1# Touchscreen
2
3
4## Overview
5
6### Functions
7
8The touchscreen driver powers on its integrated circuit (IC), initializes hardware pins, registers interrupts, configures the communication (I2C or SPI) interface, sets input configurations, and downloads and updates firmware.
9
10The touchscreen driver is developed based on the OpenHarmony input driver model, which applies basic APIs of the operating system abstraction layer (OSAL) and platform interface layer on the OpenHarmony Hardware Driver Foundation [(HDF)](driver-overview-foundation.md). Common APIs include the bus communication APIs and OS native APIs (such as memory, lock, thread, and timer APIs). The OSAL and platform APIs shield the differences of underlying hardware. This allows the use of the touchscreen driver across platforms and OSs. In this regard, you can develop the touchscreen driver only once and deploy it on multiple devices.
11
12### Working Principles
13
14The input driver model is developed based on the HDF and APIs of the platform and OSAL. It provides hardware driver capabilities through the input Hardware Driver Interface (HDI) for upper-layer input services to control the touchscreen. The following figure shows the architecture of the input driver model.
15
16**Figure 1** Input driver model
17
18![image](figures/architecture-of-the-input-driver-model.png)
19
20The input driver model consists of the following:
21
22- Input Device Manager: provides APIs for input device drivers to register and deregister input devices and manages the input device list in a unified manner.
23- Common input drivers: provide common APIs that are applicable to different input devices (such as the common driver APIs for touchscreens). The APIs can be used to initialize board-specific hardware, handle hardware interrupts, and register input devices with the Input Device Manager.
24- Input chip drivers: provide differentiated APIs for the drivers form different vendors. You can use these APIs to develop your drivers with minimum modification.
25- Event Hub: provides a unified channel for different input devices to report input events.
26- HDF input config: parses and manages the board-specific and private configuration of input devices.<br>The input driver model provides configuration files to help you quickly develop your drivers.
27
28
29## How to Develop
30
31### When to Use
32
33The input module provides APIs for powering on the touchscreen driver IC, configuring and initializing hardware pins, registering interrupts, configuring the communication (I2C or SPI) interface, setting input configurations, and downloading and updating firmware.
34
35### Available APIs
36
37#### Hardware Interfaces
38
39The hardware interfaces for touchscreens can be classified into the following types based on the pin attributes:
40
41- Power interfaces
42
43- I/O control interfaces
44
45- Communication interfaces
46
47**Figure 2** Common touchscreen pins
48
49![](figures/common-pins-of-the-touchscreen.png "common-pins-of-the-touchscreen")
50
51The interfaces shown in the preceding figure are described as follows:
52
531. **Power interfaces**
54
55   - **LDO_1P8**: 1.8 V digital circuit
56   - **LDO_3P3**: 3.3 V analog circuit
57
58     If the touchscreen driver and ICD driver have its own IC, the touchscreen driver IC requires 1.8 V and 3.3 V power supplies. If the touchscreen driver and LCD driver have an integrated IC, you only need to care about the 1.8 V power supply for the touchscreen. The 3.3 V power supply required can be provided by the LCD VSP power (typically 5.5 V) in the driver IC.
59
602. **I/O control interfaces**
61
62   - **RESET**: pin used to reset the driver IC on the host when the kernel is put into hibernation or waken up.
63   - **INT**: interrupt pin, which must be set to the input pull-up state during driver initialization. After detecting an external touch signal, the driver triggers an interrupt by operating the interrupt pin. Then, the driver reads the touch reporting data in an interrupt handler.
64
653. **Communication interfaces**
66
67   - I2C: I2C is used if a small amount of data is reported by the touchscreen. For details about the I2C protocol and related operation APIs, see [I2C](../driver/driver-platform-i2c-des.md).
68   - SPI: SPI is used if a large amount of data is reported by the touchscreen. For details about the SPI protocol and related operation APIs, see [SPI](../driver/driver-platform-spi-des.md).
69
70#### Software Interfaces
71
72The HDI driver APIs provided for the input service can be classified into the input manager module, input reporter module, and input controller module. The following tables describe the available APIs.
