1# OpenGL ES 2 3OpenGL is a cross-platform graphics API that specifies a standard software interface for 3D graphics processing hardware. [OpenGL ES](https://www.khronos.org/opengles/) is a flavor of the OpenGL specification intended for embedded devices. OpenHarmony now supports OpenGL ES 3.2. 4 5## Supported Capabilities 6 7OpenGL ES 3.2 8 9## Symbols Exported from the Standard Library 10 11[OpenGL ES 3.2 Symbols Exported](openglesv3-symbol.md) 12 13## Introducing OpenGL 14 15To use OpenGL capabilities, you must add related dynamic link libraries (DLLs) and header files. 16 17**Adding Dynamic Link Libraries** 18 19Add the following libraries to **CMakeLists.txt**. 20 21```txt 22libace_ndk.z.so 23libace_napi.z.so 24libGLESv3.so 25libEGL.so 26``` 27 28**Including Header Files** 29 30```c++ 31#include <ace/xcomponent/native_interface_xcomponent.h> 32#include <EGL/egl.h> 33#include <EGL/eglext.h> 34#include <EGL/eglplatform.h> 35#include <GLES3/gl3.h> 36``` 37 38## References 39 40To use the OpenGL ES API in your application development, familiarize yourself with the NDK development process and the **XComponent** usage, which are described in the following topics: 41 42- [Getting Started with the NDK](../../napi/ndk-development-overview.md) 43 44- [Node-API](./napi.md) 45 46- [XComponentNode](../apis-arkui/js-apis-arkui-xcomponentNode.md) 47 48- [XComponent](../apis-arkui/arkui-ts/ts-basic-components-xcomponent.md) 49 50## OpenGL ES Extensions 51 52- To obtain the official reference document for OpenGL ES extensions, visit [Khronos OpenGL ES Registry](https://registry.khronos.org/OpenGL/index_es.php). 53- You can call **glGetString** to query the extensions supported by the chip. Before calling **glGetString**, you must initialize the context. The following is an example: 54 55```c++ 56EGLDisplay display; 57EGLConfig config; 58EGLContext context; 59EGLSurface surface; 60EGLint majorVersion; 61EGLint minorVersion; 62EGLNativeWindowType win; 63display = eglGetDisplay(EGL_DEFAULT_DISPLAY); 64eglInitialize(display, &majorVersion, &minorVersion); 65display = eglGetDisplay(EGL_DEFAULT_DISPLAY); 66eglInitialize(display, &majorVersion, &minorVersion); 67EGLint attribs[] = { 68 EGL_RENDERABLE_TYPE, 69 EGL_OPENGL_ES2_BIT, 70 EGL_BLUE_SIZE, 8, 71 EGL_GREEN_SIZE, 8, 72 EGL_RED_SIZE, 8, 73 EGL_NONE 74}; 75eglChooseConfig(display, attribs, &config, 1, &numConfigs); 76context = eglCreateContext(display, config, EGL_NO_CONTEXT, NULL); 77surface = eglCreatePbufferSurface(display, config, NULL); 78eglMakeCurrent(display, surface, surface, context); 79 80char *strTest = new char[1024]; 81strTest = (char *)glGetString(GL_EXTENSIONS); // The return value of strTest lists all extensions supported, separated by spaces. 82bool isHave = strTest.find("GL_OES_matrix_palette") != -1 ? 83 true : 84 false; // Check whether an extension exists. If yes, the value of isHave is true. If no, the value of isHave is false. 85``` 86 87## Example 88 89```cpp 90#include <EGL/egl.h> 91#include <GLES3/gl3.h> 92#include <iostream> 93 94#define WINDOW_WIDTH 800 95#define WINDOW_HEIGHT 600 96 97int main() { 98 // Initialize EGL. 99 EGLDisplay display; 100 EGLConfig config; 101 EGLContext context; 102 EGLSurface surface; 103 EGLint numConfigs; 104 EGLint majorVersion; 105 EGLint minorVersion; 106 107 // Initialize the EGL display. 108 display = eglGetDisplay(EGL_DEFAULT_DISPLAY); 109 eglInitialize(display, &majorVersion, &minorVersion); 110 111 // Configure EGL. 112 EGLint attribs[] = { 113 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT, 114 EGL_BLUE_SIZE, 6, 115 EGL_GREEN_SIZE, 8, 116 EGL_RED_SIZE, 8, 117 EGL_NONE 118 }; 119 eglChooseConfig(display, attribs, &config, 1, &numConfigs); 120 121 // Create an EGL context. 122 EGLint contextAttribs[] = { 123 EGL_CONTEXT_CLIENT_VERSION, 3, 124 EGL_NONE 125 }; 126 127 // Create an EGL surface. 128 surface = eglCreateWindowSurface(display, config, nativeWindow, NULL); 129 130 context = eglCreateContext(display, config, EGL_NO_CONTEXT, contextAttribs); 131 132 // Bind the EGL context to the surface. 133 eglMakeCurrent(display, surface, surface, context); 134 135 // Set the viewport. 136 glViewport(0, 0, WINDOW_WIDTH, WINDOW_HEIGHT); 137 138 // Clear the color buffer. 139 glClearColor(0.2f, 0.3f, 0.3f, 1.0f); 140 glClear(GL_COLOR_BUFFER_BIT); 141 142 // Define vertex data. 143 GLfloat vertices[] = { 144 -0.5f, -0.5f, 0.0f, // Lower left corner. 145 0.5f, -0.5f, 0.0f, // Lower right corner. 146 0.0f, 0.5f, 0.0f // Top. 147 }; 148 149 // Create and bind a Vertex Buffer Object (VBO). 150 GLuint VAO[0]; 151 GLuint VBO; 152 glGenVertexArrays(1, VAO); 153 glBindVertexArray(VAO[0]); 154 glGenBuffers(1, &VBO); 155 glBindBuffer(GL_ARRAY_BUFFER, VBO); 156 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); 157 158 // Create a shader program. 