1# Analyzing Cpp Crash
2
3A cpp crash refers to a process crash in C/C++ application. The FaultLogger module provides capabilities such as process crash detection, log collection, log storage, and log reporting, helping you to locate faults more effectively.
4
5The following introduces cpp crash detection, crash fault locating and analysis, and typical cases. To use this guideline, you need to have basic knowledge about stack and heap in C/C++.
6
7## Cpp Crash Detection
8
9Process crash detection is based on the posix signal mechanism. Currently, the exception signals that can be processed are as follows:
10
11| Signo| Signal| Description| Trigger Cause|
12| -------- | -------- | -------- | -------- |
13| 4 | SIGILL | Invalid instruction| An invalid, incorrectly formatted, unknown, or privileged instruction is executed.|
14| 5 | SIGTRAP | Breakpoint or trap| An exception occurs or a trap instruction is executed.|
15| 6 | SIGABRT | Process abort| The process is aborted abnormally. Generally, this exception occurs when the process calls **abort()** in the Standard Function Library.|
16| 7 | SIGBUS | Illegal memory access| The process accesses an aligned or nonexistent physical address.|
17| 8 | SIGFPE | Floating-point exception| An incorrect arithmetic operation is executed, for example, a 0 divisor, floating point overflow, or integer overflow.|
18| 11 | SIGSEGV | Invalid memory access| The process accesses an invalid memory region.|
19| 16 | SIGSTKFLT | Stack error| The processor performs an incorrect stack operation, such as a pop when the stack is empty or a push when the stack is full.|
20| 31 | SIGSYS | Incorrect system call| An incorrect or invalid parameter is used in a system call.|
21
22Some of the preceding fault signals are classified into codes based on specific scenarios.
23**SIGILL** occurs in Unix and Unix-like operating systems. It indicates an invalid instruction exception. The **SIGILL** signal is usually triggered by the following causes:
24| No.| Code| Description| Trigger Cause|
25| -------- | -------- | -------- | -------- |
26| 1 | ILL_ILLOPC | Illegal operation code| A privileged instruction or an instruction that is unsupported by the CPU is executed.|
27| 2 | ILL_ILLOPN | Illegal operand| An incorrect operand or improper operand type is used.|
28| 3 | ILL_ILLADR | Illegal address| A program accesses an invalid memory address or an unaligned memory address.|
29| 4 | ILL_ILLTRP | Illegal trap| A program performs an illegal trap instruction or an undefined operation.|
30| 5 | ILL_PRVOPC | Illegal privileged operation code| A common user executes a privileged instruction.|
31| 6 | ILL_PRVREG | Illegal privileged register| A common user accesses a privileged register.|
32| 7 | ILL_COPROC | Illegal coprocessor| A program performs an undefined coprocessor instruction.|
33| 8 | ILL_BADSTK | Illegal stack| A program performs an operation at an invalid stack address, or when the stack overflows.|
34
35**SIGTRAP** usually occurs in debugging and tracking. The four scenarios of the **SIGTRAP** signal are described as follows.
36| No.| Code| Description| Trigger Cause|
37| -------- | -------- | -------- | -------- |
38| 1 | TRAP_BRKPT | Software breakpoint| The software breakpoint is reached in a program. When debugging a program, a software breakpoint at the key position can be used to pause the program execution and check information such as variable values.|
39| 2 | TRAP_TRACE | Single-step debugging| A single instruction is executed in a program. Single instruction can be used to check the execution result of each instruction.|
40| 3 | TRAP_BRANCH | Branch Tracing| A branch instruction is executed in a program. Branch instruction can be used to control the execution process of a program, such as if statements and loop statements.|
41| 4 | TRAP_HWBKPT | Hardware breakpoint| The hardware breakpoint is reached in a program. When debugging a program, a hardware breakpoint at the key position can be used to pause the program execution and check information such as variable values. Different from a software breakpoint, a hardware breakpoint is implemented in CPU hardware. Therefore, whether a hardware breakpoint is triggered can be detected in real time during program execution.|
42
43The **SIGBUS** signal is sent by the operating system to a process. It usually indicates a memory access error. The codes of the **SIGBUS** signal are described as follows:
44| No.| Code| Description| Trigger Cause|
45| -------- | -------- | -------- | -------- |
46| 1 | BUS_ADRALN | Unaligned memory address| A program accesses an unaligned memory address, for example, a non-even address of a 4-byte integer.|
47| 2 | BUS_ADRERR | Invalid memory address| A program accesses a memory address that does not exist in the Process Address Space, such as a null pointer.|
48| 3 | BUS_OBJERR | Invalid object access| A program accesses an object that is deleted or not initialized.|
49| 4 | BUS_MCEERR_AR | Invalid hardware memory check| A checksum error is detected when the hardware memory is accessed.|
50| 5 | BUS_MCEERR_AO | Invalid hardware memory check| An address check error is detected when the hardware memory is accessed.|
51
52The **SIGFPE** signal indicates a floating-point exception or an arithmetic exception. The codes of the **SIGFPE** signal are described as follows:
53| No.| Code| Description| Trigger Cause|
54| -------- | -------- | -------- | -------- |
55| 1 | FPE_INTDIV | Invalid integer division| The divisor in an integer division is zero.  |
