1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "compile/Png.h"
18
19 #include <png.h>
20 #include <zlib.h>
21
22 #include <algorithm>
23 #include <unordered_map>
24 #include <unordered_set>
25
26 #include "android-base/errors.h"
27 #include "android-base/logging.h"
28 #include "android-base/macros.h"
29
30 #include "trace/TraceBuffer.h"
31
32 namespace aapt {
33
34 // Custom deleter that destroys libpng read and info structs.
35 class PngReadStructDeleter {
36 public:
PngReadStructDeleter(png_structp read_ptr,png_infop info_ptr)37 PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
38 : read_ptr_(read_ptr), info_ptr_(info_ptr) {}
39
~PngReadStructDeleter()40 ~PngReadStructDeleter() {
41 png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
42 }
43
44 private:
45 png_structp read_ptr_;
46 png_infop info_ptr_;
47
48 DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
49 };
50
51 // Custom deleter that destroys libpng write and info structs.
52 class PngWriteStructDeleter {
53 public:
PngWriteStructDeleter(png_structp write_ptr,png_infop info_ptr)54 PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
55 : write_ptr_(write_ptr), info_ptr_(info_ptr) {}
56
~PngWriteStructDeleter()57 ~PngWriteStructDeleter() {
58 png_destroy_write_struct(&write_ptr_, &info_ptr_);
59 }
60
61 private:
62 png_structp write_ptr_;
63 png_infop info_ptr_;
64
65 DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
66 };
67
68 // Custom warning logging method that uses IDiagnostics.
LogWarning(png_structp png_ptr,png_const_charp warning_msg)69 static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
70 android::IDiagnostics* diag = (android::IDiagnostics*)png_get_error_ptr(png_ptr);
71 diag->Warn(android::DiagMessage() << warning_msg);
72 }
73
74 // Custom error logging method that uses IDiagnostics.
LogError(png_structp png_ptr,png_const_charp error_msg)75 static void LogError(png_structp png_ptr, png_const_charp error_msg) {
76 android::IDiagnostics* diag = (android::IDiagnostics*)png_get_error_ptr(png_ptr);
77 diag->Error(android::DiagMessage() << error_msg);
78
79 // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
80 // error handling. If this custom error handler method were to return, libpng would, by
81 // default, print the error message to stdout and call the same png_longjmp method.
82 png_longjmp(png_ptr, 1);
83 }
84
ReadDataFromStream(png_structp png_ptr,png_bytep buffer,png_size_t len)85 static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
86 io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);
87
88 const void* in_buffer;
89 size_t in_len;
90 if (!in->Next(&in_buffer, &in_len)) {
91 if (in->HadError()) {
92 std::stringstream error_msg_builder;
93 error_msg_builder << "failed reading from input";
94 if (!in->GetError().empty()) {
95 error_msg_builder << ": " << in->GetError();
96 }
97 std::string err = error_msg_builder.str();
98 png_error(png_ptr, err.c_str());
99 }
100 return;
101 }
102
103 const size_t bytes_read = std::min(in_len, len);
104 memcpy(buffer, in_buffer, bytes_read);
105 if (bytes_read != in_len) {
106 in->BackUp(in_len - bytes_read);
107 }
108 }
109
WriteDataToStream(png_structp png_ptr,png_bytep buffer,png_size_t len)110 static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
111 io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);
112
113 void* out_buffer;
114 size_t out_len;
115 while (len > 0) {
116 if (!out->Next(&out_buffer, &out_len)) {
117 if (out->HadError()) {
118 std::stringstream err_msg_builder;
119 err_msg_builder << "failed writing to output";
120 if (!out->GetError().empty()) {
121 err_msg_builder << ": " << out->GetError();
122 }
123 std::string err = out->GetError();
124 png_error(png_ptr, err.c_str());
125 }
126 return;
127 }
128
129 const size_t bytes_written = std::min(out_len, len);
130 memcpy(out_buffer, buffer, bytes_written);
131
132 // Advance the input buffer.
133 buffer += bytes_written;
134 len -= bytes_written;
135
136 // Advance the output buffer.
137 out_len -= bytes_written;
138 }
139
140 // If the entire output buffer wasn't used, backup.
