1 /*
2 * Copyright (c) 2021-2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "sensor_dump.h"
17
18 #include <getopt.h>
19
20 #include <cinttypes>
21 #include <cstring>
22 #include <ctime>
23 #include <queue>
24
25 #include "securec.h"
26 #include "sensor_agent_type.h"
27 #include "sensor_errors.h"
28
29 #undef LOG_TAG
30 #define LOG_TAG "SensorDump"
31
32 namespace OHOS {
33 namespace Sensors {
34 using namespace OHOS::HiviewDFX;
35 namespace {
36 constexpr int32_t MAX_DUMP_PARAMETERS = 32;
37 #ifdef BUILD_VARIANT_ENG
38 constexpr uint32_t MAX_DUMP_DATA_SIZE = 10;
39 #endif // BUILD_VARIANT_ENG
40 constexpr uint32_t MS_NS = 1000000;
41
42 enum {
43 SOLITARIES_DIMENSION = 1,
44 TWO_DIMENSION = 2,
45 COMMON_DIMENSION = 3,
46 VECTOR_DIMENSION = 4,
47 UNCALIBRATED_DIMENSION = 6,
48 SEVEN_DIMENSION = 7,
49 POSE_6DOF_DIMENSION = 15,
50 DEFAULT_DIMENSION = 16,
51 };
52 } // namespace
53
54 std::unordered_map<int32_t, std::string> SensorDump::sensorMap_ = {
55 { SENSOR_TYPE_ID_ACCELEROMETER, "ACCELEROMETER" },
56 { SENSOR_TYPE_ID_ACCELEROMETER_UNCALIBRATED, "ACCELEROMETER UNCALIBRATED" },
57 { SENSOR_TYPE_ID_LINEAR_ACCELERATION, "LINEAR ACCELERATION" },
58 { SENSOR_TYPE_ID_GRAVITY, "GRAVITY" },
59 { SENSOR_TYPE_ID_GYROSCOPE, "GYROSCOPE" },
60 { SENSOR_TYPE_ID_CAPACITIVE, "CAPACITIVE"},
61 { SENSOR_TYPE_ID_TEMPERATURE, "TEMPERATURE"},
62 { SENSOR_TYPE_ID_GESTURE, "GESTURE"},
63 { SENSOR_TYPE_ID_GYROSCOPE_UNCALIBRATED, "GYROSCOPE UNCALIBRATED" },
64 { SENSOR_TYPE_ID_SIGNIFICANT_MOTION, "SIGNIFICANT MOTION" },
65 { SENSOR_TYPE_ID_PEDOMETER_DETECTION, "PEDOMETER DETECTION" },
66 { SENSOR_TYPE_ID_PEDOMETER, "PEDOMETER" },
67 { SENSOR_TYPE_ID_AMBIENT_TEMPERATURE, "AMBIENT TEMPERATURE" },
68 { SENSOR_TYPE_ID_MAGNETIC_FIELD, "MAGNETIC FIELD" },
69 { SENSOR_TYPE_ID_MAGNETIC_FIELD_UNCALIBRATED, "MAGNETIC FIELD UNCALIBRATED" },
70 { SENSOR_TYPE_ID_HUMIDITY, "HUMIDITY" },
71 { SENSOR_TYPE_ID_BAROMETER, "BAROMETER" },
72 { SENSOR_TYPE_ID_DEVICE_ORIENTATION, "DEVICE ORIENTATION" },
73 { SENSOR_TYPE_ID_ORIENTATION, "ORIENTATION" },
74 { SENSOR_TYPE_ID_ROTATION_VECTOR, "ROTATION VECTOR" },
75 { SENSOR_TYPE_ID_GAME_ROTATION_VECTOR, "GAME ROTATION VECTOR" },
76 { SENSOR_TYPE_ID_GEOMAGNETIC_ROTATION_VECTOR, "GEOMAGNETIC ROTATION VECTOR" },
77 { SENSOR_TYPE_ID_PROXIMITY, "PROXIMITY" },
78 { SENSOR_TYPE_ID_PROXIMITY1, "SECONDARY PROXIMITY" },
79 { SENSOR_TYPE_ID_AMBIENT_LIGHT, "AMBIENT LIGHT" },
80 { SENSOR_TYPE_ID_AMBIENT_LIGHT1, "SECONDARY AMBIENT LIGHT" },
81 { SENSOR_TYPE_ID_HALL, "HALL" },
82 { SENSOR_TYPE_ID_HALL_EXT, "EXTENDED HALL" },
83 { SENSOR_TYPE_ID_HEART_RATE, "HEART RATE" },
84 { SENSOR_TYPE_ID_WEAR_DETECTION, "WEAR DETECTION" },
85 { SENSOR_TYPE_ID_COLOR, "COLOR" },
86 { SENSOR_TYPE_ID_SAR, "SAR" },
87 { SENSOR_TYPE_ID_POSTURE, "POSTURE" },
88 { SENSOR_TYPE_ID_HEADPOSTURE, "HEAD POSTURE" },
89 { SENSOR_TYPE_ID_DROP_DETECTION, "DROP DETECTION" },
90 { SENSOR_TYPE_ID_RPC, "RPC" },
91 };
92