159 const char* vertexShaderSource = R"( 160 #version 300 es 161 precision mediump float; 162 layout (location = 0) in vec3 aPos; 163 void main() { 164 gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0); 165 } 166 )"; 167 168 const char* fragmentShaderSource = R"( 169 #version 300 es 170 precision mediump float; 171 out vec4 FragColor; 172 void main() { 173 FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f); 174 } 175 )"; 176 177 GLuint vertexShader, fragmentShader, shaderProgram; 178 // Create a vertex shader. 179 vertexShader = glCreateShader(GL_VERTEX_SHADER); 180 glShaderSource(vertexShader, 1, &vertexShaderSource, nullptr); 181 glCompileShader(vertexShader); 182 183 // Create a fragment shader. 184 fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); 185 glShaderSource(fragmentShader, 1, &fragmentShaderSource, nullptr); 186 glCompileShader(fragmentShader); 187 188 // Create a shader program. 189 shaderProgram = glCreateProgram(); 190 glAttachShader(shaderProgram, vertexShader); 191 glAttachShader(shaderProgram, fragmentShader); 192 glLinkProgram(shaderProgram); 193 194 // Use the shader program. 195 glUseProgram(shaderProgram); 196 197 // Bind the vertex data. 198 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0); 199 glEnableVertexAttribArray(0); 200 201 // Draw a triangle. 202 glDrawArrays(GL_TRIANGLES, 0, 3); 203 204 // Swap the buffers. 205 eglSwapBuffers(display, surface); 206 207 // Clear the resources. 208 glDeleteShader(vertexShader); 209 glDeleteShader(fragmentShader); 210 glDeleteBuffers(1, &VBO); 211 212 // Wait for exit. 213 std::cout << "Press Enter to exit..." << std::endl; 214 std::cin.get(); 215 216 // Clear EGL. 217 eglDestroyContext(display, context); 218 eglDestroySurface(display, surface); 219 eglTerminate(display); 220 221 return 0; 222} 223 224``` 225 226This example uses EGL to create a render surface, which can be a window surface, pbuffer, or pixmap. The following explains every step in detail. 227 228### Using eglGetDisplay to Obtain an EGL Display Connection 229```cpp 230EGLDisplay eglGetDisplay(EGLNativeDisplayType display_id); 231``` 232 233The **eglGetDisplay** function returns an **EGLDisplay** object, which represents the connection to an EGL display. If no connection is available, **EGL_NO_DISPLAY** is returned. 234 235The **display_id** parameter indicates the local display type of the display. The **EGLNativeDisplayType** parameter is the native window display type, which has different definitions on different platforms. If you just want to use the default display, use **EGL_DEFAULT_DISPLAY** without explicitly specifying **display_id**. 236 237### Using eglInitialize to Initialize the EGL Display Connection 238Call **eglInitialize** to initialize the EGL display connection obtained. 239```cpp 240EGLBoolean eglInitialize(EGLDisplay display, // EGL display connection. 241 EGLint *majorVersion, // Major version number of the EGL implementation. The value may be NULL. 242 EGLint *minorVersion);// Minor version number of the EGL implementation. The value may be NULL. 243``` 244The function is used to initialize the internal data structure of the EGL, return the EGL version numbers, and save them in **majorVersion** and **minorVersion**. 245If the initialization is successful, **EGL_TRUE** is returned. Otherwise, **EGL_FALSE** is returned. You can also call **EGLint eglGetError()** to query the EGL error status. 246 247- **EGL_BAD_DISPLAY**: The specified EGL display is invalid. 248 249- **EGL_NOT_INITIALIZED**: EGL cannot be initialized. 250 251### Using eglChooseConfig to Determine the Rendering Configuration 252After the EGL display connection is initialized, determine the type and configuration of the available surface in either of the following ways: 253- Specify a set of required configurations and use **eglChooseConfig** to enable EGL to recommend the optimal configuration. 254Generally, you can use this method because it is easier to obtain the optimal configuration. 255 256 ```cpp 257 EGLBoolean eglChooseConfig(EGLDisplay dpy, // Handle to the EGL display connection for which configurations are selected. 258 const EGLint *attrib_list, // An integer array of pointers to attributes. Each element in the array consists of an attribute name (for example, EGL_RED_SIZE) and attribute value, and the array is terminated with EGL_NONE. An example attribute array is {EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_NONE}. 259 EGLConfig *configs, // An array of pointers to the selected configurations. The eglChooseConfig function selects the configurations that match the attributes from the available configurations and stores them in this array. 260 EGLint config_size,// Size of the configs array. 261 EGLint *num_config); // Number of configurations that match the attributes. 262 ``` 263 264 ```cpp 265 // Here, the following attributes are used: 266 EGLint attribs[] = {EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT, -// The renderable type is OpenGL ES 3. 267 EGL_BLUE_SIZE, 6, // The number of bits in the blue buffer is 6. 