73
74- input_manager.h
75
76  | API                                                                              | Description          |
77  | ------------------------------------------------------------------------------------- | -------------------|
78  | int32_t (*OpenInputDevice)(uint32_t devIndex);                                        | Opens an input device.      |
79  | int32_t (*CloseInputDevice)(uint32_t devIndex);                                       | Closes an input device.      |
80  | int32_t (*GetInputDevice)(uint32_t devIndex, DeviceInfo **devInfo);                   | Obtains information about an input device.|
81  | int32_t (*GetInputDeviceList)(uint32_t *devNum, DeviceInfo **devList, uint32_t size); | Obtains the input device list.|
82
83- input_reporter.h
84
85  | API                                                                            | Description           |
86  | ----------------------------------------------------------------------------------- | ------------------ |
87  | int32_t (*RegisterReportCallback)(uint32_t devIndex, InputReportEventCb *callback); | Registers a callback for an input device.|
88  | int32_t (*UnregisterReportCallback)(uint32_t devIndex);                             | Unregisters the callback for an input device.|
89  | void (*ReportEventPkgCallback)(const EventPackage **pkgs, uint32_t count);          | Called to report input event data.  |
90
91- input_controller.h
92
93  | API                                                                                            | Description      |
94  | --------------------------------------------------------------------------------------------------- |--------------- |
95  | int32_t (*SetPowerStatus)(uint32_t devIndex, uint32_t status);                                      | Sets the power status.   |
96  | int32_t (*GetPowerStatus)(uint32_t devIndex, uint32_t *status);                                     | Obtains the power status.   |
97  | int32_t (*GetDeviceType)(uint32_t devIndex, uint32_t *deviceType);                                  | Obtains the device type.   |
98  | int32_t (*GetChipInfo)(uint32_t devIndex, char *chipInfo, uint32_t length);                         | Obtains the chip information of a device.|
99  | int32_t (*GetVendorName)(uint32_t devIndex, char *vendorName, uint32_t length);                     | Obtains the module vendor name of a device.  |
100  | int32_t (*GetChipName)(uint32_t devIndex, char *chipName, uint32_t length);                         | Obtains the driver chip name of a device.  |
101  | int32_t (*SetGestureMode)(uint32_t devIndex, uint32_t gestureMode);                                 | Sets the gesture mode.    |
102  | int32_t (*RunCapacitanceTest)(uint32_t devIndex, uint32_t testType, char *result, uint32_t length); | Performs a capacitance test.|
103  | int32_t (*RunExtraCommand)(uint32_t devIndex, InputExtraCmd *cmd);                                  | Executes the specified command.    |
104
105For more information, see [input](https://gitee.com/openharmony/drivers_peripheral/tree/master/input).
106
107### Development Procedure
108
109The load process of the input driver model (for the touchscreen driver) is as follows:
110
1111. The device configuration, including the driver loading priority, board-specific hardware information, and private data, is complete.
112
1132. The HDF driver loads the input device manager driver to create and initialize the device manager.
114
1153. The HDF loads the platform driver to parse the board-specific configuration, initialize the hardware, and provide the API for registering the touchscreen.
116
1174. The HDF loads the touchscreen driver to instantiate the touchscreen device, parse the private data, and implement the differentiated APIs for the platform.
118
1195. The instantiated touchscreen device registers with the platform driver to bind the device and the driver and complete the device initialization, including interrupt registration and device power-on and power-off.
120
1216. The instantiated input device registers with the input device manager for unified management.
122
123
124The development process of the touchscreen driver is as follows:
125
1261. Configure device information. <br>The input driver is developed based on the HDF. The HDF loads and starts the driver in a unified manner. You need to configure the driver information, such as whether to load the driver and the loading priority, in the configuration file. Then, the HDF starts the registered driver modules one by one. For details about the driver configuration, see [HDF Driver Development Process](driver-hdf-manage.md).
127
1282. Configure board-specific information and touchscreen private information.<br>Configure the I/O pin functions. For example, set registers for the I2C pins on the board for the touchscreen to enable I2C communication.
129
1303. Implement device-specific APIs.<br>Based on the communication interfaces designed for the board, use the pin operation APIs provided by the platform interface layer to configure the corresponding reset pin, interrupt pin, and power operations. For details about GPIO operations, see [GPIO](../driver/driver-platform-gpio-des.md).