RunSensorDump(int32_t fd,int32_t optionIndex,const std::vector<std::string> & args,char ** argv)93 void SensorDump::RunSensorDump(int32_t fd, int32_t optionIndex, const std::vector<std::string> &args, char **argv)
94 {
95 struct option dumpOptions[] = {
96 {"channel", no_argument, 0, 'c'},
97 #ifdef BUILD_VARIANT_ENG
98 {"data", no_argument, 0, 'd'},
99 #endif // BUILD_VARIANT_ENG
100 {"open", no_argument, 0, 'o'},
101 {"help", no_argument, 0, 'h'},
102 {"list", no_argument, 0, 'l'},
103 {NULL, 0, 0, 0}
104 };
105 optind = 1;
106 int32_t c;
107 while ((c = getopt_long(args.size(), argv, "cdohl", dumpOptions, &optionIndex)) != -1) {
108 switch (c) {
109 case 'c': {
110 DumpSensorChannel(fd, clientInfo_);
111 break;
112 }
113 #ifdef BUILD_VARIANT_ENG
114 case 'd': {
115 DumpSensorData(fd, clientInfo_);
116 break;
117 }
118 #endif // BUILD_VARIANT_ENG
119 case 'o': {
120 DumpOpeningSensor(fd, sensors_, clientInfo_);
121 break;
122 }
123 case 'h': {
124 DumpHelp(fd);
125 break;
126 }
127 case 'l': {
128 DumpSensorList(fd, sensors_);
129 break;
130 }
131 default: {
132 dprintf(fd, "Unrecognized option, More info with: \"hidumper -s 3601 -a -h\"\n");
133 break;
134 }
135 }
136 }
137 }
138
ParseCommand(int32_t fd,const std::vector<std::string> & args,const std::vector<Sensor> & sensors,ClientInfo & clientInfo)139 void SensorDump::ParseCommand(int32_t fd, const std::vector<std::string> &args, const std::vector<Sensor> &sensors,
140 ClientInfo &clientInfo)
141 {
142 int32_t count = 0;
143 for (const auto &str : args) {
144 if (str.find("--") == 0) {
145 ++count;
146 continue;
147 }
148 if (str.find("-") == 0) {
149 count += static_cast<int32_t>(str.size()) - 1;
150 continue;
151 }
152 }
153 if (count > MAX_DUMP_PARAMETERS) {
154 SEN_HILOGE("Cmd param number not more than 32");
155 dprintf(fd, "Cmd param number not more than 32\n");
156 return;
157 }
158 int32_t optionIndex = 0;
159 char **argv = new (std::nothrow) char *[args.size()];
160 CHKPV(argv);
161 if (memset_s(argv, args.size() * sizeof(char *), 0, args.size() * sizeof(char *)) != EOK) {
162 SEN_HILOGE("memset_s failed");
163 delete[] argv;
164 return;
165 }
166 for (size_t i = 0; i < args.size(); ++i) {
167 argv[i] = new (std::nothrow) char[args[i].size() + 1];
168 if (argv[i] == nullptr) {
169 SEN_HILOGE("Alloc failure");
170 goto RELEASE_RES;
171 }
172 if (strcpy_s(argv[i], args[i].size() + 1, args[i].c_str()) != EOK) {
173 SEN_HILOGE("strcpy_s error");
174 goto RELEASE_RES;
175 }
176 }
177 sensors_ = sensors;
178 RunSensorDump(fd, optionIndex, args, argv);
179 RELEASE_RES:
180 for (size_t i = 0; i < args.size(); ++i) {
181 if (argv[i] != nullptr) {
182 delete[] argv[i];
183 }
184 }
185 delete[] argv;
186 }
187
DumpHelp(int32_t fd)188 void SensorDump::DumpHelp(int32_t fd)
189 {
190 dprintf(fd, "Usage:\n");
191 dprintf(fd, " -h, --help: dump help\n");
192 dprintf(fd, " -l, --list: dump the sensor list\n");
193 dprintf(fd, " -c, --channel: dump the sensor data channel info\n");
194 dprintf(fd, " -o, --open: dump the opening sensors\n");