56| 2 | FPE_INTOVF | Integer overflow| The divisor in an integer division is negative.  |
57| 3 | FPE_FLTDIV | Invalid floating-point division| The divisor in a floating-point division is zero.  |
58| 4 | FPE_FLTOVF | Floating-point overflow| The divisor in a floating-point division is negative.  |
59| 5 | FPE_FLTUND | Floating-point underflow| The divisor in a floating-point division is zero.  |
60| 6 | FPE_FLTRES | Invalid floating-point result| The divisor in a floating-point division is positive.  |
61| 7 | FPE_FLTINV | Invalid floating-point operation| The divisor in a floating-point division is negative.  |
62| 8 | FPE_FLTSUB | Floating-point trap| The divisor in a floating-point division is zero.  |
63
64The **SIGSEGV** signal occurs when a process accesses a non-existent memory address or an inaccessible address. The codes of the **SIGSEGV** signal are described as follows:
65| No.| Code| Description| Trigger Cause|
66| -------- | -------- | -------- | -------- |
67| 1 | SEGV_MAPERR | Non-existent memory address| A process accesses a memory address that does not exist or that is not mapped to the Process Address Space. This exception is usually caused by pointer errors or memory leaks.|
68| 2 | SEGV_ACCERR | Inaccessible memory address| A process accesses an inaccessible memory address marked by the operating system, such as a read-only memory address or a memory address without execution permission. This exception is usually caused by buffer overflow or modifying read-only memory.|
69
70The classification of codes cannot only be based on **signo**, but also be based on the causes of the signal. The preceding describes the codes classified based on the **signo** of each signal, while the following describes the codes classified based on causes of all signals:
71| No.| Code| Description| Trigger Cause|
72| -------- | -------- | -------- | -------- |
73| 0 | SI_USER | User space signal|This signal is sent by a process in user space to another process, usually using the **kill()**. For example, when a user presses **Ctrl+C** on the terminal, a **SIGINT** signal is sent to all foreground processes.|
74| 0x80 | SI_KERNEL | Kernel signal|This signal is sent by the kernel to the process. It is usually sent when the kernel detects some errors or exceptions. For example, when a process accesses an invalid memory address or executes an invalid instruction, the kernel sends a **SIGSEGV** signal to the process.|
75| -1 | SI_QUEUE | **sigqueue()** signal|This signal is sent by **sigqueue()**, and an additional integer value and a pointer can be carried. It is usually used for advanced communication between processes, such as transferring data or notifying a process that an event occurs.|
76| -2 | SI_TIMER | Timer signal|This signal is sent by a timer and is usually used to execute a scheduled task or a periodic task. For example, when a timer expires, the kernel sends a **SIGALRM** signal to the process.|
77| -3 | SI_MESGQ | Message queue signal|This signal is sent by a message queue and is usually used for communication across processes. For example, when a process sends a message to a message queue, the kernel sends a **SIGIO** signal to the receiving process.|
78| -4 | SI_ASYNCIO | Asynchronous I/O signal|This signal is sent by an asynchronous I/O and is usually used for a non-blocking I/O. For example, when an I/O operation on a file descriptor is complete, the kernel sends a **SIGIO** signal to the process.|
79| -5 | SI_SIGIO | Synchronous I/O signal|This signal is sent by a synchronous I/O and is usually used for a non-blocking I/O. For example, when an I/O operation on a file descriptor is complete, the kernel sends a **SIGIO** signal to the process.|
80| -6 | SI_TKILL | **tkill()** signal|This signal is sent by the function **tkill()**, which is similar to the function **kill()**. In addition, you can specify the ID of the thread that sends the signal. It is usually used to send a signal to a specified thread in a multithreaded program.|
81
82## Fault Analysis
83
84### Crash Log Collection
85
86The process crash log is managed together with the app freeze and JS crash logs by the FaultLogger module. You can obtain process crash logs using any of the following methods:
87
88- Method 1: DevEco Studio
89
90    DevEco Studio collects process crash logs from **/data/log/faultlog/faultlogger/** to FaultLog, where logs are displayed by process name, fault, and time. For details about how to obtain logs, see <!--RP1-->[DevEco Studio User Guide-FaultLog](https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-fault-log-V5)<!--RP1End-->.
91
92- Method 2: hiAppEvent APIs
93
94    hiAppEvent provides APIs to subscribe to various fault logs. For details, see [Introduction to HiAppEvent](hiappevent-intro.md).
95
96<!--Del-->
97- Method 3: Shell
98
99    - When a process crashes, you can find fault logs in **/data/log/faultlog/temp/** on the device. The log files are named in the format of **cppcrash-process PID-timestamp (millisecond)**. They contain information such as the process crash call stack, process crash register, stack memory, maps, and process file handle list.
100
101        ![cppcrash-temp-log](figures/20230407111853.png)
102
103    - You can find more comprehensive fault logs in **/data/log/faultlog/faultlogger/**, which include information such as device name, system version and process logs. The log files are named in the format of **cppcrash-process name-process UID-time (second)**.
