1# Using MindSpore Lite for Model Inference (C/C++) 2 3## When to Use 4 5MindSpore Lite is an AI engine that provides AI model inference for different hardware devices. It has been used in a wide range of fields, such as image classification, target recognition, facial recognition, and character recognition. 6 7This document describes the general development process for MindSpore Lite model inference. 8 9## Basic Concepts 10 11Before getting started, you need to understand the following basic concepts: 12 13**Tensor**: a special data structure that is similar to arrays and matrices. It is basic data structure used in MindSpore Lite network operations. 14 15**Float16 inference mode**: an inference mode in half-precision format, where a number is represented with 16 bits. 16 17 18 19## Available APIs 20 21APIs involved in MindSpore Lite model inference are categorized into context APIs, model APIs, and tensor APIs. 22 23### Context APIs 24 25| API | Description | 26| ------------------ | ----------------- | 27|OH_AI_ContextHandle OH_AI_ContextCreate()|Creates a context object. This API must be used together with **OH_AI_ContextDestroy**.| 28|void OH_AI_ContextSetThreadNum(OH_AI_ContextHandle context, int32_t thread_num)|Sets the number of runtime threads.| 29| void OH_AI_ContextSetThreadAffinityMode(OH_AI_ContextHandle context, int mode)|Sets the affinity mode for binding runtime threads to CPU cores, which are classified into large, medium, and small cores based on the CPU frequency. You only need to bind the large or medium cores, but not small cores. 30|OH_AI_DeviceInfoHandle OH_AI_DeviceInfoCreate(OH_AI_DeviceType device_type)|Creates a runtime device information object.| 31|void OH_AI_ContextDestroy(OH_AI_ContextHandle *context)|Destroys a context object.| 32|void OH_AI_DeviceInfoSetEnableFP16(OH_AI_DeviceInfoHandle device_info, bool is_fp16)|Sets whether to enable float16 inference. This function is available only for CPU and GPU devices.| 33|void OH_AI_ContextAddDeviceInfo(OH_AI_ContextHandle context, OH_AI_DeviceInfoHandle device_info)|Adds a runtime device information object.| 34 35### Model APIs 36 37| API | Description | 38| ------------------ | ----------------- | 39|OH_AI_ModelHandle OH_AI_ModelCreate()|Creates a model object.| 40|OH_AI_Status OH_AI_ModelBuildFromFile(OH_AI_ModelHandle model, const char *model_path,OH_AI_ModelType odel_type, const OH_AI_ContextHandle model_context)|Loads and builds a MindSpore model from a model file.| 41|void OH_AI_ModelDestroy(OH_AI_ModelHandle *model)|Destroys a model object.| 42 43### Tensor APIs 44 45| API | Description | 46| ------------------ | ----------------- | 47|OH_AI_TensorHandleArray OH_AI_ModelGetInputs(const OH_AI_ModelHandle model)|Obtains the input tensor array structure of a model.| 48|int64_t OH_AI_TensorGetElementNum(const OH_AI_TensorHandle tensor)|Obtains the number of tensor elements.| 49|const char *OH_AI_TensorGetName(const OH_AI_TensorHandle tensor)|Obtains the name of a tensor.| 50|OH_AI_DataType OH_AI_TensorGetDataType(const OH_AI_TensorHandle tensor)|Obtains the tensor data type.| 51|void *OH_AI_TensorGetMutableData(const OH_AI_TensorHandle tensor)|Obtains the pointer to mutable tensor data.| 52 53## How to Develop 54 55The following figure shows the development process for MindSpore Lite model inference. 56 57**Figure 1** Development process for MindSpore Lite model inference 58 59 60 61Before moving to the development process, you need to reference related header files and compile functions to generate random input. The sample code is as follows: 62 63```c 64#include <stdlib.h> 65#include <stdio.h> 66#include "mindspore/model.h" 67 68// Generate random input. 69int GenerateInputDataWithRandom(OH_AI_TensorHandleArray inputs) { 70 for (size_t i = 0; i < inputs.handle_num; ++i) { 71 float *input_data = (float *)OH_AI_TensorGetMutableData(inputs.handle_list[i]); 72 if (input_data == NULL) { 73 printf("MSTensorGetMutableData failed.\n"); 74 return OH_AI_STATUS_LITE_ERROR; 75 } 76 int64_t num = OH_AI_TensorGetElementNum(inputs.handle_list[i]); 77 const int divisor = 10; 78 for (size_t j = 0; j < num; j++) { 79 input_data[j] = (float)(rand() % divisor) / divisor; // 0--0.9f 80 } 81 } 82 return OH_AI_STATUS_SUCCESS; 83} 84``` 85 86The development process consists of the following main steps: 87 881. Prepare the required model. 