195 #ifdef BUILD_VARIANT_ENG
196 dprintf(fd, " -d, --data: dump the last 10 packages sensor data\n");
197 #endif // BUILD_VARIANT_ENG
198 }
199
DumpSensorList(int32_t fd,const std::vector<Sensor> & sensors)200 bool SensorDump::DumpSensorList(int32_t fd, const std::vector<Sensor> &sensors)
201 {
202 DumpCurrentTime(fd);
203 dprintf(fd, "Total sensor:%d, Sensor list:\n", int32_t { sensors.size() });
204 for (const auto &sensor : sensors) {
205 auto sensorId = sensor.GetSensorId();
206 if (sensorMap_.find(sensorId) == sensorMap_.end()) {
207 continue;
208 }
209 dprintf(fd,
210 "sensorId:%8u | sensorType:%s | sensorName:%s | vendorName:%s | maxRange:%f"
211 "| fifoMaxEventCount:%d | minSamplePeriodNs:%" PRId64 " | maxSamplePeriodNs:%" PRId64 "\n",
212 sensorId, sensorMap_[sensorId].c_str(), sensor.GetSensorName().c_str(), sensor.GetVendorName().c_str(),
213 sensor.GetMaxRange(), sensor.GetFifoMaxEventCount(), sensor.GetMinSamplePeriodNs(),
214 sensor.GetMaxSamplePeriodNs());
215 }
216 return true;
217 }
218
DumpSensorChannel(int32_t fd,ClientInfo & clientInfo)219 bool SensorDump::DumpSensorChannel(int32_t fd, ClientInfo &clientInfo)
220 {
221 DumpCurrentTime(fd);
222 dprintf(fd, "Sensor channel info:\n");
223 std::vector<SensorChannelInfo> channelInfo;
224 clientInfo.GetSensorChannelInfo(channelInfo);
225 for (const auto &channel : channelInfo) {
226 auto sensorId = channel.GetSensorId();
227 if (sensorMap_.find(sensorId) == sensorMap_.end()) {
228 continue;
229 }
230 dprintf(fd,
231 "uid:%d | packageName:%s | sensorId:%8u | sensorType:%s | samplingPeriodNs:%" PRId64 ""
232 "| fifoCount:%u\n",
233 channel.GetUid(), channel.GetPackageName().c_str(), sensorId, sensorMap_[sensorId].c_str(),
234 channel.GetSamplingPeriodNs(), channel.GetFifoCount());
235 }
236 return true;
237 }
238
DumpOpeningSensor(int32_t fd,const std::vector<Sensor> & sensors,ClientInfo & clientInfo)239 bool SensorDump::DumpOpeningSensor(int32_t fd, const std::vector<Sensor> &sensors, ClientInfo &clientInfo)
240 {
241 DumpCurrentTime(fd);
242 dprintf(fd, "Opening sensors:\n");
243 for (const auto &sensor : sensors) {
244 int32_t sensorId = sensor.GetSensorId();
245 if (sensorMap_.find(sensorId) == sensorMap_.end()) {
246 continue;
247 }
248 if (clientInfo.GetSensorState(sensorId)) {
249 dprintf(fd, "sensorId: %8u | sensorType: %s | channelSize: %lu\n",
250 sensorId, sensorMap_[sensorId].c_str(), clientInfo.GetSensorChannel(sensorId).size());
251 }
252 }
253 return true;
254 }
255
256 #ifdef BUILD_VARIANT_ENG
DumpSensorData(int32_t fd,ClientInfo & clientInfo)257 bool SensorDump::DumpSensorData(int32_t fd, ClientInfo &clientInfo)
258 {
259 dprintf(fd, "Last 10 packages sensor data:\n");
260 auto dataMap = clientInfo.GetDumpQueue();
261 int32_t j = 0;
262 for (auto &sensorData : dataMap) {
263 int32_t sensorId = sensorData.first;
264 if (sensorMap_.find(sensorId) == sensorMap_.end()) {
265 continue;
266 }
267 dprintf(fd, "sensorId: %8u | sensorType: %s:\n", sensorId, sensorMap_[sensorId].c_str());
