (color[3] == 0) {
966 return android::Res_png_9patch::TRANSPARENT_COLOR;
967 }
968 return (color[3] << 24) | (color[0] << 16) | (color[1] << 8) | color[2];
969 }
970
do9Patch(PngInfo * image,std::string * outError)971 static bool do9Patch(PngInfo* image, std::string* outError) {
972 image->is9Patch = true;
973
974 int W = image->width;
975 int H = image->height;
976 int i, j;
977
978 const int maxSizeXDivs = W * sizeof(int32_t);
979 const int maxSizeYDivs = H * sizeof(int32_t);
980 int32_t* xDivs = image->xDivs = new int32_t[W];
981 int32_t* yDivs = image->yDivs = new int32_t[H];
982 uint8_t numXDivs = 0;
983 uint8_t numYDivs = 0;
984
985 int8_t numColors;
986 int numRows;
987 int numCols;
988 int top;
989 int left;
990 int right;
991 int bottom;
992 memset(xDivs, -1, maxSizeXDivs);
993 memset(yDivs, -1, maxSizeYDivs);
994 image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1;
995 image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1;
996 image->layoutBoundsLeft = image->layoutBoundsRight = 0;
997 image->layoutBoundsTop = image->layoutBoundsBottom = 0;
998
999 png_bytep p = image->rows[0];
1000 bool transparent = p[3] == 0;
1001 bool hasColor = false;
1002
1003 const char* errorMsg = nullptr;
1004 int errorPixel = -1;
1005 const char* errorEdge = nullptr;
1006
1007 int colorIndex = 0;
1008 std::vector<png_bytep> newRows;
1009
1010 // Validate size...
1011 if (W < 3 || H < 3) {
1012 errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels";
1013 goto getout;
1014 }
1015
1016 // Validate frame...
1017 if (!transparent &&
1018 (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) {
1019 errorMsg = "Must have one-pixel frame that is either transparent or white";
1020 goto getout;
1021 }
1022
1023 // Find left and right of sizing areas...
1024 if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1],
1025 &errorMsg, &numXDivs, true)) {
1026 errorPixel = xDivs[0];
1027 errorEdge = "top";
1028 goto getout;
1029 }
1030
1031 // Find top and bottom of sizing areas...
1032 if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0],
1033 &yDivs[1], &errorMsg, &numYDivs, true)) {
1034 errorPixel = yDivs[0];
1035 errorEdge = "left";
1036 goto getout;
1037 }
1038
1039 // Copy patch size data into image...
1040 image->info9Patch.numXDivs = numXDivs;
1041 image->info9Patch.numYDivs = numYDivs;
1042
1043 // Find left and right of padding area...
1044 if (!getHorizontalTicks(image->rows[H - 1], W, transparent, false,
1045 &image->info9Patch.paddingLeft,
1046 &image->info9Patch.paddingRight, &errorMsg, nullptr,
1047 false)) {
1048 errorPixel = image->info9Patch.paddingLeft;
1049 errorEdge = "bottom";
1050 goto getout;
1051 }
1052
1053 // Find top and bottom of padding area...
1054 if (!getVerticalTicks(image->rows.data(), (W - 1) * 4, H, transparent, false,
1055 &image->info9Patch.paddingTop,
1056 &image->info9Patch.paddingBottom, &errorMsg, nullptr,
1057 false)) {
1058 errorPixel = image->info9Patch.paddingTop;
1059 errorEdge = "right";
1060 goto getout;
1061 }
1062
1063 // Find left and right of layout padding...
1064 getHorizontalLayoutBoundsTicks(image->rows[H - 1], W, transparent, false,
1065 &image->layoutBoundsLeft,
1066 &image->layoutBoundsRight, &errorMsg);
1067
1068 getVerticalLayoutBoundsTicks(image->rows.data(), (W - 1) * 4, H, transparent,
1069 false, &image->layoutBoundsTop,
1070 &image->layoutBoundsBottom, &errorMsg);
1071
1072 image->haveLayoutBounds =
1073 image->layoutBoundsLeft != 0 || image->layoutBoundsRight != 0 ||
1074 image->layoutBoundsTop != 0 || image->layoutBoundsBottom != 0;
1075
1076 if (image->haveLayoutBounds) {
1077 if (kDebug) {
1078 printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft,
1079 image->layoutBoundsTop, image->layoutBoundsRight,
1080 image->layoutBoundsBottom);
1081 }
1082 }
1083
1084 // use opacity of pixels to estimate the round rect outline
1085 getOutline(image);
1086
1087 // If padding is not yet specified, take values from size.