268 EGL_GREEN_SIZE, 8, // The number of bits in the green buffer is 8. 269 EGL_RED_SIZE, 8, // The number of bits in the red buffer is 8. 270 EGL_NONE}; 271 eglChooseConfig(display, attribs, &config, 1, &numConfigs); 272 ``` 273 In this example, the number of bits in the blue buffer is 6. To use six bits to represent the blue value 200 in the case of 8-bit RGB (ranging from 0 to 255), use the following formula for calculation: 64 x 200/256, where 64 is the maximum value that can be represented by six bits (2^6 = 64). After **eglChooseConfig** is called, the configurations that match the attributes are returned and stored in the **config** array. In the sample code, **config_size** is set to **1**, indicating that the size of the **config** array is 1. Only one set of configurations can be stored, but that's enough. **numconfigs** specifies the number of configurations that match the attributes. In this way, the desired **config** array is obtained. 274 275- Use **eglGetConfigs** to query all supported configurations and use **eglGetConfigAttrib** to filter the desired ones. 276 The following describes how to use this method to obtain the desired configurations. 277 278 ```cpp 279 #include <EGL/egl.h> 280 #include <iostream> 281 #include <vector> 282 int main() { 283 // Initialize EGL. 284 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); 285 eglInitialize(display, nullptr, nullptr); 286 287 // Obtain all the configurations. 288 EGLint numConfigs; 289 eglGetConfigs(display, nullptr, 0, &numConfigs); 290 std::vector<EGLConfig> configs(numConfigs); 291 eglGetConfigs(display, configs.data(), numConfigs, &numConfigs); 292 293 // Select a proper configuration. 294 EGLConfig chosenConfig = nullptr; 295 for (const auto& config : configs) { 296 EGLint redSize, greenSize, blueSize; 297 eglGetConfigAttrib(display, config, EGL_RED_SIZE, &redSize); 298 eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &greenSize); 299 eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &blueSize); 300 if (redSize == 8 && greenSize == 8 && blueSize == 6) { 301 chosenConfig = config; 302 break; 303 } 304 } 305 306 // If no configuration is selected, print the error information and exit. 307 if (!chosenConfig) { 308 std::cerr << "Failed to find a suitable EGL configuration." << std::endl; 309 return 1; 310 } 311 return 0; 312 } 313 ``` 314 315 ```cpp 316 EGLBoolean eglGetConfigs(EGLDisplay display, // Handle to the EGL display connection for which configurations are selected. 317 EGLConfig *configs, // Array for storing the obtained configurations. 318 EGLint config_size, // Size of the configs array. 319 EGLint *num_config); // Number of available configurations. 320 ``` 321 322 The **eglGetConfigs** function can be used in either of the following ways: 323 324 - If a null pointer is passed in to **configs**, **EGL_TRUE** is returned and the number of available configurations obtained is saved in **num_config**. In this case, **configs** can be initialized based on the number to store the configurations. For details, see the preceding code. 325 - If **configs** is configured to accept all configurations, all configurations obtained are saved in **configs**. You can filter them as required and store the desired ones. 326 327 ```cpp 328 // Select a proper configuration. 329 EGLConfig chosenConfig = nullptr; 330 for (const auto& config : configs) { 331 EGLint redSize, greenSize, blueSize; 332 eglGetConfigAttrib(display, config, EGL_RED_SIZE, &redSize); 333 eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &greenSize); 334 eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &blueSize); 335 if (redSize == 8 && greenSize == 8 && blueSize == 6) { 336 chosenConfig = config; 337 break; 338 } 339 } 340 ``` 341 342 The preceding code snippet traverses each configuration in **configs** and uses **eglGetConfigAttrib** to query the value of a specific attribute in the configuration, save the value in the fourth parameter, check whether the configuration is the desired one, and if yes, save the configuration. If the call is successful, **EGL_TRUE** is returned. Otherwise, **EGL_FALSE** is returned. In the latter case, you can use **eglGetError** to obtain the failure cause. If **EGL_BAD ATTRIBUTE** is returned, the attribute is invalid. 343 344 ```cpp 345 EGLBoolean eglGetConfigAttrib(EGLDisplay display, // Handle to the EGL display connection for which configurations are selected. 346 EGLConfig config, // EGL configuration to query. 347 EGLint attribute, // Attribute identifier of the EGLint type, indicating the attribute to query. 348 EGLint *value); // Pointer to the variable of the EGLint type, which is used to store the attribute value obtained. 349 ``` 350 351 352### Using eglCreateWindowSurface to Create a Window Surface 353 354After obtaining the EGL configurations that meet the rendering requirements, use **eglCreateWindowSurface** to create a window surface. 