131
132
133### Development Example
134
135The following example describes how to develop the touchscreen driver for an RK3568 development board.
136
1371. Configure device information.
138
139   Configure the modules of the input driver model in **vendor/hihope/rk3568/hdf_config/khdf/device_info/device_info.hcs**. For details, see [HDF Driver Development Process](driver-hdf-manage.md). The HDF loads modules of the input model in sequence based on the configuration information.
140
141   ```c
142   input :: host {
143       hostName = "input_host";
144       priority = 100;
145       device_input_manager :: device {
146           device0 :: deviceNode {
147               policy = 2;        // The driver provides services externally.
148               priority = 100;    // Loading priority. In the input model, the manager module has the highest priority.
149               preload = 0;       // Whether to load the driver. The value 0 means to load the driver; 1 means the opposite.
150               permission = 0660;
151               moduleName = "HDF_INPUT_MANAGER";
152               serviceName = "input_dev_manager";
153               deviceMatchAttr = "";
154           }
155       }
156       device_hdf_touch :: device {
157           device0 :: deviceNode {
158               policy = 2;
159               priority = 120;
160               preload = 0;
161               permission = 0660;
162               moduleName = "HDF_TOUCH";
163               serviceName = "event1";
164               deviceMatchAttr = "touch_device1";
165           }
166       }
167
168       device_touch_chip :: device {
169           device0 :: deviceNode {
170               policy = 0;
171               priority = 130;
172               preload = 0;
173               permission = 0660;
174               moduleName = "HDF_TOUCH_SAMPLE";
175               serviceName = "hdf_touch_sample_service";
176               deviceMatchAttr = "zsj_sample_5p5";
177           }
178       }
179   }
180   ```
181
1822. Configure board-specific and private data for the touchscreen.
183
184   Configure the data in **vendor/hihope/rk3568/hdf_config/khdf/input/input_config.hcs**. The following is an example. You can modify the configuration as required.
185
186   ```c
187   root {
188       input_config {
189           touchConfig {
190               touch0 {
191                   boardConfig {
192                       match_attr = "touch_device1";
193                       inputAttr {
194                           inputType = 0;           // 0 indicates touchscreen.
195                           solutionX = 480;
196                           solutionY = 960;
197                           devName = "main_touch";  // Device name.
198                       }
199                       busConfig {
200                           busType = 0;             // 0 indicates I2C.
201                           busNum = 6;
202                           clkGpio = 86;
203                           dataGpio = 87;
204                           i2cClkIomux = [0x114f0048, 0x403];  // Register of the I2C_CLK pin.
205                           i2cDataIomux = [0x114f004c, 0x403]; // Register of the I2C_DATA pin.
206                       }
207                       pinConfig {
208                           rstGpio = 3;
209                           intGpio = 4;
210                           rstRegCfg = [0x112f0094, 0x400];  // Register of the reset pin.
211                           intRegCfg = [0x112f0098, 0x400];  // Register of the interrupt pin.
212                       }
213                       powerConfig {
214                           vccType = 2;       // The value 1 stands for LDO, 2 for GPIO, and 3 for PMIC.
215                           vccNum = 20;       // Set the GPIO number to 20.
216                           vccValue = 1800;   // Set the voltage amplitude to 1800 mV.
217                           vciType = 1;
218                           vciNum = 12;
219                           vciValue = 3300;
220                       }
221                       featureConfig {
222                           capacitanceTest = 0;
223                           gestureMode = 0;
224                           gloverMOde = 0;
225                           coverMode = 0;
226                           chargerMode = 0;
227                           knuckleMode = 0;
228                       }
229                   }
230                   chipConfig {
231                       template touchChip {
232                           match_attr = "";
233                           chipName = "sample";
234                           vendorName = "zsj";
235                           chipInfo = "AAAA11222";  // The first four characters indicate the product name. The fifth and sixth characters indicate the IC model. The last three characters indicate the model number.
236                           busType = 0;
237                           deviceAddr = 0x5D;
238                           irqFlag = 2;             // The value 1 means to trigger an interrupt on the rising edge, 2 means to trigger an interrupt on the falling edge, 4 means to trigger an interrupt by the high level, and 8 means to trigger an interrupt by the low level.