141 if (out_len > 0) {
142 out->BackUp(out_len);
143 }
144 }
145
ReadPng(IAaptContext * context,const android::Source & source,io::InputStream * in)146 std::unique_ptr<Image> ReadPng(IAaptContext* context, const android::Source& source,
147 io::InputStream* in) {
148 TRACE_CALL();
149 // Create a diagnostics that has the source information encoded.
150 android::SourcePathDiagnostics source_diag(source, context->GetDiagnostics());
151
152 // Read the first 8 bytes of the file looking for the PNG signature.
153 // Bail early if it does not match.
154 const png_byte* signature;
155 size_t buffer_size;
156 if (!in->Next((const void**)&signature, &buffer_size)) {
157 if (in->HadError()) {
158 source_diag.Error(android::DiagMessage()
159 << "failed to read PNG signature: " << in->GetError());
160 } else {
161 source_diag.Error(android::DiagMessage() << "not enough data for PNG signature");
162 }
163 return {};
164 }
165
166 if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
167 source_diag.Error(android::DiagMessage() << "file signature does not match PNG signature");
168 return {};
169 }
170
171 // Start at the beginning of the first chunk.
172 in->BackUp(buffer_size - kPngSignatureSize);
173
174 // Create and initialize the png_struct with the default error and warning handlers.
175 // The header version is also passed in to ensure that this was built against the same
176 // version of libpng.
177 png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
178 if (read_ptr == nullptr) {
179 source_diag.Error(android::DiagMessage() << "failed to create libpng read png_struct");
180 return {};
181 }
182
183 // Create and initialize the memory for image header and data.
184 png_infop info_ptr = png_create_info_struct(read_ptr);
185 if (info_ptr == nullptr) {
186 source_diag.Error(android::DiagMessage() << "failed to create libpng read png_info");
187 png_destroy_read_struct(&read_ptr, nullptr, nullptr);
188 return {};
189 }
190
191 // Automatically release PNG resources at end of scope.
192 PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);
193
194 // libpng uses longjmp to jump to an error handling routine.
195 // setjmp will only return true if it was jumped to, aka there was
196 // an error.
197 if (setjmp(png_jmpbuf(read_ptr))) {
198 return {};
199 }
200
201 // Handle warnings ourselves via IDiagnostics.
202 png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);
203
204 // Set up the read functions which read from our custom data sources.
205 png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);
206
207 // Skip the signature that we already read.
208 png_set_sig_bytes(read_ptr, kPngSignatureSize);
209
210 // Read the chunk headers.
211 png_read_info(read_ptr, info_ptr);
212
213 // Extract image meta-data from the various chunk headers.
214 uint32_t width, height;
215 int bit_depth, color_type, interlace_method, compression_method, filter_method;
216 png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
217 &interlace_method, &compression_method, &filter_method);
218
219 // When the image is read, expand it so that it is in RGBA 8888 format
220 // so that image handling is uniform.
221
222 if (color_type == PNG_COLOR_TYPE_PALETTE) {
223 png_set_palette_to_rgb(read_ptr);
224 }
225
226 if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
227 png_set_expand_gray_1_2_4_to_8(read_ptr);
228 }
229
230 if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
231 png_set_tRNS_to_alpha(read_ptr);
232 }
233
234 if (bit_depth == 16) {
235 png_set_strip_16(read_ptr);
236 }
237
238 if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
239 png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
240 }
241
242 if (color_type == PNG_COLOR_TYPE_GRAY ||
243 color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
244 png_set_gray_to_rgb(read_ptr);
245 }
246
247 if (interlace_method != PNG_INTERLACE_NONE) {
248 png_set_interlace_handling(read_ptr);
249 }
250
251 // Once all the options for reading have been set, we need to flush
252 // them to libpng.
253 png_read_update_info(read_ptr, info_ptr);
254
255 // 9-patch uses int32_t to index images, so we cap the image dimensions to
256 // something
257 // that can always be represented by 9-patch.
258 if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
259 source_diag.Error(android::DiagMessage()
260 << "PNG image dimensions are too large: " << width << "x" << height);
261 return {};
262 }
263
264 std::unique_ptr<Image> output_image = util::make_unique<Image>();
265 output_image->width = static_cast<int32_t>(width);
266 output_image->height = static_cast<int32_t>(height);
267
268 const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
269 CHECK(row_bytes == 4 * width); // RGBA
270
271 // Allocate one large block to hold the image.