104
105        ![cppcrash-faultlogger-log](figures/20230407112159.png)
106
107<!--DelEnd-->
108**Fault Logs of Null Pointer**
109In this scenario, a message is printed in the log, indicating that the fault may be caused by null pointer dereference.
110The following is the core content of a process crash log archived by DevEco Studio in FaultLog. The content is the same as that archived in /**data/log/faultlog/faultlogger**.
111
112```
113Generated by HiviewDFX@OpenHarmony
114================================================================
115Device info:OpenHarmony 3.2        <- Device information
116Build info:OpenHarmony 5.0.0.23    <- Build information
117Fingerprint:cdf52fd0cc328fc432459928f3ed8edfe8a72a92ee7316445143bed179138073 <- Fingerprint
118Module name:crasher_cpp            <-Module name
119Timestamp:2024-05-06 20:10:51.000  <- Timestamp when the fault occurs
120Pid:9623   <- Process ID
121Uid:0         <- User ID
122Process name:./crasher_cpp         <- Process name
123Process life time:1s               <- Process life time
124Reason:Signal:SIGSEGV(SEGV_MAPERR)@0x00000004 probably caused by NULL pointer dereference  <- Fault cause and null pointer prompt
125Fault thread info:
126Tid:9623, Name:crasher_cpp         <- Thread ID, thread name
127#00 pc 00008d22 /system/bin/crasher_cpp(TestNullPointerDereferenceCrash0()+22)(adfc673300571d2da1e47d1d12f48b44)  <- Call stack
128#01 pc 000064d1 /system/bin/crasher_cpp(DfxCrasher::ParseAndDoCrash(char const*) const+160)(adfc673300571d2da1e47d1d12f48b44)
129#02 pc 00006569 /system/bin/crasher_cpp(main+92)(adfc673300571d2da1e47d1d12f48b44)
130#03 pc 00072b98 /system/lib/ld-musl-arm.so.1(libc_start_main_stage2+56)(d820b1827e57855d4f9ed03ba5dfea83)
131#04 pc 00004e28 /system/bin/crasher_cpp(_start_c+84)(adfc673300571d2da1e47d1d12f48b44)
132#05 pc 00004dcc /system/bin/crasher_cpp(adfc673300571d2da1e47d1d12f48b44)
133Registers:   <- Fault registers
134r0:ffffafd2 r1:00000004 r2:00000001 r3:00000000
135r4:ffd27e39 r5:0096e000 r6:00000a40 r7:0096fdfc
136r8:f7ba58d5 r9:f7baea86 r10:f7cadd38
137fp:ffd27308 ip:f7cb2078 sp:ffd272a0 lr:f7c7ab98 pc:0096ad22
138Memory near registers:  <- Memory near fault registers
139r4([stack]):
140    ffd27e30 72656873
141    ffd27e34 7070635f
142    ...
143    ffd27eac 3d73746f
144r5(/system/bin/crasher_cpp):
145    0096dff8 00000000
146    0096dffc 0096717d
147    ...
148    0096e074 00000000
149r7(/system/lib/ld-musl-arm.so.1):
150    f7cabb58 00000000
151    f7cabb5c 0034ba00
152    ...
153    f7cabbd4 00000000
154r8(/system/lib/ld-musl-arm.so.1):
155    f7ba58cc 63637573
156    f7ba58d0 2e737365
157    ...
158    f7ba5948 70206269
159r9(/system/lib/ld-musl-arm.so.1):
160    f7baea7c 20746f6e
161    f7baea80 6e756f66
162    ...
163    f7baeaf8 25206e69
164r10([anon:ld-musl-arm.so.1.bss]):
165    f7cadd30 00000000
166    f7cadd34 00000000
167    ...
168    f7caddac 00000000
169r12([anon:ld-musl-arm.so.1.bss]):
170    f7cb2070 56726562
171    f7cb2074 65756c61
172    ...
173    f7cb20ec 00000000
174sp([stack]):
175    ffd27328 00000000
176    ffd2732c 00966dd0
177    ...
178    ffd273a4 00000004
179pc(/system/bin/crasher_cpp):
180    00966dc8 e1a0d00c
181    00966dcc eb000000
182    ...
183    00966e44 e5907008
184pc(/system/bin/crasher_cpp):
185    00966dc8 e1a0d00c
186    00966dcc eb000000
187    ...
188    00966e44 e5907008
189FaultStack:  <- Stack of the crashed thread
190    ffd27260 00000000
191    ffd27264 f7cac628
192    ...
193    ffd2729c 0096ad1f
194sp0:ffd272a0 0096fdfc <- #00Stack top
195    ffd272a4 009684d3
196sp1:ffd272a8 00000001
197    ffd272ac 73657408
198    ffd272b0 f7590074
199    ...
200    ffd272dc 0096856d
201sp2:ffd272e0 ffd27334
202    ffd272e4 ffd27334
203    ffd272e8 00000002
204    ....
