1# Encryption and Decryption by Segment with an AES Symmetric Key (GCM Mode) (C/C++) 2 3 4For details about the algorithm specifications, see [AES](crypto-sym-encrypt-decrypt-spec.md#aes). 5 6 7## Adding the Dynamic Library in the CMake Script 8```txt 9 target_link_libraries(entry PUBLIC libohcrypto.so) 10``` 11 12## How to Develop 13 14**Encryption** 15 16 171. Use [OH_CryptoSymKeyGenerator_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_create) and [OH_CryptoSymKeyGenerator_Generate](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_generate) to generate a 128-bit AES symmetric key (**OH_CryptoSymKey**). 18 19 In addition to the example in this topic, [AES](crypto-sym-key-generation-conversion-spec.md#aes) and [Randomly Generating a Symmetric Key](crypto-generate-sym-key-randomly-ndk.md) may help you better understand how to generate an AES symmetric key. Note that the input parameters in the reference documents may be different from those in the example below. 20 212. Use [OH_CryptoSymCipher_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_create) with the string parameter **'AES128|GCM|PKCS7'** to create a **Cipher** instance. The key type is **AES128**, block cipher mode is **GCM**, and the padding mode is **PKCS7**. 22 233. Use [OH_CryptoSymCipherParams_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_create) to create a symmetric cipher parameter instance, and use [OH_CryptoSymCipherParams_SetParam](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_setparam) to set cipher parameters. 24 254. Use [OH_CryptoSymCipher_Init](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_init) to initialize the **Cipher** instance. Specifically, set **mode** to **CRYPTO_ENCRYPT_MODE**, and specify the key for encryption (**OH_CryptoSymKey**) and the encryption parameter instance (**OH_CryptoSymCipherParams**) corresponding to the GCM mode. 26 275. Set the size of the data to be passed in each time to 20 bytes, and call [OH_CryptoSymCipher_Update](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_update) multiple times to pass in the data (plaintext) to be encrypted. 28 29 - Currently, the amount of data to be passed in by a single **OH_CryptoSymCipher_Update()** is not limited. You can determine how to pass in data based on the data volume. 30 - You are advised to check the result of each **OH_CryptoSymCipher_Update()**. If the result is not **null**, obtain the data and combine the data segments into complete ciphertext. The **OH_CryptoSymCipher_Update()** result may vary with the key specifications. 31 32 If a block cipher mode (ECB or CBC) is used, data is encrypted and output based on the block size. That is, if the data of an **OH_CryptoSymCipher_Update()** operation matches the block size, the ciphertext is output. Otherwise, **null** is output, and the plaintext will be combined with the input data of the next **OH_CryptoSymCipher_Update()** to form a block. When **OH_CryptoSymCipher_Update()** is called, the unencrypted data is padded to the block size based on the specified padding mode, and then encrypted. The **OH_CryptoSymCipher_Update()** API works in the same way in decryption. 33 34 If a stream cipher mode (CTR or OFB) is used, the ciphertext length is usually the same as the plaintext length. 35 366. Use [OH_CryptoSymCipher_Final](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_final) to generate the ciphertext. 37 38 - If data has been passed in by **OH_CryptoSymCipher_Update()**, pass in **null** in the **data** parameter of **OH_CryptoSymCipher_Final**. 39 - The output of **OH_CryptoSymCipher_Final** may be **null**. To avoid exceptions, always check whether the result is **null** before accessing specific data. 40 417. Use [OH_CryptoSymCipherParams_SetParam](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_setparam) to set **authTag** as the authentication information for decryption. 42 43 In GCM mode, extract the last 16 bytes from the encrypted data as the authentication information for initializing the **Cipher** instance in decryption. In the example, **authTag** is of 16 bytes. 44 458. Use [OH_CryptoSymKeyGenerator_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_destroy), [OH_CryptoSymCipher_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_destroy), and [OH_CryptoSymCipherParams_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_destroy) to destroy the instances created. 46 47**Decryption** 48 49 501. Use [OH_CryptoSymCipher_Init](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_init) to initialize the **Cipher** instance. Specifically, set **mode** to **CRYPTO_DECRYPT_MODE**, and specify the key for decryption (**OH_CryptoSymKey**) and the decryption parameter instance (**OH_CryptoSymCipherParams**) corresponding to the GCM mode. 51 522. Set the size of the data to be passed in each time to 20 bytes, and call [OH_CryptoSymCipher_Update](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_update) multiple times to pass in the data (ciphertext) to be decrypted. 