355```cpp 356EGLSurface eglCreateWindowSurface(EGLDisplay dpy, // EGL display connection to be associated with the window surface. 357 EGLConfig config, // EGL configuration of the window surface to create. 358 EGLNativeWindowType win, // Parameter of the EGLNativeWindowType type. It is the handle or identifier of the native window and is used to associate with the EGL surface. 359 const EGLint *attrib_list); // Pointer to the EGL attribute list. It specifies the attributes of the window surface. It is an integer array terminating with EGL_NONE. 360``` 361The following values can be passed in to **attrib_list** of **eglCreateWindowSurface**: 362 363```cpp 364EGL_RENDER_BUFFER EGL_SINGLE_BUFFER or EGL_BACK_BUFFER 365EGL_SINGLE_BUFFER // There is only one render buffer on the EGL surface. After the rendering is complete, the content in the render buffer is directly displayed on the screen. As a result, screen flickering or tearing may occur. 366EGL_BACK_BUFFER // There are a front buffer and a back buffer. After the rendering is complete, the content in the render buffer is first rendered to the back buffer, and then the content in the back buffer is displayed on the screen by means of buffer swapping. In this way, screen flickering or tearing can be avoided. 367// The default value is EGL_BACK_BUFFER. If this parameter is set to null, the default value is used. 368``` 369The possible causes of a failure to call **eglCreateWindowSurface** are as follows: 370 371- **EGL_BAD_MATCH**: The native window attributes do not match the EGL configuration. This may be because the EGL configuration does not support rendering to the window (the **EGL_SURFACE_TYPE** attribute is not set to **EGL_WINDOW_BIT**). 372 373- **EGL_BAD_CONFIG**: The EGL configuration is not supported by the system. 374 375- **EGL_BAD_NATIVE_WINDOW**: The native window handle is invalid. 376 377- **EGL_BAD_ALLOC**: Resources cannot be created for a new EGL window or there is already an EGL configuration associated with the native window. 378 379```cpp 380EGLint attribList[] = { EGL_RENDER_BUFFER, EGL_BACK_BUFFER, EGL_NONE }; 381EGLSurface surface = eglCreateWindowSurface(display, config, nativeWindow, attribList); 382if (surface == EGL_NO_SURFACE) { 383 switch (eglGetError()) { 384 case EGL_BAD_MATCH: 385 // Check the window and EGL configuration to determine the compatibility, or check whether the EGL configuration supports rendering to the window. 386 break; 387 case EGL_BAD_CONFIG: 388 // Check whether the EGL configuration is valid. 389 break; 390 case EGL_BAD_NATIVE_WINDOW: 391 // Check whether the EGL native window is valid. 392 break; 393 case EGL_BAD_ALLOC: 394 // Resources are insufficient. Handle and rectify the fault. 395 break; 396 default: 397 // Handle other errors. 398 break; 399 } 400} 401``` 402The process of using the **XComponent** to obtain a native window is as follows: 4031. Define the **XComponent** and set the **XComponentController** in ArkTS. The **XComponent** is used to embed native rendering elements, such as OpenGL or Vulkan, into the UI. 404 405 ```typescript 406 Column() { 407 XComponent({ 408 id: 'myXComponent', 409 type: XComponentType.SURFACE, 410 controller: this.xComponentController 411 }) 412 } 413 ``` 414 4152. Create an **XComponentController** subclass and implement its callbacks. 416 417 ```typescript 418 class MyXComponentController extends XComponentController { 419 onSurfaceCreated(surfaceId: string): void { 420 console.log(`onSurfaceCreated surfaceId: ${surfaceId}`); 421 nativeRender.SetSurfaceId(BigInt(surfaceId)); 422 // The surface ID will be used to associate with the native window. 423 } 424 425 onSurfaceChanged(surfaceId: string, rect: SurfaceRect): void { 426 console.log(`onSurfaceChanged surfaceId: ${surfaceId}`); 427 } 428 429 onSurfaceDestroyed(surfaceId: string): void { 430 console.log(`onSurfaceDestroyed surfaceId: ${surfaceId}`); 431 } 432 } 433 ``` 434 4353. Use the surface ID to obtain a native window. 436 437 The surface ID is generated during the creation of the **XComponent**. In the **onSurfaceCreated** callback, you can use **OH_NativeWindow_CreateNativeWindowFromSurfaceId** to obtain a native window based on the surface ID. 438 439 ```cpp 440 napi_value PluginManager::SetSurfaceId(napi_env env, napi_callback_info info) 441 { 442 int64_t surfaceId = ParseId(env, info); 443 OHNativeWindow *nativeWindow; 444 PluginRender *pluginRender; 445 if (windowMap_.find(surfaceId) == windowMap_.end()) { 446 OH_NativeWindow_CreateNativeWindowFromSurfaceId(surfaceId, &nativeWindow); 447 windowMap_[surfaceId] = nativeWindow; 448 } 449 if (pluginRenderMap_.find(surfaceId) == pluginRenderMap_.end()) { 450 pluginRender = new PluginRender(surfaceId); 451 pluginRenderMap_[surfaceId] = pluginRender; 452 } 453 pluginRender->InitNativeWindow(nativeWindow); 454 return nullptr; 455 } 456 ``` 457 458For details about how to use the **XComponent**, see [ArkTS XComponent Usage Example](https://gitee.com/openharmony/applications_app_samples/tree/master/code/BasicFeature/Native/XComponent). 