205    ffd272f4 f7bfbb9c
206sp3:ffd272f8 00000000
207    ffd272fc ffd27334
208
209Maps:   <- Process maps files when the fault occurs
210962000-966000 r--p 00000000 /system/bin/crasher_cpp
211966000-96c000 r-xp 00003000 /system/bin/crasher_cpp
21296c000-96f000 r--p 00008000 /system/bin/crasher_cpp
21396f000-970000 rw-p 0000a000 /system/bin/crasher_cpp
214149f000-14a0000 ---p 00000000 [heap]
21514a0000-14a2000 rw-p 00000000 [heap]
216...
217f7b89000-f7be1000 r--p 00000000 /system/lib/ld-musl-arm.so.1
218f7be1000-f7ca9000 r-xp 00057000 /system/lib/ld-musl-arm.so.1
219f7ca9000-f7cab000 r--p 0011e000 /system/lib/ld-musl-arm.so.1
220f7cab000-f7cad000 rw-p 0011f000 /system/lib/ld-musl-arm.so.1
221f7cad000-f7cbc000 rw-p 00000000 [anon:ld-musl-arm.so.1.bss]
222ffd07000-ffd28000 rw-p 00000000 [stack]
223ffff0000-ffff1000 r-xp 00000000 [vectors]
224OpenFiles:   <- FD information of the file opened by the process when the fault occurs
2250->/dev/pts/1 native object of unknown type 0
2261->/dev/pts/1 native object of unknown type 0
2272->/dev/pts/1 native object of unknown type 0
2283->socket:[67214] native object of unknown type 0
229...
23011->pipe:[67219] native object of unknown type 0
23112->socket:[29074] native object of unknown type 0
23225->/dev/ptmx native object of unknown type 0
23326->/dev/ptmx native object of unknown type 0
234
235HiLog:   <- Hilog logs when the fault occurs
23605-06 20:10:51.301  9623  9623 E C03f00/MUSL-SIGCHAIN: signal_chain_handler call 2 rd sigchain action for signal: 11
23705-06 20:10:51.306  9623  9623 I C02d11/DfxSignalHandler: DFX_SigchainHandler :: sig(11), pid(9623), tid(9623).
23805-06 20:10:51.307  9623  9623 I C02d11/DfxSignalHandler: DFX_SigchainHandler :: sig(11), pid(9623), processName(./crasher_cpp), threadName(crasher_cpp).
23905-06 20:10:51.389  9623  9623 I C02d11/DfxSignalHandler: processdump have get all resgs
240
241```
242
243<!--Del-->
244The fault logs obtained using Shell in **/data/log/faultlog/temp** is as follows:
245
246```
247Timestamp:2024-05-06 20:10:51.000  <- Timestamp when the fault occurs
248Pid:9623                           <- Process ID
249Uid:0                              <- User ID
250Process name:./crasher_cpp         <- Process name
251Process life time:1s               <- Process life time
252Reason:Signal:SIGSEGV(SEGV_MAPERR)@0x00000004 probably caused by NULL pointer dereference  <- Fault cause and null pointer prompt
253Fault thread info:
254Tid:9623, Name:crasher_cpp         <- Thread ID, thread name
255#00 pc 00008d22 /system/bin/crasher_cpp(TestNullPointerDereferenceCrash0()+22)(adfc673300571d2da1e47d1d12f48b44)  <- Call stack
256#01 pc 000064d1 /system/bin/crasher_cpp(DfxCrasher::ParseAndDoCrash(char const*) const+160)(adfc673300571d2da1e47d1d12f48b44)
257#02 pc 00006569 /system/bin/crasher_cpp(main+92)(adfc673300571d2da1e47d1d12f48b44)
258#03 pc 00072b98 /system/lib/ld-musl-arm.so.1(libc_start_main_stage2+56)(d820b1827e57855d4f9ed03ba5dfea83)
259#04 pc 00004e28 /system/bin/crasher_cpp(_start_c+84)(adfc673300571d2da1e47d1d12f48b44)
260#05 pc 00004dcc /system/bin/crasher_cpp(adfc673300571d2da1e47d1d12f48b44)
261Registers:   <- Fault registers
262r0:ffffafd2 r1:00000004 r2:00000001 r3:00000000
263r4:ffd27e39 r5:0096e000 r6:00000a40 r7:0096fdfc
264r8:f7ba58d5 r9:f7baea86 r10:f7cadd38
265fp:ffd27308 ip:f7cb2078 sp:ffd272a0 lr:f7c7ab98 pc:0096ad22
266Memory near registers:  <- Memory near fault registers
267r4([stack]):
268    ffd27e30 72656873
269    ffd27e34 7070635f
270    ...
271    ffd27eac 3d73746f
272r5(/system/bin/crasher_cpp):
273    0096dff8 00000000
274    0096dffc 0096717d
275    ...
276    0096e074 00000000
277r7(/system/lib/ld-musl-arm.so.1):
278    f7cabb58 00000000
279    f7cabb5c 0034ba00
280    ...
281    f7cabbd4 00000000
282r8(/system/lib/ld-musl-arm.so.1):
283    f7ba58cc 63637573
284    f7ba58d0 2e737365
285    ...
286    f7ba5948 70206269
287r9(/system/lib/ld-musl-arm.so.1):
288    f7baea7c 20746f6e
289    f7baea80 6e756f66
290    ...