272 output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);
273
274 // Create an array of rows that index into the data block.
275 output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
276 for (uint32_t h = 0; h < height; h++) {
277 output_image->rows[h] = output_image->data.get() + (h * row_bytes);
278 }
279
280 // Actually read the image pixels.
281 png_read_image(read_ptr, output_image->rows.get());
282
283 // Finish reading. This will read any other chunks after the image data.
284 png_read_end(read_ptr, info_ptr);
285
286 return output_image;
287 }
288
289 // Experimentally chosen constant to be added to the overhead of using color type
290 // PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
291 // Without this, many small PNGs encoded with palettes are larger after compression than
292 // the same PNGs encoded as RGBA.
293 constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
294
295 // Pick a color type by which to encode the image, based on which color type will take
296 // the least amount of disk space.
297 //
298 // 9-patch images traditionally have not been encoded with palettes.
299 // The original rationale was to avoid dithering until after scaling,
300 // but I don't think this would be an issue with palettes. Either way,
301 // our naive size estimation tends to be wrong for small images like 9-patches
302 // and using palettes balloons the size of the resulting 9-patch.
303 // In order to not regress in size, restrict 9-patch to not use palettes.
304
305 // The options are:
306 //
307 // - RGB
308 // - RGBA
309 // - RGB + cheap alpha
310 // - Color palette
311 // - Color palette + cheap alpha
312 // - Color palette + alpha palette
313 // - Grayscale
314 // - Grayscale + cheap alpha
315 // - Grayscale + alpha
316 //
PickColorType(int32_t width,int32_t height,bool grayscale,bool convertible_to_grayscale,bool has_nine_patch,size_t color_palette_size,size_t alpha_palette_size)317 static int PickColorType(int32_t width, int32_t height, bool grayscale,
318 bool convertible_to_grayscale, bool has_nine_patch,
319 size_t color_palette_size, size_t alpha_palette_size) {
320 const size_t palette_chunk_size = 16 + color_palette_size * 3;
321 const size_t alpha_chunk_size = 16 + alpha_palette_size;
322 const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
323 const size_t color_data_chunk_size = 16 + 3 * width * height;
324 const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
325 const size_t palette_data_chunk_size = 16 + width * height;
326
327 if (grayscale) {
328 if (alpha_palette_size == 0) {
329 // This is the smallest the data can be.
330 return PNG_COLOR_TYPE_GRAY;
331 } else if (color_palette_size <= 256 && !has_nine_patch) {
332 // This grayscale has alpha and can fit within a palette.
333 // See if it is worth fitting into a palette.
334 const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
335 palette_data_chunk_size +
336 kPaletteOverheadConstant;
337 if (grayscale_alpha_data_chunk_size > palette_threshold) {
338 return PNG_COLOR_TYPE_PALETTE;
339 }
340 }
341 return PNG_COLOR_TYPE_GRAY_ALPHA;
342 }
343
344 if (color_palette_size <= 256 && !has_nine_patch) {
345 // This image can fit inside a palette. Let's see if it is worth it.
346 size_t total_size_with_palette =
347 palette_data_chunk_size + palette_chunk_size;
348 size_t total_size_without_palette = color_data_chunk_size;
349 if (alpha_palette_size > 0) {
350 total_size_with_palette += alpha_palette_size;
351 total_size_without_palette = color_alpha_data_chunk_size;
352 }
353
354 if (total_size_without_palette >
355 total_size_with_palette + kPaletteOverheadConstant) {
356 return PNG_COLOR_TYPE_PALETTE;
357 }
358 }
359
360 if (convertible_to_grayscale) {
361 if (alpha_palette_size == 0) {
362 return PNG_COLOR_TYPE_GRAY;
363 } else {
364 return PNG_COLOR_TYPE_GRAY_ALPHA;
365 }
366 }
367
368 if (alpha_palette_size == 0) {
369 return PNG_COLOR_TYPE_RGB;
370 }
371 return PNG_COLOR_TYPE_RGBA;
372 }
373
374 // Assigns indices to the color and alpha palettes, encodes them, and then invokes
375 // png_set_PLTE/png_set_tRNS.