239                           maxSpeed = 400;
240                           chipVersion = 0;
241                           powerSequence {
242                               /* Description of the power-on sequence:
243                                 [type, status, direction, delay]
244                                 <type> 0 stands for null; 1 for VCC power (1.8 V); 2 for VCI power (3.3 V); 3 for reset pin; 4 for interrupt pin.
245                                 <status> 0 stands for power-off or pull-down; 1 for power-on or pull-up; 2 for no operation.
246                                 <dir> 0 stands for input; 1 for output; 2 for no operation.
247                                 <delay> indicates the delay, in milliseconds. For example, 20 indicates 20 ms delay.
248                               */
249                               powerOnSeq = [4, 0, 1, 0,
250                                           3, 0, 1, 10,
251                                           3, 1, 2, 60,
252                                           4, 2, 0, 0];
253                               suspendSeq = [3, 0, 2, 10];
254                               resumeSeq = [3, 1, 2, 10];
255                               powerOffSeq = [3, 0, 2, 10,
256                                             1, 0, 2, 20];
257                           }
258                       }
259                       chip0 :: touchChip {
260                           match_attr = "zsj_sample_5p5";
261                           chipInfo = "ZIDN45100";
262                           chipVersion = 0;
263                       }
264                   }
265               }
266           }
267       }
268   }
269   ```
270
2713. Add the touchscreen driver.
272
273   Implement the touchscreen-specific APIs in **drivers/hdf_core/framework/model/input/driver/touchscreen/touch_gt911.c**.
274
275   The following uses the APIs for obtaining and parsing device data as an example. You can implement the related APIs to match your development.
276
277   ```c
278   /* Parse the touch reporting data read from the touchscreen into coordinates. */
279   static void ParsePointData(ChipDevice *device, FrameData *frame, uint8_t *buf, uint8_t pointNum)
280   {
281       int32_t resX = device->driver->boardCfg->attr.resolutionX;
282       int32_t resY = device->driver->boardCfg->attr.resolutionY;
283
284       for (int32_t i = 0; i < pointNum; i++) {
285           frame->fingers[i].y = (buf[GT_POINT_SIZE * i + GT_X_LOW] & ONE_BYTE_MASK) |
286                                 ((buf[GT_POINT_SIZE * i + GT_X_HIGH] & ONE_BYTE_MASK) << ONE_BYTE_OFFSET);
287           frame->fingers[i].x = (buf[GT_POINT_SIZE * i + GT_Y_LOW] & ONE_BYTE_MASK) |
288                                 ((buf[GT_POINT_SIZE * i + GT_Y_HIGH] & ONE_BYTE_MASK) << ONE_BYTE_OFFSET);
289           frame->fingers[i].valid = true;
290       }
291   }
292   /* Obtain the touch reporting data from the device. */
293   static int32_t ChipDataHandle(ChipDevice *device)
294   {
295       int32_t ret;
296       uint8_t touchStatus = 0;
297       uint8_t pointNum;
298       uint8_t buf[GT_POINT_SIZE * MAX_SUPPORT_POINT] = {0};
299       InputI2cClient *i2cClient = &device->driver->i2cClient;
300       uint8_t reg[GT_ADDR_LEN] = {0};
301       FrameData *frame = &device->driver->frameData;
302       reg[0] = (GT_BUF_STATE_ADDR >> ONE_BYTE_OFFSET) & ONE_BYTE_MASK;
303       reg[1] = GT_BUF_STATE_ADDR & ONE_BYTE_MASK;
304       ret = InputI2cRead(i2cClient, reg, GT_ADDR_LEN, &touchStatus, 1);
305       if (ret < 0 || touchStatus == GT_EVENT_INVALID) {
306           return HDF_FAILURE;
307       }
308       OsalMutexLock(&device->driver->mutex);
309       (void)memset_s(frame, sizeof(FrameData), 0, sizeof(FrameData));
310       if (touchStatus == GT_EVENT_UP) {
311           frame->realPointNum = 0;
312           frame->definedEvent = TOUCH_UP;
313           goto exit;
314       }
315       reg[0] = (GT_X_LOW_BYTE_BASE >> ONE_BYTE_OFFSET) & ONE_BYTE_MASK;
316       reg[1] = GT_X_LOW_BYTE_BASE & ONE_BYTE_MASK;