89 90 The required model can be downloaded directly or obtained using the model conversion tool. 91 92 - If the downloaded model is in the `.ms` format, you can use it directly for inference. The following uses the **mobilenetv2.ms** model as an example. 93 - If the downloaded model uses a third-party framework, such as TensorFlow, TensorFlow Lite, Caffe, or ONNX, you can use the [model conversion tool](https://www.mindspore.cn/lite/docs/en/master/use/downloads.html#1-8-1) to convert it to the `.ms` format. 94 952. Create a context, and set parameters such as the number of runtime threads and device type. 96 97 The following describes two typical scenarios: 98 99 Scenario 1: Only the CPU inference context is created. 100 101 ```c 102 // Create a context, and set the number of runtime threads to 2 and the thread affinity mode to 1 (big cores first). 103 OH_AI_ContextHandle context = OH_AI_ContextCreate(); 104 if (context == NULL) { 105 printf("OH_AI_ContextCreate failed.\n"); 106 return OH_AI_STATUS_LITE_ERROR; 107 } 108 const int thread_num = 2; 109 OH_AI_ContextSetThreadNum(context, thread_num); 110 OH_AI_ContextSetThreadAffinityMode(context, 1); 111 // Set the device type to CPU, and disable Float16 inference. 112 OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU); 113 if (cpu_device_info == NULL) { 114 printf("OH_AI_DeviceInfoCreate failed.\n"); 115 OH_AI_ContextDestroy(&context); 116 return OH_AI_STATUS_LITE_ERROR; 117 } 118 OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false); 119 OH_AI_ContextAddDeviceInfo(context, cpu_device_info); 120 ``` 121 122 Scenario 2: The neural network runtime (NNRT) and CPU heterogeneous inference contexts are created. 123 124 NNRT is the runtime for cross-chip inference computing in the AI field. Generally, the acceleration hardware connected to NNRT, such as the NPU, has strong inference capabilities but supports only a limited number of operators, whereas the general-purpose CPU has weak inference capabilities but supports a wide range of operators. MindSpore Lite supports NNRT and CPU heterogeneous inference. Model operators are preferentially scheduled to NNRT for inference. If certain operators are not supported by NNRT, then they are scheduled to the CPU for inference. The following is the sample code for configuring NNRT/CPU heterogeneous inference: 125 <!--Del--> 126 > **NOTE** 127 > 128 > NNRT/CPU heterogeneous inference requires access of NNRT hardware. For details, see [OpenHarmony/ai_neural_network_runtime](https://gitee.com/openharmony/ai_neural_network_runtime). 129 <!--DelEnd--> 130 ```c 131 // Create a context, and set the number of runtime threads to 2 and the thread affinity mode to 1 (big cores first). 132 OH_AI_ContextHandle context = OH_AI_ContextCreate(); 133 if (context == NULL) { 134 printf("OH_AI_ContextCreate failed.\n"); 135 return OH_AI_STATUS_LITE_ERROR; 136 } 137 // Preferentially use NNRT inference. 138 // Use the NNRT hardware of the first ACCELERATORS class to create the NNRT device information and configure the high-performance inference mode for the NNRT hardware. You can also use OH_AI_GetAllNNRTDeviceDescs() to obtain the list of NNRT devices in the current environment, search for a specific device by device name or type, and use the device as the NNRT inference hardware. 139 OH_AI_DeviceInfoHandle nnrt_device_info = OH_AI_CreateNNRTDeviceInfoByType(OH_AI_NNRTDEVICE_ACCELERATOR); 140 if (nnrt_device_info == NULL) { 141 printf("OH_AI_DeviceInfoCreate failed.\n"); 142 OH_AI_ContextDestroy(&context); 143 return OH_AI_STATUS_LITE_ERROR; 144 } 145 OH_AI_DeviceInfoSetPerformanceMode(nnrt_device_info, OH_AI_PERFORMANCE_HIGH); 146 OH_AI_ContextAddDeviceInfo(context, nnrt_device_info); 147 148 // Configure CPU inference. 149 OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU); 150 if (cpu_device_info == NULL) { 151 printf("OH_AI_DeviceInfoCreate failed.\n"); 152 OH_AI_ContextDestroy(&context); 153 return OH_AI_STATUS_LITE_ERROR; 154 } 155 OH_AI_ContextAddDeviceInfo(context, cpu_device_info); 156 ``` 157 158 159 1603. Create, load, and build the model. 161 162 Call **OH_AI_ModelBuildFromFile** to load and build the model. 163 164 In this example, the **argv[1]** parameter passed to **OH_AI_ModelBuildFromFile** indicates the specified model file path. 165 166 ```c 167 // Create a model. 168 OH_AI_ModelHandle model = OH_AI_ModelCreate(); 169 if (model == NULL) { 170 printf("OH_AI_ModelCreate failed.