459### Using eglCreateContext to Create a Rendering Context 460 461The **eglCreateContext** function is used to create an EGL rendering context and associate it with a specific display and configuration. You can specify a shared context to share status information with an existing OpenGL context. The parameters in the function are described as follows: 462 463```cpp 464EGLContext eglCreateContext(EGLDisplay display, // Type of the EGL display connection for which the context is to be created. 465 EGLConfig config, // Type of the EGL configuration associated with the context. 466 EGLContext shareContext, // Type of the EGL context whose status information is to be shared with the newly created context. If you do not want to share the status information, pass in EGL_NO_CONTEXT. 467 const EGLint *attribList); // Pointer to the attribute list. It specifies the attributes of the context. An attribute list is a series of attribute-value pairs terminating with EGL_NONE. 468``` 469The value of **attribList** in **eglCreateContext** is as follows: 470```cpp 471EGLint contextAttribs[] = { 472 EGL_CONTEXT_CLIENT_VERSION, 3, // Context type related to OpenGL ES version 3. 473}; 474``` 475 476If **eglCreateContext** fails to create the rendering context, the possible cause is **EGL_BAD_CONFIG**, which means that the EGL configuration is invalid. 477 478### Using eglMakeCurrent to Attach the EGL Rendering Context to the EGL Surface 479 480```cpp 481EGLBoolean eglMakeCurrent(EGLDisplay display, // Handle to the EGL display connection. 482 EGLSurface draw, // Handle to the EGL draw surface. 483 EGLSurface read, // Handle to the EGL read surface. It is used to read pixels. Generally, you can set this parameter to the same value as draw. 484 EGLContext context); // Handle to the EGL rendering context to be attached to the surface. 485``` 486 487### Using glViewport to Set the Viewport 488 489```cpp 490void glViewport(GLint x, GLint y, GLsizei width, GLsizei height) 491``` 492 493The **glViewport** function is used to set the viewport and specify the position and size of the OpenGL ES rendering area in the window. The **x** and **y** parameters specify the coordinates of the lower left corner of the viewport in the window. The **width** and **height** parameters specify the width and height of the viewport. 494 495### Using glClearColor to Set the Color Used to Clear the Color Buffer 496 497```cpp 498void glClearColor(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); 499``` 500In the **glClearColor(0.2f, 0.3f, 0.3f, 1.0f)** function, the color used for clearing the color buffer is set to (0.2, 0.3, 0.3). That is, the red component is 0.2, the green component is 0.3, the blue component is 0.3, and the alpha value is 1.0 (opaque). 501 502### Using glClear to Clear Buffers 503 504```cpp 505void glClear(GLbitfield mask); 506``` 507The **glClear** function is used to clear a buffer. The **mask** parameter specifies the buffer to clear. It can be a combination of the following values: 508- **GL_COLOR_BUFFER_BIT**: clears the color buffer. 509- **GL_DEPTH_BUFFER_BIT**: clears the depth buffer. 510- **GL_STENCIL_BUFFER_BIT**: clears the stencil buffer. 511 512You can call **glClear(GL_COLOR_BUFFER_BIT)** to clear the color buffer and fill the buffer with the color set by **glClearColor**. Clearing the color buffer is a common operation before you start frame rendering. This operation ensures that each pixel on the screen is initialized to the specified color value. It is also a mandatory preparation for drawing a new frame, similar to painting a background color on the canvas to start a new painting. 513 514### Defining Vertex Data 515```cpp 516 // Define vertex data. 517 GLfloat vertices[] = { 518 -0.5f, -0.5f, 0.0f, // Lower left corner. 519 0.5f, -0.5f, 0.0f, // Lower right corner. 520 0.0f, 0.5f, 0.0f // Top. 521 }; 522``` 523 524In OpenGL, Normalized Device Coordinates (NDCs) are usually used to represent the position of a vertex. NDC is a coordinate space in the screen. In this space, the lower left corner is (-1, -1), and the upper right corner is (1, 1). This coordinate space makes the position of the vertex independent of the size and aspect ratio of the screen. 525### Managing Vertex Data 526 527You can save the vertex data on the GPU to minimize data transfer between the CPU and GPU. 528 529```cpp 530GLuint VAO[1]; 531GLuint VBO; 532glGenVertexArrays(1, VAO); // Generate Vertex Array Object (VAO) names. In this example, one VBO is generated. 533glBindVertexArray(VAO[0]); // Bind the VAO to the current OpenGL context. 534glGenBuffers(1, &VBO); // Generate VBO names. The first parameter indicates the number of VBO names to generate, and it is set to 1 in this example. The passed-in value &VBO is the pointer to the array that stores the generated VBO names. 