291    f7baeaf8 25206e69
292r10([anon:ld-musl-arm.so.1.bss]):
293    f7cadd30 00000000
294    f7cadd34 00000000
295    ...
296    f7caddac 00000000
297r12([anon:ld-musl-arm.so.1.bss]):
298    f7cb2070 56726562
299    f7cb2074 65756c61
300    ...
301    f7cb20ec 00000000
302sp([stack]):
303    ffd27328 00000000
304    ffd2732c 00966dd0
305    ...
306    ffd273a4 00000004
307pc(/system/bin/crasher_cpp):
308    00966dc8 e1a0d00c
309    00966dcc eb000000
310    ...
311    00966e44 e5907008
312pc(/system/bin/crasher_cpp):
313    00966dc8 e1a0d00c
314    00966dcc eb000000
315    ...
316    00966e44 e5907008
317FaultStack:  <- Stack of the crashed thread
318    ffd27260 00000000
319    ffd27264 f7cac628
320    ...
321    ffd2729c 0096ad1f
322sp0:ffd272a0 0096fdfc <- #00Stack top
323    ffd272a4 009684d3
324sp1:ffd272a8 00000001
325    ffd272ac 73657408
326    ffd272b0 f7590074
327    ...
328    ffd272dc 0096856d
329sp2:ffd272e0 ffd27334
330    ffd272e4 ffd27334
331    ffd272e8 00000002
332    ....
333    ffd272f4 f7bfbb9c
334sp3:ffd272f8 00000000
335    ffd272fc ffd27334
336
337Maps:   <- Process maps files when the fault occurs
338962000-966000 r--p 00000000 /system/bin/crasher_cpp
339966000-96c000 r-xp 00003000 /system/bin/crasher_cpp
34096c000-96f000 r--p 00008000 /system/bin/crasher_cpp
34196f000-970000 rw-p 0000a000 /system/bin/crasher_cpp
342149f000-14a0000 ---p 00000000 [heap]
34314a0000-14a2000 rw-p 00000000 [heap]
344...
345f7b89000-f7be1000 r--p 00000000 /system/lib/ld-musl-arm.so.1
346f7be1000-f7ca9000 r-xp 00057000 /system/lib/ld-musl-arm.so.1
347f7ca9000-f7cab000 r--p 0011e000 /system/lib/ld-musl-arm.so.1
348f7cab000-f7cad000 rw-p 0011f000 /system/lib/ld-musl-arm.so.1
349f7cad000-f7cbc000 rw-p 00000000 [anon:ld-musl-arm.so.1.bss]
350ffd07000-ffd28000 rw-p 00000000 [stack]
351ffff0000-ffff1000 r-xp 00000000 [vectors]
352OpenFiles:   <- FD information of the file opened by the process when the fault occurs
3530->/dev/pts/1 native object of unknown type 0
3541->/dev/pts/1 native object of unknown type 0
3552->/dev/pts/1 native object of unknown type 0
3563->socket:[67214] native object of unknown type 0
357...
35811->pipe:[67219] native object of unknown type 0
35912->socket:[29074] native object of unknown type 0
36025->/dev/ptmx native object of unknown type 0
36126->/dev/ptmx native object of unknown type 0
362```
363<!--DelEnd-->
364**Fault Logs of Stack Overflow**
365If the following prompt information is printed in logs, it indicates that the fault may be caused by stack overflow. The key logs are as follows:
366
367```
368Generated by HiviewDFX@OpenHarmony
369================================================================
370Device info:OpenHarmony 3.2            <- Device information
371Build info:OpenHarmony 5.0.0.23        <- Build information
372Fingerprint:8bc3343f50024204e258b8dce86f41f8fcc50c4d25d56b24e71fe26c0a23e321 <- Fingerprint
373Module name:crasher_cpp                <- Module name
374Timestamp:2024-05-06 20:18:24.000      <- Timestamp when the fault occurs
375Pid:9838                               <- Process ID
376Uid:0                                  <- User ID
377Process name:./crasher_cpp             <- Process name
378Process life time:2s                   <- Process life time
379Reason:Signal:SIGSEGV(SEGV_ACCERR)@0xf76b7ffc current thread stack low address = 0xf76b8000, probably caused by stack-buffer-overflow <- Fault cause and stack overflow prompt
380...