317       pointNum = touchStatus & GT_FINGER_NUM_MASK;
318       if (pointNum <= 0 || pointNum > MAX_SUPPORT_POINT) {
319           HDF_LOGE("%s: pointNum is invalid, %d", __func__, pointNum);
320           (void)ChipCleanBuffer(i2cClient);
321           OsalMutexUnlock(&device->driver->mutex);
322           return HDF_FAILURE;
323       }
324       frame->realPointNum = pointNum;
325       frame->definedEvent = TOUCH_DOWN;
326       /* Read the touch reporting data from the register. */
327       (void)InputI2cRead(i2cClient, reg, GT_ADDR_LEN, buf, GT_POINT_SIZE * pointNum);
328       /* Parse the touch reporting data. */
329       ParsePointData(device, frame, buf, pointNum);
330   exit:
331       OsalMutexUnlock(&device->driver->mutex);
332       if (ChipCleanBuffer(i2cClient) != HDF_SUCCESS) {
333           return HDF_FAILURE;
334       }
335       return HDF_SUCCESS;
336   }
337
338   static struct TouchChipOps g_sampleChipOps = {
339       .Init = ChipInit,
340       .Detect = ChipDetect,
341       .Resume = ChipResume,
342       .Suspend = ChipSuspend,
343       .DataHandle = ChipDataHandle,
344   };
345
346   static TouchChipCfg *ChipConfigInstance(struct HdfDeviceObject *device)
347   {
348       TouchChipCfg *chipCfg = (TouchChipCfg *)OsalMemAlloc(sizeof(TouchChipCfg));
349       if (chipCfg == NULL) {
350           HDF_LOGE("%s: instance chip config failed", __func__);
351           return NULL;
352       }
353       (void)memset_s(chipCfg, sizeof(TouchChipCfg), 0, sizeof(TouchChipCfg));
354       /* Parse the touchscreen private configuration. */
355       if (ParseTouchChipConfig(device->property, chipCfg) != HDF_SUCCESS) {
356           HDF_LOGE("%s: parse chip config failed", __func__);
357           OsalMemFree(chipCfg);
358           chipCfg = NULL;
359       }
360       return chipCfg;
361   }
362
363   static ChipDevice *ChipDeviceInstance(void)
364   {
365       ChipDevice *chipDev = (ChipDevice *)OsalMemAlloc(sizeof(ChipDevice));
366       if (chipDev == NULL) {
367           HDF_LOGE("%s: instance chip device failed", __func__);
368           return NULL;
369       }
370       (void)memset_s(chipDev, sizeof(ChipDevice), 0, sizeof(ChipDevice));
371       return chipDev;
372   }
373
374   static void FreeChipConfig(TouchChipCfg *config)
375   {
376       if (config->pwrSeq.pwrOn.buf != NULL) {
377           OsalMemFree(config->pwrSeq.pwrOn.buf);
378       }
379       if (config->pwrSeq.pwrOff.buf != NULL) {
380           OsalMemFree(config->pwrSeq.pwrOff.buf);
381       }
382       OsalMemFree(config);
383   }
384
385   static int32_t HdfSampleChipInit(struct HdfDeviceObject *device)
386   {
387       TouchChipCfg *chipCfg = NULL;
388       ChipDevice *chipDev = NULL;
389       HDF_LOGE("%s: enter", __func__);
390       if (device == NULL) {
391           return HDF_ERR_INVALID_PARAM;
392       }
393       /* Parse the touchscreen private configuration. */
394       chipCfg = ChipConfigInstance(device);
395       if (chipCfg == NULL) {
396           return HDF_ERR_MALLOC_FAIL;
397       }
398       /* Instantiate the touchscreen device. */
399       chipDev = ChipDeviceInstance();
400       if (chipDev == NULL) {
401           goto freeCfg;
402       }
403       chipDev->chipCfg = chipCfg;
404       chipDev->ops = &g_sampleChipOps;
405       chipDev->chipName = chipCfg->chipName;
406       chipDev->vendorName = chipCfg->vendorName;
407
408     /* Register the touchscreen device with the platform driver. */
409       if (RegisterChipDevice(chipDev) != HDF_SUCCESS) {
410           goto freeDev;
411       }
412       HDF_LOGI("%s: exit succ, chipName = %s", __func__, chipCfg->chipName);
413       return HDF_SUCCESS;
414
415   freeDev:
416       OsalMemFree(chipDev);
417   freeCfg:
418       FreeChipConfig(chipCfg);
419       return HDF_FAILURE;
420   }
421
422   struct HdfDriverEntry g_touchSampleChipEntry = {
423       .moduleVersion = 1,
424       .moduleName = "HDF_TOUCH_SAMPLE",
425       .Init = HdfSampleChipInit,
426   };