535glBindBuffer(GL_ARRAY_BUFFER, VBO); // void glBindBuffer(GLenum target, GLuint buffer), where target indicates the buffer to be bound and can be one of the following values: 536 // GL_ARRAY_BUFFER: stores vertex attribute data. 537 // GL_ELEMENT_ARRAY_BUFFER: stores index data and other data. 538 // buffer is the name of the VBO to be bound. 539glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); 540``` 541```cpp 542void glBufferData(GLenum target, // target specifies the type of the buffer object. The value can be one of the following: 543 // GL_ARRAY_BUFFER: stores vertex attribute data. 544 // GL_ELEMENT_ARRAY_BUFFER: stores index data. 545 GLsizeiptr size, // Size (in bytes) of the buffer to be allocated. 546 const GLvoid* data, // Pointer to the initial data to be copied to the buffer. 547 GLenum usage); // Expected buffer usage mode. The value can be one of the following: 548 // GL_STATIC_DRAW: The data is not or almost not modified and is used many times as the source for the drawing commands. 549 // GL_DYNAMIC_DRAW: The data is frequently modified and used many times as the source for the drawing commands. 550 // GL_STREAM_DRAW: The data is modified and is seldom used as the source for the drawing commands. 551``` 552 553Once the **glBufferData** function is called, the data is copied to the OpenGL buffer object and stored in the GPU memory. This means that data can be efficiently accessed and processed on the GPU without frequent data transfer with the CPU memory. 554 555```cpp 556 const char* vertexShaderSource = R"( 557 #version 320 es // Shader of OpenGL ES 3.2 is used. 558 precision mediump float; // The floating point number uses the medium precision. 559 layout (location = 0) in vec3 aPos; // Vertex attribute variable. The variable name is aPos, the type is vec3, and the index in the vertex shader is 0. This variable receives the vertex data from the VBO. Each time the vertex shader is called, aPos is set to the position of the currently processed vertex. (The data is obtained from the VBO and stored in the GPU.) 560 void main() { 561 // gl_Position, a built-in variable of OpenGL ES, specifies the final position of each vertex. The position is the coordinates in the clip space after perspective projection transformation. 562 // After a value is assigned to gl_Position in the vertex shader, the rendering pipeline further processes the vertex and projects the vertex to the two-dimensional coordinates on the screen. 563 // When w is a non-zero value, perspective division is performed on the vertex coordinates. That is, (x/w, y/w, z/w) in (x, y, z, w) is used as the final coordinates in the clip space. 564 // Therefore, when the value of w is 1.0, perspective division does not change the coordinates. 565 gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0); 566 } 567 )"; 568``` 569- Fragment is an element generated by rasterization. It represents a potential screen pixel, including all information related to the pixel, such as the color, depth, and stencil value. Each fragment is processed by a fragment shader, which also determines whether to write the fragment to the frame buffer. 570- A fragment shader runs on each fragment. In this example, it is used to calculate the final color value of the fragment. It can access the interpolated vertex data and perform complex operations such as lighting calculation and texture sampling. 571 572```cpp 573 574const char* fragmentShaderSource = R"( 575 #version 320 es // Shader of OpenGL ES 3.2 is used. 576 precision mediump float; // The floating point number uses the medium precision. 577 out vec4 FragColor; // Color of the output fragment. 578 579 void main() { 580 // Set the color of each fragment to vec4(1.0f, 0.5f, 0.2f, 1.0f), 581 // indicating the red, green, blue, and alpha values, respectively. 582 // This means that the output color is light orange, completely opaque. 583 // The color here is not obtained from the vertex shader through rasterization by linear interpolation. It is directly assigned. 584 FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f); 585 } 586)"; 587 588``` 589In the OpenGL ES rendering pipeline, the following steps describe the entire process from vertex data to pixel output: 590 5911. Vertex shader processing 592 593 The vertex data in the buffer is passed into the vertex shader program and undergone the following processing: 594 595 - Matrix transformation: uses the model view (MV) matrix and projection matrix to transform the vertex position. 596 597 - Lighting calculation: calculates the color or other attributes of vertices based on the lighting formula. 598 5992. Primitive assembly 600 601 In the primitive assembly phase, the vertex data is assembled into geometric primitive, such as points, line segments, or triangles. 