376 // This must be done before writing image data.
377 // Image data must be transformed to use the indices assigned within the palette.
WritePalette(png_structp write_ptr,png_infop write_info_ptr,std::unordered_map<uint32_t,int> * color_palette,std::unordered_set<uint32_t> * alpha_palette)378 static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
379 std::unordered_map<uint32_t, int>* color_palette,
380 std::unordered_set<uint32_t>* alpha_palette) {
381 CHECK(color_palette->size() <= 256);
382 CHECK(alpha_palette->size() <= 256);
383
384 // Populate the PNG palette struct and assign indices to the color palette.
385
386 // Colors in the alpha palette should have smaller indices.
387 // This will ensure that we can truncate the alpha palette if it is
388 // smaller than the color palette.
389 int index = 0;
390 for (uint32_t color : *alpha_palette) {
391 (*color_palette)[color] = index++;
392 }
393
394 // Assign the rest of the entries.
395 for (auto& entry : *color_palette) {
396 if (entry.second == -1) {
397 entry.second = index++;
398 }
399 }
400
401 // Create the PNG color palette struct.
402 auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);
403
404 std::unique_ptr<png_byte[]> alpha_palette_bytes;
405 if (!alpha_palette->empty()) {
406 alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
407 }
408
409 for (const auto& entry : *color_palette) {
410 const uint32_t color = entry.first;
411 const int index = entry.second;
412 CHECK(index >= 0);
413 CHECK(static_cast<size_t>(index) < color_palette->size());
414
415 png_colorp slot = color_palette_bytes.get() + index;
416 slot->red = color >> 24;
417 slot->green = color >> 16;
418 slot->blue = color >> 8;
419
420 const png_byte alpha = color & 0x000000ff;
421 if (alpha != 0xff && alpha_palette_bytes) {
422 CHECK(static_cast<size_t>(index) < alpha_palette->size());
423 alpha_palette_bytes[index] = alpha;
424 }
425 }
426
427 // The bytes get copied here, so it is safe to release color_palette_bytes at
428 // the end of function
429 // scope.
430 png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());
431
432 if (alpha_palette_bytes) {
433 png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
434 nullptr);
435 }
436 }
437
438 // Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
439 // before writing image data.
WriteNinePatch(png_structp write_ptr,png_infop write_info_ptr,const NinePatch * nine_patch)440 static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
441 const NinePatch* nine_patch) {
442 // The order of the chunks is important.
443 // 9-patch code in older platforms expects the 9-patch chunk to be last.
444
445 png_unknown_chunk unknown_chunks[3];
446 memset(unknown_chunks, 0, sizeof(unknown_chunks));
447
448 size_t index = 0;
449 size_t chunk_len = 0;
450
451 std::unique_ptr<uint8_t[]> serialized_outline =
452 nine_patch->SerializeRoundedRectOutline(&chunk_len);
453 strcpy((char*)unknown_chunks[index].name, "npOl");
454 unknown_chunks[index].size = chunk_len;
455 unknown_chunks[index].data = (png_bytep)serialized_outline.get();
456 unknown_chunks[index].location = PNG_HAVE_PLTE;
457 index++;
458
459 std::unique_ptr<uint8_t[]> serialized_layout_bounds;
460 if (nine_patch->layout_bounds.nonZero()) {
461 serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
462 strcpy((char*)unknown_chunks[index].name, "npLb");
463 unknown_chunks[index].size = chunk_len;
464 unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
465 unknown_chunks[index].location = PNG_HAVE_PLTE;
466 index++;
467 }
468
469 std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
470 strcpy((char*)unknown_chunks[index].name, "npTc");
471 unknown_chunks[index].size = chunk_len;
472 unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
473 unknown_chunks[index].location = PNG_HAVE_PLTE;
474 index++;
475
476 // Handle all unknown chunks. We are manually setting the chunks here,
477 // so we will only ever handle our custom chunks.
478 png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
479
480 // Set the actual chunks here. The data gets copied, so our buffers can
481 // safely go out of scope.
482 png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
483 }
484
WritePng(IAaptContext * context,const Image * image,const NinePatch * nine_patch,io::OutputStream * out,const PngOptions & options)485 bool WritePng(IAaptContext* context, const Image* image,
486 const NinePatch* nine_patch, io::OutputStream* out,
487 const PngOptions& options) {
488 TRACE_CALL();
489 // Create and initialize the write png_struct with the default error and
490 // warning handlers.