381```
382
383**Fault Logs of Stack Coverage**
384In the stack coverage scenario, the stack frame cannot be traced because the stack memory is illegally accessed. A message is displayed in the log, indicating that the stack fails to be returned and the system attempts to parse the thread stack to obtain an unreliable call stack. The information is provided for problem analysis. The key logs are as follows:
385
386```
387Generated by HiviewDFX@OpenHarmony
388================================================================
389Device info:OpenHarmony 3.2               <- Device information
390Build info:OpenHarmony 5.0.0.23           <- Build information
391Fingerprint:79b6d47b87495edf27135a83dda8b1b4f9b13d37bda2560d43f2cf65358cd528    <- Fingerprint
392Module name:crasher_cpp                   <- Module name
393Timestamp:2024-05-06 20:27:23.2035266415  <- Timestamp when the fault occurs
394Pid:10026                                 <- Process ID
395Uid:0                                     <- User ID
396Process name:./crasher_cpp                <- Process name
397Process life time:1s                      <- Process life time
398Reason:Signal:SIGSEGV(SEGV_MAPERR)@0000000000 probably caused by NULL pointer dereference  <- Fault cause
399LastFatalMessage: Failed to unwind stack, try to get unreliable call stack from #02 by reparsing thread stack   <- Attempt to obtain an unreliable stack from the thread stack
400Fault thread info:
401Tid:10026, Name:crasher_cpp               <- Thread ID, thread name
402#00 pc 00000000 Not mapped
403#01 pc 00008d22 /system/bin/crasher_cpp(TestNullPointerDereferenceCrash0()+22)(adfc673300571d2da1e47d1d12f48b44)  <- Call stack
404#02 pc 000064d1 /system/bin/crasher_cpp(DfxCrasher::ParseAndDoCrash(char const*) const+160)(adfc673300571d2da1e47d1d12f48b44)
405#03 pc 00006569 /system/bin/crasher_cpp(main+92)(adfc673300571d2da1e47d1d12f48b44)
406#04 pc 00072b98 /system/lib/ld-musl-arm.so.1(libc_start_main_stage2+56)(d820b1827e57855d4f9ed03ba5dfea83)
407...
408```
409
410**Fault Logs of Asynchronous Thread**
411(Currently, this logging only supports ARM64 architecture and is enabled in the debugging application **HAP_DEBUGGABLE**.)
412When an asynchronous thread crashes, the stack of the thread that submits the asynchronous task is also printed to locate the fault. The **SubmitterStacktrace** is used to differentiate the call stack of the crash thread and that of the submitting thread. The key logs are as follows:
413
414```
415Generated by HiviewDFX@OpenHarmony
416================================================================
417Device info:OpenHarmony 3.2                 <- Device information
418Build info:OpenHarmony 5.0.0.23             <- Build information
419Fingerprint:8bc3343f50024204e258b8dce86f41f8fcc50c4d25d56b24e71fe26c0a23e321  <- Fingerprint
420Module name:crasher_cpp                     <- Module name
421Timestamp:2024-05-06 20:28:24.000           <- Timestamp when the fault occurs
422Pid:9838                                    <- Process ID
423Uid:0                                       <- User ID
424Process name:./crasher_cpp                  <- Process name
425Process life time:2s                        <- Process life time
426Reason:Signal:SIGSEGV(SI_TKILL)@0x000000000004750 from:18256:0   <- Fault Cause
427Fault thread info:
428Tid:18257, Name:crasher_cpp                 <- Thread ID, thread name
429#00 pc 000054e6 /system/bin/ld-musl-aarch64.so.l(raise+228)(adfc673300571d2da1e47d1d12f48b44) <- Call stack
430#01 pc 000054f9 /system/bin/crasher_cpp(CrashInSubThread(void*)+56)(adfc673300571d2da1e47d1d12f48b50)
431#02 pc 000054f9 /system/bin/ld-musl-aarch64.so.l(start+236)(adfc673300571d2da1e47d1d12f48b44)
432========SubmitterStacktrace========       <- The call stack used to print submitting thread
433#00 pc 000094dc /system/bin/crasher_cpp(DfxCrasher::AsyncStacktrace()+36)(adfc673300571d2da1e47d1d12f48b50)
434#01 pc 00009a58 /system/bin/crasher_cpp(DfxCrasher::ParseAndDoCrash(char const*) const+232)(adfc673300571d2da1e47d1d12f48b50)
435#02 pc 00009b40 /system/bin/crasher_cpp(main+140)(adfc673300571d2da1e47d1d12f48b50)
436#03 pc 0000a4e1c /system/bin/ld-musl-aarch64.so.l(libc_start_main_stage2+68)(adfc673300571d2da1e47d1d12f48b44)
437...
438```
439
440### Locating the Problematic Code Based on the Crash Stack
441
442#### Method 1: DevEco Studio
443
444In application development, you can locate the problematic code in the cppcrash stack of the dynamic library. Both native stack frames and JS stack frames are supported. For some stack frames that fail to be parsed and located in DevEco Studio, refer to Method 2.
445
446![cppcrash-addr2line1](figures/cppcrash_image_002.png)
447
448#### Method 2: SDK llvm-addr2line
449
450- Obtain the symbol list
451    Obtain the .so file with symbols in the crash stack, which should be the same as that of the application or system.
452    Compiled and built in DevEco Studio, the .so file of dynamic library is generated with symbols by default in **/build/default/intermediates/libs**. You can run the **Linux file** command to check whether the BuildID of two .so files match. Generated by a compiler, BuildID is the unique identifier of a binary file, in which "not stripped" indicates that a symbol table is included.