602 6033. Rasterization 604 605 Rasterization is performed to convert a geometric primitive (for example, a triangle) into a set of pixels on the screen. This process includes interpolation. Specifically, if a color or other attributes are set for a vertex, linear interpolation is performed on these attributes in the rasterization phase to generate fragment (pixel) data. 606 6074. Fragment shader processing 608 609 The fragment data output by rasterization is used as the input variable of the fragment shader. The following operations are carried out in the fragment shader: 610 611 - Lighting calculation: calculates the lighting effect of a fragment. 612 613 - Texture sampling: obtains color data from textures. 614 615 - Color mixing: generates new colors, depths, and screen coordinates based on lighting and texture data. 616 6175. Fragment-by-fragment processing 618 619 The output of the fragment shader is then undergone fragment-by-fragment processing as follows: 620 621 - Pixel ownership test: determines whether the fragment belongs to the current pixel area to draw. 622 623 - Scissor test: determines whether the fragment is in the visible area. 624 625 - Stencil test: uses the stencil buffer for test. 626 627 - Depth-buffer test: compares the depth values of the fragment to determine whether it visible. 628 629 - Blending: combines the newly calculated color with the existing color in the frame buffer. 630 631 - Dithering: reduces color quantization errors by applying small, random, or ordered noise to the original image to distribute these quantization errors. 632 6336. Writing the frame to the buffer 634 635 After all the preceding tests and processing, the final fragment data is written into the frame buffer and displayed as an image on the screen. 636 637### Creating and Using a Shader Program 638 639```cpp 640GLuint vertexShader, fragmentShader, shaderProgram; 641// Create a vertex shader. 642vertexShader = glCreateShader(GL_VERTEX_SHADER); 643glShaderSource(vertexShader, 1, &vertexShaderSource, nullptr); 644glCompileShader(vertexShader); 645 646// Create a fragment shader. 647fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); 648glShaderSource(fragmentShader, 1, &fragmentShaderSource, nullptr); 649glCompileShader(fragmentShader); 650 651// Create a shader program. 652shaderProgram = glCreateProgram(); 653glAttachShader(shaderProgram, vertexShader); 654glAttachShader(shaderProgram, fragmentShader); 655glLinkProgram(shaderProgram); 656 657// Use the shader program. 658glUseProgram(shaderProgram); 659``` 660 661```cpp 662GLuint glCreateShader(GLenum shaderType); 663``` 664The **glCreateShader** function is used to create a shader object of a specified type and return a handle to the object. The **shaderType** parameter specifies the type of shader to create, which can be **GL_VERTEX_SHADER** (vertex shader) or **GL_FRAGMENT_SHADER** (fragment shader). 665 666```cpp 667void glShaderSource(GLuint shader, GLsizei count, const GLchar \**string, const GLint *length); 668``` 669 670The **glShaderSource** function is used to set the source code of the shader object. The following parameters are available in the function: 671 672- **shader**: identifier of the shader object for which the source code is set. 673- **count**: number of source code strings. 674- **string**: array of pointers to the source code strings. 675- **length**: pointer to an integer array that contains the length of each source code string. The value can be a null pointer, indicating that each string ends with **null**. 676 677```cpp 678void glCompileShader(GLuint shader); 679``` 680 681The **glCompileShader** function is used to compile a shader object, where the **shader** parameter is the identifier of the target shader object. 682 683```cpp 684GLuint glCreateProgram(void); 685``` 686 687The **glCreateProgram** function is used to create a shader program object and return the object identifier. 688 689```cpp 690void glAttachShader(GLuint program, GLuint shader); 691``` 692 693The **glAttachShader** function is used to attach a shader object to a shader program object. The **program** parameter is the identifier of the target shader program object, and the **shader** parameter is the identifier of the target shader object. 694 695```cpp 696void glLinkProgram(GLuint program); 697``` 698 699The **glLinkProgram** function is used to link a shader program object, that is, to link the shader attached to the program object to an executable rendering pipeline. 700 701The **program** parameter is the identifier of the target shader program object. After the shader program is linked, OpenGL merges the code in each individual shader object into an executable rendering pipeline, performs connector optimization to optimize the performance of the rendering pipeline, and binds the **Uniform** variable to the information about the Uniform block. 702 703```cpp 704void glUseProgram(GLuint program); 705``` 706The **glUseProgram** function is used to activate a shader program object. After **glUseProgram** is called, all rendering calls are processed using the activated shader program. 