1088 if (image->info9Patch.paddingLeft < 0) {
1089 image->info9Patch.paddingLeft = xDivs[0];
1090 image->info9Patch.paddingRight = W - 2 - xDivs[1];
1091 } else {
1092 // Adjust value to be correct!
1093 image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight;
1094 }
1095 if (image->info9Patch.paddingTop < 0) {
1096 image->info9Patch.paddingTop = yDivs[0];
1097 image->info9Patch.paddingBottom = H - 2 - yDivs[1];
1098 } else {
1099 // Adjust value to be correct!
1100 image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom;
1101 }
1102
1103 /* if (kDebug) {
1104 printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName,
1105 xDivs[0], xDivs[1],
1106 yDivs[0], yDivs[1]);
1107 printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName,
1108 image->info9Patch.paddingLeft, image->info9Patch.paddingRight,
1109 image->info9Patch.paddingTop,
1110 image->info9Patch.paddingBottom);
1111 }*/
1112
1113 // Remove frame from image.
1114 newRows.resize(H - 2);
1115 for (i = 0; i < H - 2; i++) {
1116 newRows[i] = image->rows[i + 1];
1117 memmove(newRows[i], newRows[i] + 4, (W - 2) * 4);
1118 }
1119 image->rows.swap(newRows);
1120
1121 image->width -= 2;
1122 W = image->width;
1123 image->height -= 2;
1124 H = image->height;
1125
1126 // Figure out the number of rows and columns in the N-patch
1127 numCols = numXDivs + 1;
1128 if (xDivs[0] == 0) { // Column 1 is strechable
1129 numCols--;
1130 }
1131 if (xDivs[numXDivs - 1] == W) {
1132 numCols--;
1133 }
1134 numRows = numYDivs + 1;
1135 if (yDivs[0] == 0) { // Row 1 is strechable
1136 numRows--;
1137 }
1138 if (yDivs[numYDivs - 1] == H) {
1139 numRows--;
1140 }
1141
1142 // Make sure the amount of rows and columns will fit in the number of
1143 // colors we can use in the 9-patch format.
1144 if (numRows * numCols > 0x7F) {
1145 errorMsg = "Too many rows and columns in 9-patch perimeter";
1146 goto getout;
1147 }
1148
1149 numColors = numRows * numCols;
1150 image->info9Patch.numColors = numColors;
1151 image->colors.resize(numColors);
1152
1153 // Fill in color information for each patch.
1154
1155 uint32_t c;
1156 top = 0;
1157
1158 // The first row always starts with the top being at y=0 and the bottom
1159 // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case
1160 // the first row is stretchable along the Y axis, otherwise it is fixed.
1161 // The last row always ends with the bottom being bitmap.height and the top
1162 // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or
1163 // yDivs[numYDivs-1]. In the former case the last row is stretchable along
1164 // the Y axis, otherwise it is fixed.
1165 //
1166 // The first and last columns are similarly treated with respect to the X
1167 // axis.
1168 //
1169 // The above is to help explain some of the special casing that goes on the
1170 // code below.
1171
1172 // The initial yDiv and whether the first row is considered stretchable or
1173 // not depends on whether yDiv[0] was zero or not.
1174 for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) {
1175 if (j == numYDivs) {
1176 bottom = H;
1177 } else {
1178 bottom = yDivs[j];
1179 }
1180 left = 0;
1181 // The initial xDiv and whether the first column is considered
1182 // stretchable or not depends on whether xDiv[0] was zero or not.