268 for (uint32_t i = 0; i < MAX_DUMP_DATA_SIZE && (!sensorData.second.empty()); i++) {
269 auto data = sensorData.second.front();
270 sensorData.second.pop();
271 timespec time = { 0, 0 };
272 clock_gettime(CLOCK_REALTIME, &time);
273 struct tm *timeinfo = localtime(&(time.tv_sec));
274 CHKPF(timeinfo);
275 dprintf(fd, " %2d (ts=%.9f, time=%02d:%02d:%02d.%03d) | data:%s", ++j, data.timestamp / 1e9,
276 timeinfo->tm_hour, timeinfo->tm_min, timeinfo->tm_sec, int32_t { (time.tv_nsec / MS_NS) },
277 GetDataBySensorId(sensorId, data).c_str());
278 }
279 }
280 return true;
281 }
282 #endif // BUILD_VARIANT_ENG
283
DumpCurrentTime(int32_t fd)284 void SensorDump::DumpCurrentTime(int32_t fd)
285 {
286 timespec curTime = { 0, 0 };
287 clock_gettime(CLOCK_REALTIME, &curTime);
288 struct tm *timeinfo = localtime(&(curTime.tv_sec));
289 CHKPV(timeinfo);
290 dprintf(fd, "Current time: %02d:%02d:%02d.%03d\n", timeinfo->tm_hour, timeinfo->tm_min, timeinfo->tm_sec,
291 int32_t { (curTime.tv_nsec / MS_NS) });
292 }
293
GetDataDimension(int32_t sensorId)294 int32_t SensorDump::GetDataDimension(int32_t sensorId)
295 {
296 switch (sensorId) {
297 case SENSOR_TYPE_ID_BAROMETER:
298 case SENSOR_TYPE_ID_HALL:
299 case SENSOR_TYPE_ID_HALL_EXT:
300 case SENSOR_TYPE_ID_TEMPERATURE:
301 case SENSOR_TYPE_ID_PROXIMITY:
302 case SENSOR_TYPE_ID_PROXIMITY1:
303 case SENSOR_TYPE_ID_HUMIDITY:
304 case SENSOR_TYPE_ID_AMBIENT_TEMPERATURE:
305 case SENSOR_TYPE_ID_SIGNIFICANT_MOTION:
306 case SENSOR_TYPE_ID_PEDOMETER_DETECTION:
307 case SENSOR_TYPE_ID_PEDOMETER:
308 case SENSOR_TYPE_ID_HEART_RATE:
309 case SENSOR_TYPE_ID_WEAR_DETECTION:
310 case SENSOR_TYPE_ID_SAR:
311 return SOLITARIES_DIMENSION;
312 case SENSOR_TYPE_ID_COLOR:
313 return TWO_DIMENSION;
314 case SENSOR_TYPE_ID_ROTATION_VECTOR:
315 case SENSOR_TYPE_ID_HEADPOSTURE:
316 return VECTOR_DIMENSION;
317 case SENSOR_TYPE_ID_MAGNETIC_FIELD_UNCALIBRATED:
318 case SENSOR_TYPE_ID_GYROSCOPE_UNCALIBRATED:
319 case SENSOR_TYPE_ID_ACCELEROMETER_UNCALIBRATED:
320 return UNCALIBRATED_DIMENSION;
321 case SENSOR_TYPE_ID_POSTURE:
322 return SEVEN_DIMENSION;
323 default:
324 SEN_HILOGW("Unknown sensorId:%{public}d, size:%{public}d", sensorId, COMMON_DIMENSION);
325 return COMMON_DIMENSION;
326 }
327 }
328
GetDataBySensorId(int32_t sensorId,SensorData & sensorData)329 std::string SensorDump::GetDataBySensorId(int32_t sensorId, SensorData &sensorData)
330 {
331 SEN_HILOGD("sensorId:%{public}u", sensorId);
332 std::string str;
333 int32_t dataLen = GetDataDimension(sensorId);
334 if (sensorData.dataLen < sizeof(float)) {
335 SEN_HILOGE("SensorData dataLen less than float size");
336 return str;
337 }
338 auto data = reinterpret_cast<float *>(sensorData.data);
339 for (int32_t i = 0; i < dataLen; ++i) {
340 str.append(std::to_string(*data));
341 if (i != dataLen - 1) {
342 str.append(",");
343 }
344 ++data;
345 }
346 str.append("\n");
347 return str;
348 }
349 } // namespace Sensors
350 } // namespace OHOS
351