\n"); 171 OH_AI_ContextDestroy(&context); 172 return OH_AI_STATUS_LITE_ERROR; 173 } 174 175 // Load and build the inference model. The model type is OH_AI_MODELTYPE_MINDIR. 176 int ret = OH_AI_ModelBuildFromFile(model, argv[1], OH_AI_MODELTYPE_MINDIR, context); 177 if (ret != OH_AI_STATUS_SUCCESS) { 178 printf("OH_AI_ModelBuildFromFile failed, ret: %d.\n", ret); 179 OH_AI_ModelDestroy(&model); 180 OH_AI_ContextDestroy(&context); 181 return ret; 182 } 183 ``` 184 1854. Input data. 186 187 Before executing model inference, you need to populate data to the input tensor. In this example, random data is used to populate the model. 188 189 ```c 190 // Obtain the input tensor. 191 OH_AI_TensorHandleArray inputs = OH_AI_ModelGetInputs(model); 192 if (inputs.handle_list == NULL) { 193 printf("OH_AI_ModelGetInputs failed, ret: %d.\n", ret); 194 OH_AI_ModelDestroy(&model); 195 OH_AI_ContextDestroy(&context); 196 return ret; 197 } 198 // Use random data to populate the tensor. 199 ret = GenerateInputDataWithRandom(inputs); 200 if (ret != OH_AI_STATUS_SUCCESS) { 201 printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret); 202 OH_AI_ModelDestroy(&model); 203 OH_AI_ContextDestroy(&context); 204 return ret; 205 } 206 ``` 207 2085. Execute model inference. 209 210 Call **OH_AI_ModelPredict** to perform model inference. 211 212 ```c 213 // Execute model inference. 214 OH_AI_TensorHandleArray outputs; 215 ret = OH_AI_ModelPredict(model, inputs, &outputs, NULL, NULL); 216 if (ret != OH_AI_STATUS_SUCCESS) { 217 printf("OH_AI_ModelPredict failed, ret: %d.\n", ret); 218 OH_AI_ModelDestroy(&model); 219 OH_AI_ContextDestroy(&context); 220 return ret; 221 } 222 ``` 223 2246. Obtain the output. 225 226 After model inference is complete, you can obtain the inference result through the output tensor. 227 228 ```c 229 // Obtain the output tensor and print the information. 230 for (size_t i = 0; i < outputs.handle_num; ++i) { 231 OH_AI_TensorHandle tensor = outputs.handle_list[i]; 232 long long element_num = OH_AI_TensorGetElementNum(tensor); 233 printf("Tensor name: %s, tensor size is %zu ,elements num: %lld.\n", OH_AI_TensorGetName(tensor), 234 OH_AI_TensorGetDataSize(tensor), element_num); 235 const float *data = (const float *)OH_AI_TensorGetData(tensor); 236 printf("output data is:\n"); 237 const int max_print_num = 50; 238 for (int j = 0; j < element_num && j <= max_print_num; ++j) { 239 printf("%f ", data[j]); 240 } 241 printf("\n"); 242 } 243 ``` 244 2457. Destroy the model. 246 247 If the MindSpore Lite inference framework is no longer needed, you need to destroy the created model. 248 249 ```c 250 // Release the model and context. 251 OH_AI_ModelDestroy(&model); 252 OH_AI_ContextDestroy(&context); 253 ``` 254 255## Verification 256 2571. Write **CMakeLists.txt**. 258 259 ```cmake 260 cmake_minimum_required(VERSION 3.14) 261 project(Demo) 262 263 add_executable(demo main.c) 264 265 target_link_libraries( 266 demo 267 mindspore_lite_ndk 268 pthread 269 dl 270 ) 271 ``` 272 - To use ohos-sdk for cross compilation, you need to set the native toolchain path for the CMake tool as follows: `-DCMAKE_TOOLCHAIN_FILE="/xxx/native/build/cmake/ohos.toolchain.cmake"`. 273 274 - The toolchain builds a 64-bit application by default. To build a 32-bit application, add the following configuration: `-DOHOS_ARCH="armeabi-v7a"`. 275 2762. Run the CMake tool. 277 278 - Use hdc_std to connect to the device and put **demo** and **mobilenetv2.ms** to the same directory on the device. 279 - Run the hdc_std shell command to access the device, go to the directory where **demo** is located, and run the following command: 280 281 ```shell 282 ./demo mobilenetv2.ms 283 ``` 284 285 The inference is successful if the output is similar to the following: 286 287 ```shell 288 # ./demo ./mobilenetv2.ms 289 Tensor name: Softmax-65, tensor size is 4004 ,elements num: 1001. 290 output data is: 291 0.000018 0.000012 0.000026 0.000194 0.000156 0.001501 0.000240 0.000825 0.000016 0.000006 0.000007 0.000004 0.000004 0.000004 0.000015 0.000099 0.000011 0.000013 0.000005 0.000023 0.000004 0.000008 0.000003 0.000003 0.000008 0.000014 0.000012 0.000006 0.000019 0.000006 0.000018 0.000024 0.000010 0.000002 0.000028 0.000372 0.000010 0.000017 0.000008 0.000004 0.000007 0.000010 0.000007 0.000012 0.000005 0.000015 0.000007 0.000040 0.000004 0.000085 0.000023 292 ``` 293 294