53 543. Use [OH_CryptoSymCipher_Final](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_final) to generate the plaintext. 55 56**Example** 57 58```c++ 59#include <string.h> 60#include "CryptoArchitectureKit/crypto_common.h" 61#include "CryptoArchitectureKit/crypto_sym_cipher.h" 62 63#define OH_CRYPTO_GCM_TAG_LEN 16 64#define OH_CRYPTO_MAX_TEST_DATA_LEN 128 65static OH_Crypto_ErrCode doTestAesGcmSeg() 66{ 67 OH_CryptoSymKeyGenerator *genCtx = nullptr; 68 OH_CryptoSymCipher *encCtx = nullptr; 69 OH_CryptoSymCipher *decCtx = nullptr; 70 OH_CryptoSymKey *keyCtx = nullptr; 71 OH_CryptoSymCipherParams *params = nullptr; 72 73 char *plainText = const_cast<char *>("aaaaa.....bbbbb.....ccccc.....ddddd.....eee"); 74 Crypto_DataBlob msgBlob = {.data = (uint8_t *)(plainText), .len = strlen(plainText)}; 75 76 uint8_t aad[8] = {1, 2, 3, 4, 5, 6, 7, 8}; 77 uint8_t tagArr[16] = {0}; 78 uint8_t iv[12] = {1, 2, 4, 12, 3, 4, 2, 3, 3, 2, 0, 4}; // iv is generated from an array of secure random numbers. 79 Crypto_DataBlob tag = {.data = nullptr, .len = 0}; 80 Crypto_DataBlob ivBlob = {.data = iv, .len = sizeof(iv)}; 81 Crypto_DataBlob aadBlob = {.data = aad, .len = sizeof(aad)}; 82 Crypto_DataBlob outUpdate = {.data = nullptr, .len = 0}; 83 Crypto_DataBlob decUpdate = {.data = nullptr, .len = 0}; 84 Crypto_DataBlob tagInit = {.data = tagArr, .len = sizeof(tagArr)}; 85 int32_t cipherLen = 0; 86 int blockSize = 20; 87 int32_t randomLen = strlen(plainText); 88 int cnt = randomLen / blockSize; 89 int rem = randomLen % blockSize; 90 uint8_t cipherText[OH_CRYPTO_MAX_TEST_DATA_LEN] = {0}; 91 Crypto_DataBlob cipherBlob; 92 93 // Generate a key. 94 OH_Crypto_ErrCode ret; 95 ret = OH_CryptoSymKeyGenerator_Create("AES128", &genCtx); 96 if (ret != CRYPTO_SUCCESS) { 97 goto end; 98 } 99 ret = OH_CryptoSymKeyGenerator_Generate(genCtx, &keyCtx); 100 if (ret != CRYPTO_SUCCESS) { 101 goto end; 102 } 103 104 // Set parameters. 105 ret = OH_CryptoSymCipherParams_Create(¶ms); 106 if (ret != CRYPTO_SUCCESS) { 107 goto end; 108 } 109 ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_IV_DATABLOB, &ivBlob); 110 if (ret != CRYPTO_SUCCESS) { 111 goto end; 112 } 113 ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_AAD_DATABLOB, &aadBlob); 114 if (ret != CRYPTO_SUCCESS) { 115 goto end; 116 } 117 ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_TAG_DATABLOB, &tagInit); 118 if (ret != CRYPTO_SUCCESS) { 119 goto end; 120 } 121 122 // Encrypt data. 123 ret = OH_CryptoSymCipher_Create("AES128|GCM|PKCS7", &encCtx); 124 if (ret != CRYPTO_SUCCESS) { 125 goto end; 126 } 127 ret = OH_CryptoSymCipher_Init(encCtx, CRYPTO_ENCRYPT_MODE, keyCtx, params); 128 if (ret != CRYPTO_SUCCESS) { 129 goto end; 130 } 131 132 for (int i = 0; i < cnt; i++) { 133 msgBlob.len = blockSize; 134 ret = OH_CryptoSymCipher_Update(encCtx, &msgBlob, &outUpdate); 135 if (ret != CRYPTO_SUCCESS) { 136 goto end; 137 } 138 msgBlob.data += blockSize; 139 memcpy(&cipherText[cipherLen], outUpdate.data, outUpdate.len); 140 cipherLen += outUpdate.len; 141 } 142 if (rem > 0) { 143 msgBlob.len = rem; 144 ret = OH_CryptoSymCipher_Update(encCtx, (Crypto_DataBlob *)&msgBlob, &outUpdate); 145 if (ret != CRYPTO_SUCCESS) { 146 goto end; 147 } 148 memcpy(&cipherText[cipherLen], outUpdate.data, outUpdate.len); 149 cipherLen += outUpdate.len; 150 } 151 ret = OH_CryptoSymCipher_Final(encCtx, nullptr, &tag); 152 if (ret != CRYPTO_SUCCESS) { 153 goto end; 154 } 155 156 // Decrypt data. 157 cipherBlob = {.data = reinterpret_cast<uint8_t *>(cipherText), .len = (size_t)cipherLen}; 158 msgBlob.data -= strlen(plainText) - rem; 159 msgBlob.len = strlen(plainText); 160 ret = OH_CryptoSymCipher_Create("AES128|GCM|PKCS7", &decCtx); 161 if (ret != CRYPTO_SUCCESS) { 162 goto end; 163 } 164 ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_TAG_DATABLOB, &tag); 165 if (ret != CRYPTO_SUCCESS) { 166 goto end; 167 } 168 ret = OH_CryptoSymCipher_Init(decCtx, CRYPTO_DECRYPT_MODE, keyCtx, params); 169 if (ret != CRYPTO_SUCCESS) { 170 goto end; 171 } 172 ret = OH_CryptoSymCipher_Final(decCtx, &cipherBlob, &decUpdate); 173 if (ret != CRYPTO_SUCCESS) { 174 goto end; 175 } 176 177end: 178 OH_CryptoSymCipherParams_Destroy(params); 179 OH_CryptoSymCipher_Destroy(encCtx); 180 OH_CryptoSymCipher_Destroy(decCtx); 181 OH_CryptoSymKeyGenerator_Destroy(genCtx); 182 OH_CryptoSymKey_Destroy(keyCtx); 183 OH_Crypto_FreeDataBlob(&outUpdate); 184 OH_Crypto_FreeDataBlob(&tag); 185 OH_Crypto_FreeDataBlob(&decUpdate); 186 return ret; 187} 188``` 189