453
454    ```
455    $ file libbabel.so
456    libbabel.so: ELF 64-bit LSB shared object, ARM aarch64, version 1 (SYSV), dynamically linked, BuildID[sha1]=fdb1b5432b9ea4e2a3d29780c3abf30e2a22da9d, with debug_info, not stripped
457    ```
458
459    Note: The symbol table of the system dynamic library is archived with the version.
460
461- Locate the line number using llvm-addr2line
462    You can find llvm-addr2line in **[SDK DIR PATH]\OpenHarmony\11\native\llvm\bin**, or you need to search for the path as it varies based on the SDK version.
463    The sample stack is as follows (part are omitted):
464
465    ```
466    Generated by HiviewDFX@OpenHarmony
467    ================================================================
468    Device info:OpenHarmony 3.2
469    Build info:OpenHarmony 5.0.0.22
470    Fingerprint:50577c0a1a1b5644ac030ba8f08c241cca0092026b59f29e7b142d5d4d5bb934
471    Module name:com.samples.recovery
472    Version:1.0.0
473    VersionCode:1000000
474    PreInstalled:No
475    Foreground:No
476    Timestamp:2017-08-05 17:03:40.000
477    Pid:2396
478    Uid:20010044
479    Process name:com.samples.recovery
480    Process life time:7s
481    Reason:Signal:SIGSEGV(SEGV_MAPERR)@0000000000  probably caused by NULL pointer dereference
482    Tid:2396, Name:amples.recovery
483    # 00 pc 00003510 /data/storage/el1/bundle/libs/arm/libentry.so(TriggerCrash(napi_env__*, napi_callback_info__*)+24)(446ff75d3f6a518172cc52e8f8055650b02b0e54)
484    # 01 pc 0002b0c5 /system/lib/platformsdk/libace_napi.z.so(panda::JSValueRef ArkNativeFunctionCallBack<true>(panda::JsiRuntimeCallInfo*)+448)(a84fbb767fd826946623779c608395bf)
485    # 02 pc 001e7597 /system/lib/platformsdk/libark_jsruntime.so(panda::ecmascript::EcmaInterpreter::RunInternal(panda::ecmascript::JSThread*, unsigned char const*, unsigned long long*)+14710)(106c552f6ce4420b9feac95e8b21b792)
486    # 03 pc 001e0439 /system/lib/platformsdk/libark_jsruntime.so(panda::ecmascript::EcmaInterpreter::Execute(panda::ecmascript::EcmaRuntimeCallInfo*)+984)(106c552f6ce4420b9feac95e8b21b792)
487    ...
488    # 39 pc 00072998 /system/lib/ld-musl-arm.so.1(libc_start_main_stage2+56)(5b1e036c4f1369ecfdbb7a96aec31155)
489    # 40 pc 00005b48 /system/bin/appspawn(_start_c+84)(cb0631260fa74df0bc9b0323e30ca03d)
490    # 41 pc 00005aec /system/bin/appspawn(cb0631260fa74df0bc9b0323e30ca03d)
491    Registers:
492    r0:00000000 r1:ffc47af8 r2:00000001 r3:f6555c94
493    r4:00000000 r5:f4d90f64 r6:bd8434f8 r7:00000000
494    r8:00000000 r9:ffc48808 r10:ffc47b70
495    fp:f7d8a5a0 ip:00000000 sp:ffc47aac lr:f4d6b0c7 pc:bd843510
496    ```
497
498    Parsed by SDK llvm-addr2line, the row number of problematic code is as follows:
499
500    ```
501    [SDK DIR PATH]\OpenHarmony\11\native\llvm\bin> .\llvm-addr2line.exe -Cfie libentry.so 3150
502    TrggerCrash(napi_env__*, napi_callback_info__*)
503    D:/code/apprecovery-demo/entry/src/main/cpp/hello.cpp:48
504    ```
505
506    You can use the **llvm-addr2line.exe -fCpie libutils.z.so offset** command to parse the stack line by line. If there are multiple offsets, you can parse them together using the **llvm-addr2line.exe -fCpie libxxx.so 0x1bc868 0x1be28c xxx** command. If the obtained row number does not seem correct, you can change the address (for example, subtract 1) or disable some compilation optimization.
507
508#### Method 3: DevEco Studio hstack
509
510hstack is a tool provided by DevEco Studio for you to restore the crash stack of an obfuscated release app to the source code stack. It runs on Windows, macOS, and Linux. For details, see [DevEco Studio hstack User Guide](https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-command-line-hstack-V5).
511
512### Reviewing Code Based on Services
513
514Review the context after the row number of the stack top is obtained. As shown in the following figure, line 48 in the **hello.cpp** file indicates a null pointer dereference.
515
516![cppcrash-demo1](figures/cppcrash_image_004.png)
517
518This example is constructed, and actual scenario is usually more complicate and needs to be analyzed based on services.
519
520### Disassembling (optional)
521
522Generally, if the problem is clear, you can locate the problem by decompiling the code line. In a few cases, if the method called in a line contains multiple parameters and the parameters involve structs, you need to use disassembly for further analysis.
523
524```
525objdump -S xxx.so > xxx.txt
526objdump -d xxxx                    Disassembles the xxxx file.
527objdump -S -l xxxx                 Disassembles the xxxx file and display the source code line.