491 // The header version is also passed in to ensure that this was built against the same
492 // version of libpng.
493 png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
494 if (write_ptr == nullptr) {
495 context->GetDiagnostics()->Error(android::DiagMessage()
496 << "failed to create libpng write png_struct");
497 return false;
498 }
499
500 // Allocate memory to store image header data.
501 png_infop write_info_ptr = png_create_info_struct(write_ptr);
502 if (write_info_ptr == nullptr) {
503 context->GetDiagnostics()->Error(android::DiagMessage()
504 << "failed to create libpng write png_info");
505 png_destroy_write_struct(&write_ptr, nullptr);
506 return false;
507 }
508
509 // Automatically release PNG resources at end of scope.
510 PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);
511
512 // libpng uses longjmp to jump to error handling routines.
513 // setjmp will return true only if it was jumped to, aka, there was an error.
514 if (setjmp(png_jmpbuf(write_ptr))) {
515 return false;
516 }
517
518 // Handle warnings with our IDiagnostics.
519 png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);
520
521 // Set up the write functions which write to our custom data sources.
522 png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);
523
524 // We want small files and can take the performance hit to achieve this goal.
525 png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
526
527 // Begin analysis of the image data.
528 // Scan the entire image and determine if:
529 // 1. Every pixel has R == G == B (grayscale)
530 // 2. Every pixel has A == 255 (opaque)
531 // 3. There are no more than 256 distinct RGBA colors (palette).
532 std::unordered_map<uint32_t, int> color_palette;
533 std::unordered_set<uint32_t> alpha_palette;
534 bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
535 bool grayscale = true;
536 int max_gray_deviation = 0;
537
538 for (int32_t y = 0; y < image->height; y++) {
539 const uint8_t* row = image->rows[y];
540 for (int32_t x = 0; x < image->width; x++) {
541 int red = *row++;
542 int green = *row++;
543 int blue = *row++;
544 int alpha = *row++;
545
546 if (alpha == 0) {
547 // The color is completely transparent.
548 // For purposes of palettes and grayscale optimization,
549 // treat all channels as 0x00.
550 needs_to_zero_rgb_channels_of_transparent_pixels =
551 needs_to_zero_rgb_channels_of_transparent_pixels ||
552 (red != 0 || green != 0 || blue != 0);
553 red = green = blue = 0;
554 }
555
556 // Insert the color into the color palette.
557 const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
558 color_palette[color] = -1;
559
560 // If the pixel has non-opaque alpha, insert it into the
561 // alpha palette.
562 if (alpha != 0xff) {
563 alpha_palette.insert(color);
564 }
565
566 // Check if the image is indeed grayscale.
567 if (grayscale) {
568 if (red != green || red != blue) {
569 grayscale = false;
570 }
571 }
572
573 // Calculate the gray scale deviation so that it can be compared
574 // with the threshold.
575 max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
576 max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
577 max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
578 }
579 }
580
581 if (context->IsVerbose()) {
582 android::DiagMessage msg;
583 msg << " paletteSize=" << color_palette.size()
584 << " alphaPaletteSize=" << alpha_palette.size()
585 << " maxGrayDeviation=" << max_gray_deviation
586 << " grayScale=" << (grayscale ? "true" : "false");
587 context->GetDiagnostics()->Note(msg);
588 }
589
590 const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;
591
592 const int new_color_type = PickColorType(
593 image->width, image->height, grayscale, convertible_to_grayscale,
594 nine_patch != nullptr, color_palette.size(), alpha_palette.size());
595
596 if (context->IsVerbose()) {
597 android::DiagMessage msg;
598 msg << "encoding PNG ";
599 if (nine_patch) {
600 msg << "(with 9-patch) as ";
601 }
602 switch (new_color_type) {
603 case PNG_COLOR_TYPE_GRAY:
604 msg << "GRAY";
605 break;
606 case PNG_COLOR_TYPE_GRAY_ALPHA:
607 msg << "GRAY + ALPHA";
608 break;
609 case PNG_COLOR_TYPE_RGB:
610 msg << "RGB";
611 break;
612 case PNG_COLOR_TYPE_RGB_ALPHA:
613 msg << "RGBA";
614 break;
615 case PNG_COLOR_TYPE_PALETTE:
616 msg << "PALETTE";
617 break;
618 default:
619 msg << "unknown type " << new_color_type;
620 break;
621 }
622 context->GetDiagnostics()->Note(msg);
623 }
624
625 png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
626 new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
627 PNG_FILTER_TYPE_DEFAULT);
628
629 if (new_color_type & PNG_COLOR_MASK_PALETTE) {
630 // Assigns indices to the palette, and writes the encoded palette to the
631 // libpng writePtr.