427
428   HDF_INIT(g_touchSampleChipEntry);
429   ```
430
4314. Call the Input HDI APIs.
432
433   The following sample code shows how an upper-layer input system service calls Input HDI APIs.
434
435   ```c
436   #include "input_manager.h"
437   #define DEV_INDEX 1
438
439   IInputInterface *g_inputInterface;
440   InputReportEventCb g_callback;
441
442   /* Define the callback for data reporting. */
443   static void ReportEventPkgCallback(const EventPackage **pkgs, uint32_t count)
444   {
445       if (pkgs == NULL || count > MAX_PKG_NUM) {
446           return;
447       }
448       for (uint32_t i = 0; i < count; i++) {
449           HDF_LOGI("%s: pkgs[%d] = 0x%x, 0x%x, %d", __func__, i, pkgs[i]->type, pkgs[i]->code, pkgs[i]->value);
450       }
451   }
452
453   int InputServiceSample(void)
454   {
455       uint32_t devType = INIT_DEFAULT_VALUE;
456
457       /* Obtain the input driver APIs. */
458       int ret = GetInputInterface(&g_inputInterface);
459       if (ret != INPUT_SUCCESS) {
460           HDF_LOGE("%s: get input interfaces failed, ret = %d", __func__, ret);
461           return ret;
462       }
463
464       INPUT_CHECK_NULL_POINTER(g_inputInterface, INPUT_NULL_PTR);
465       INPUT_CHECK_NULL_POINTER(g_inputInterface->iInputManager, INPUT_NULL_PTR);
466       /* Open an input device. */
467       ret = g_inputInterface->iInputManager->OpenInputDevice(DEV_INDEX);
468       if (ret) {
469           HDF_LOGE("%s: open input device failed, ret = %d", __func__, ret);
470         return ret;
471       }
472
473       INPUT_CHECK_NULL_POINTER(g_inputInterface->iInputController, INPUT_NULL_PTR);
474       /* Obtain the type of the input device. */
475       ret = g_inputInterface->iInputController->GetDeviceType(DEV_INDEX, &devType);
476       if (ret) {
477           HDF_LOGE("%s: get device type failed, ret: %d", __FUNCTION__, ret);
478           return ret;
479       }
480       HDF_LOGI("%s: device1's type is %u\n", __FUNCTION__, devType);
481
482       /* Register the data reporting callback for the input device. */
483       g_callback.ReportEventPkgCallback = ReportEventPkgCallback;
484       INPUT_CHECK_NULL_POINTER(g_inputInterface->iInputReporter, INPUT_NULL_PTR);
485       ret  = g_inputInterface->iInputReporter->RegisterReportCallback(DEV_INDEX, &g_callback);
486       if (ret) {
487           HDF_LOGE("%s: register callback failed, ret: %d", __FUNCTION__, ret);
488         return ret;
489       }
490       HDF_LOGI("%s: wait 10s for testing, pls touch the panel now", __FUNCTION__);
491       OsalMSleep(KEEP_ALIVE_TIME_MS);
492
493       /* Unregister the callback for the input device. */
494       ret = g_inputInterface->iInputReporter->UnregisterReportCallback(DEV_INDEX);
495       if (ret) {
496           HDF_LOGE("%s: unregister callback failed, ret: %d", __FUNCTION__, ret);
497           return ret;
498       }
499
500       /* Close the input device. */
501       ret = g_inputInterface->iInputManager->CloseInputDevice(DEV_INDEX);
502       if (ret) {
503           HDF_LOGE("%s: close device failed, ret: %d", __FUNCTION__, ret);
504         return ret;
505       }
506       return 0;
507   }
508   ```
509