707 708You can use the following code to check whether the call of **glCompileShader** is normal: 709 710```cpp 711// Compile the shader. 712glCompileShader(shader); 713 714// Check the compilation status. 715glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled); 716 717if (!compiled) 718{ 719 GLint infoLen = 0; 720 721 // Obtain the length of the shader information log. 722 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen); 723 724 if ( infoLen > 1 ) 725 { 726 // Allocate the memory for storing the information log. 727 char *infoLog = malloc(sizeof(char) * infoLen); 728 729 // Obtain and print the shader information log. 730 glGetShaderInfoLog(shader, infoLen, NULL, infoLog); 731 esLogMessage("Error compiling shader:\n%s\n", infoLog); 732 733 // Release the allocated memory. 734 free(infoLog); 735 } 736 737 // Delete the shader that fails to be compiled. 738 glDeleteShader(shader); 739 return 0; 740} 741``` 742 743You can use the following code to check whether the call of **glLinkProgram** is normal: 744 745```cpp 746// Link the program object. 747glLinkProgram(programObject); 748 749// Check the linking status. 750glGetProgramiv(programObject, GL_LINK_STATUS, &linked); 751 752if (!linked) 753{ 754 GLint infoLen = 0; 755 756 // Obtain the length of the program object information log. 757 glGetProgramiv(programObject, GL_INFO_LOG_LENGTH, &infoLen); 758 759 if (infoLen > 1) 760 { 761 // Allocate the memory for storing the information log. 762 char *infoLog = malloc(sizeof(char) * infoLen); 763 764 // Obtain and print the information log of the program object. 765 glGetProgramInfoLog(programObject, infoLen, NULL, infoLog); 766 esLogMessage("Error linking program:\n%s\n", infoLog); 767 768 // Release the allocated memory. 769 free(infoLog); 770 } 771 772 // Delete the program object that fails to be linked. 773 glDeleteProgram(programObject); 774 return FALSE; 775} 776``` 777 778### Determining the Configuration of the Vertex Attribute Array 779 780Determine the layout and format of the vertex attributes in the buffer. 781 782```cpp 783void glVertexAttribPointer(GLuint index, // Start index of the vertex array. The index is bound to the attribute variable in the vertex shader. (layout (location = 0) in vec3 aPos;) 784 GLint size, // Number of components of each vertex attribute. 785 GLenum type, // Type of each component. 786 GLboolean normalized, // Whether to map the vertex data to [0, 1] or [-1, 1] when accessing the data. 787 GLsizei stride, // Stride between the vertex attributes. For precision arrangement, set this parameter to 0. 788 const void *offset); // Offset of the attribute in the buffer. It is the position from which data reading starts in the buffer. 789``` 790 791```cpp 792void glEnableVertexAttribArray(GLuint index); 793``` 794 795The **glEnableVertexAttribArray** function is used to enable an array of vertex attributes with a specified index. For example, call **glEnableVertexAttribArray(0)** to enable an array of vertex attributes with index 0. This array is associated with layout (location = 0) in vec3 aPos in the vertex shader program. 796 797In the sample code, the first parameter **index** of **glVertexAttribPointer** corresponds to **aPos** in the vertex shader, that is, position 0. The other parameters set the format of the vertex attribute, telling OpenGL that the attribute contains three components (x, y, and z), the data type is GL_FLOAT, and the first attribute of each vertex starts from offset 0. 798 799The **glBindBuffer** function binds the current VBO, **glBufferData** transfers vertex data to the GPU, and **glVertexAttribPointer** describes how to interpret the data. When using the VBO, vertex data is usually stored in a buffer. It is not automatically passed to the vertex shader. Therefore, the vertex attribute pointer is required to tell OpenGL ES how to interpret the data. The **glEnableVertexAttribArray** function is used to enable an array of vertex attributes at a specified position. For example, to enable an array of vertex properties at position 0, you can call **glEnableVertexAttribArray(0)**. 800 801 802### Drawing and Displaying Graphics 803 804```cpp 805void glDrawArrays(GLenum mode, // Type of the graphic to draw. For example, GL_TRIANGLES indicates that a triangle will be drawn. 806 GLint first, // Start index of the vertex array to draw. 807 GLsizei count // Number of vertices to draw. 808 ); 809``` 810 811The **glDrawArrays** function is used to draw graphics based on the currently bound vertex array, vertex attributes, and other settings. 812 813```cpp 814EGLBoolean eglSwapBuffers(EGLDisplay dpy, // EGL display connection. 815 EGLSurface surface); // EGL surface whose buffers are to be swapped. 816``` 817 818The **eglSwapBuffers** function is used to swap the front and back buffers and display the rendering result on the screen. 819