1183 for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) {
1184 if (i == numXDivs) {
1185 right = W;
1186 } else {
1187 right = xDivs[i];
1188 }
1189 c = getColor(image->rows.data(), left, top, right - 1, bottom - 1);
1190 image->colors[colorIndex++] = c;
1191 if (kDebug) {
1192 if (c != android::Res_png_9patch::NO_COLOR) {
1193 hasColor = true;
1194 }
1195 }
1196 left = right;
1197 }
1198 top = bottom;
1199 }
1200
1201 assert(colorIndex == numColors);
1202
1203 if (kDebug && hasColor) {
1204 for (i = 0; i < numColors; i++) {
1205 if (i == 0) printf("Colors:\n");
1206 printf(" #%08x", image->colors[i]);
1207 if (i == numColors - 1) printf("\n");
1208 }
1209 }
1210 getout:
1211 if (errorMsg) {
1212 std::stringstream err;
1213 err << "9-patch malformed: " << errorMsg;
1214 if (errorEdge) {
1215 err << "." << std::endl;
1216 if (errorPixel >= 0) {
1217 err << "Found at pixel #" << errorPixel << " along " << errorEdge
1218 << " edge";
1219 } else {
1220 err << "Found along " << errorEdge << " edge";
1221 }
1222 }
1223 *outError = err.str();
1224 return false;
1225 }
1226 return true;
1227 }
1228
process(const android::Source & source,std::istream * input,android::BigBuffer * outBuffer,const PngOptions & options)1229 bool Png::process(const android::Source& source, std::istream* input, android::BigBuffer* outBuffer,
1230 const PngOptions& options) {
1231 TRACE_CALL();
1232 png_byte signature[kPngSignatureSize];
1233
1234 // Read the PNG signature first.
1235 if (!input->read(reinterpret_cast<char*>(signature), kPngSignatureSize)) {
1236 mDiag->Error(android::DiagMessage() << strerror(errno));
1237 return false;
1238 }
1239
1240 // If the PNG signature doesn't match, bail early.
1241 if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
1242 mDiag->Error(android::DiagMessage() << "not a valid png file");
1243 return false;
1244 }
1245
1246 bool result = false;
1247 png_structp readPtr = nullptr;
1248 png_infop infoPtr = nullptr;
1249 png_structp writePtr = nullptr;
1250 png_infop writeInfoPtr = nullptr;
1251 PngInfo pngInfo = {};
1252
1253 readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1254 if (!readPtr) {
1255 mDiag->Error(android::DiagMessage() << "failed to allocate read ptr");
1256 goto bail;
1257 }
1258
1259 infoPtr = png_create_info_struct(readPtr);
1260 if (!infoPtr) {
1261 mDiag->Error(android::DiagMessage() << "failed to allocate info ptr");
1262 goto bail;
1263 }
1264
1265 png_set_error_fn(readPtr, reinterpret_cast<png_voidp>(mDiag), nullptr,
1266 logWarning);
1267
1268 // Set the read function to read from std::istream.
1269 png_set_read_fn(readPtr, (png_voidp)input, readDataFromStream);
1270
1271 if (!readPng(mDiag, readPtr, infoPtr, &pngInfo)) {
1272 goto bail;
1273 }
1274
1275 if (util::EndsWith(source.path, ".9.png")) {
1276 std::string errorMsg;
1277 if (!do9Patch(&pngInfo, &errorMsg)) {
1278 mDiag->Error(android::DiagMessage() << errorMsg);
1279 goto bail;
1280 }
1281 }
1282
1283 writePtr =
1284 png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1285 if (!writePtr) {
1286 mDiag->Error(android::DiagMessage() << "failed to allocate write ptr");
1287 goto bail;
1288 }
1289
1290 writeInfoPtr = png_create_info_struct(writePtr);
1291 if (!writeInfoPtr) {
1292 mDiag->Error(android::DiagMessage() << "failed to allocate write info ptr");
1293 goto bail;
1294 }
1295
1296 png_set_error_fn(writePtr, nullptr, nullptr, logWarning);
1297
1298 // Set the write function to write to std::ostream.
1299 png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream,
1300 flushDataToStream);
1301
1302 if (!writePng(mDiag, writePtr, writeInfoPtr, &pngInfo,
1303 options.grayscale_tolerance)) {
1304 goto bail;
1305 }
1306
1307 result = true;
1308 bail:
1309 if (readPtr) {
1310 png_destroy_read_struct(&readPtr, &infoPtr, nullptr);
1311 }
1312
1313 if (writePtr) {
1314 png_destroy_write_struct(&writePtr, &writeInfoPtr);
1315 }
1316 return result;
1317 }
1318
1319 } // namespace aapt
1320