632 WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
633 png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
634 } else {
635 png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
636 }
637
638 if (nine_patch) {
639 WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
640 }
641
642 // Flush our updates to the header.
643 png_write_info(write_ptr, write_info_ptr);
644
645 // Write out each row of image data according to its encoding.
646 if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
647 // 1 byte/pixel.
648 auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
649
650 for (int32_t y = 0; y < image->height; y++) {
651 png_const_bytep in_row = image->rows[y];
652 for (int32_t x = 0; x < image->width; x++) {
653 int rr = *in_row++;
654 int gg = *in_row++;
655 int bb = *in_row++;
656 int aa = *in_row++;
657 if (aa == 0) {
658 // Zero out color channels when transparent.
659 rr = gg = bb = 0;
660 }
661
662 const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
663 const int idx = color_palette[color];
664 CHECK(idx != -1);
665 out_row[x] = static_cast<png_byte>(idx);
666 }
667 png_write_row(write_ptr, out_row.get());
668 }
669 } else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
670 new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
671 const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
672 auto out_row =
673 std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
674
675 for (int32_t y = 0; y < image->height; y++) {
676 png_const_bytep in_row = image->rows[y];
677 for (int32_t x = 0; x < image->width; x++) {
678 int rr = in_row[x * 4];
679 int gg = in_row[x * 4 + 1];
680 int bb = in_row[x * 4 + 2];
681 int aa = in_row[x * 4 + 3];
682 if (aa == 0) {
683 // Zero out the gray channel when transparent.
684 rr = gg = bb = 0;
685 }
686
687 if (grayscale) {
688 // The image was already grayscale, red == green == blue.
689 out_row[x * bpp] = in_row[x * 4];
690 } else {
691 // The image is convertible to grayscale, use linear-luminance of
692 // sRGB colorspace:
693 // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
694 out_row[x * bpp] =
695 (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
696 }
697
698 if (bpp == 2) {
699 // Write out alpha if we have it.
700 out_row[x * bpp + 1] = aa;
701 }
702 }
703 png_write_row(write_ptr, out_row.get());
704 }
705 } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
706 const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
707 if (needs_to_zero_rgb_channels_of_transparent_pixels) {
708 // The source RGBA data can't be used as-is, because we need to zero out
709 // the RGB values of transparent pixels.
710 auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
711
712 for (int32_t y = 0; y < image->height; y++) {
713 png_const_bytep in_row = image->rows[y];
714 for (int32_t x = 0; x < image->width; x++) {
715 int rr = *in_row++;
716 int gg = *in_row++;
717 int bb = *in_row++;
718 int aa = *in_row++;
719 if (aa == 0) {
720 // Zero out the RGB channels when transparent.
721 rr = gg = bb = 0;
722 }
723 out_row[x * bpp] = rr;
724 out_row[x * bpp + 1] = gg;
725 out_row[x * bpp + 2] = bb;
726 if (bpp == 4) {
727 out_row[x * bpp + 3] = aa;
728 }
729 }
730 png_write_row(write_ptr, out_row.get());
731 }
732 } else {
733 // The source image can be used as-is, just tell libpng whether or not to
734 // ignore the alpha channel.
735 if (new_color_type == PNG_COLOR_TYPE_RGB) {
736 // Delete the extraneous alpha values that we appended to our buffer
737 // when reading the original values.
738 png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
739 }
740 png_write_image(write_ptr, image->rows.get());
741 }
742 } else {
743 LOG(FATAL) << "unreachable";
744 }
745
746 png_write_end(write_ptr, write_info_ptr);
747 return true;
748 }
749
750 } // namespace aapt
751