528```
529
530### Common CppCrash Faults and Causes
531
532- Null pointer dereference
533    When a crash log is in format **SIGSEGV(SEGV_MAPERR)@0x00000000** or the values of the input parameter registers such as **r0** and **r1** printed in the **Register** are **0**, check whether a null pointer is input when invoking a method.
534    When a crash log is in format **SIGSEGV(SEGVMAPERR)@0x0000000c** or the value of the input parameter register such as **r1** printed in the **Register** is small, check whether the called structs contain a null pointer.
535- SIGABRT
536    Generally, this fault is triggered by the user, framework, or C library, and you can locate the problematic code in the first frame of the framework library. In this case, check whether resources such as thread and file descriptor are properly used, and whether the invoking sequence of APIs is correct.
537- SIGSEGV
538  - Multithreading operation collection in STD library is not thread-safe. If the collection is added or deleted on multiple threads, the **SIGSEGV** crash occurs. If **llvm-addr2line** is used and the result code involve operations on collections, this could be the reason for the crash.
539  - If the pointer does not match the lifecycle of an object, for example, using a raw pointer to store the **sptr** type and **shared_ptr** type, can lead to memory leak and dangling pointer. A raw pointer is a pointer that does not have features such as encapsulation and automatic memory management. It is only a simple pointer to the memory address. The memory to which the pointer points is not protected or managed. A raw pointer can directly access the pointed memory, but problems such as memory leak and null pointer reference may also occur. Therefore, when using a raw pointer, pay attention to potential security problems. You are advised to use smart pointers to manage memory.
540- Use after free
541    This fault occurs when the reference of a released stack variable is not set to null and the access continues.
542
543    ```
544    # include <iostream>
545
546    int& getStackReference() {
547        int x = 5;
548        return x; // Return the reference to x.
549    }
550
551    int main() {
552        int& ref = getStackReference (); // Obtain the reference to x.
553        // x is released when getStackReference() returns.
554        // ref is now a dangling reference. If you continue to access it, undefined behavior occurs.
555        std::cout << ref << std::endl; // Outputting the value of x is an undefined behavior.
556        return 0;
557    }
558    ```
559
560- Stack overflow occurs in recursive invocation, mutual invocation of destructors, and the use of large stack memory blocks in special stacks (signal stacks).
561    ```
562    # include <iostream>
563
564    class RecursiveClass {
565    public:
566        RecursiveClass() {
567            std::cout << "Constructing RecursiveClass" << std::endl;
568        }
569
570        ~RecursiveClass() {
571            std::cout << "Destructing RecursiveClass" << std::endl;
572            // Recursive invocation of a destructor.
573            RecursiveClass obj;
574        }
575    };
576
577    int main() {
578        RecursiveClass obj;
579        return 0;
580    }
581    ```
582    When a **RecursiveClass** object is created, its constructor is called. When this object is destroyed, its destructor is called. In the destructor, a new **RecursiveClass** object is created, which causes recursive calls until the stack overflows. Recursive calls are infinite. As a result, the stack space is used up and the application crashes.
583- Binary mismatch usually indicates the mismatch of the Application Binary Interface (ABI). For example, when a compiled binary interface or its data structure definition does not match the ABI, a random crash stack is generated.
584- Memory corruption occurs when the memory of a valid wild pointer is changed to an invalid value, which results in out-of-bounds access and data overwrite. In this case, a random crash stack is generated.
585- SIGBUS (Aligment) occurs when the address is in the unaligned state after the pointer is forcibly converted.
586
587## Case Study
588
589The following analyzes the typical CppCrash cases based on signals, scenarios, and tools respectively.
590The analysis based on signals introduces common crash signals and provides a typical case for each type of signal.
591The analysis based on scenarios concludes a common scenario for frequent problems, and provides a typical case for each scenario.
592The analysis based on tools describes how to use various maintenance and debugging tools, and provides a typical case for each tool.
593
594### Analyzing CppCrash Based on Signals
595
596#### Type 1: SIGSEGV Crash
597
598The **SIGSEGV** signal indicates a Segmentation Fault of the program. This fault occurs when a program accesses a memory area outside its bounds (for example, writes a memory in the operating system), or accesses a memory area without correct permission (for example, writes to read-only memory). The details are as follows:
599
600- **SIGSEGV** is a type of memory management fault.
601- **SIGSEGV** is generated in a user-mode program.
602- **SIGSEGV** occurs when a user-mode program accesses a memory area outside its bound.
603- **SIGSEGV** also occurs when a user-mode program accesses a memory without correct permission.
604
605In most cases, **SIGSEGV** is caused by pointer overwriting. However, not all pointer overwriting causes **SIGSEGV**. The **SIGSEGV** crash would not be triggered unless an out-of-bounds pointer is dereferenced. In addition, even if an out-of-bounds pointer is dereferenced, the **SIGSEGV** crash may not be caused. The **SIGSEGV** crash involves the operating system, C library, compiler, and linker. The examples are as follows:
606
607- The memory area is read-only memory.
608    The sample code is as follows:
609
610    ```
611    static napi_value TriggerCrash(napi_env env, napi_callback_info info)
612    {
613        char *s = "hello world";
614        s[1] = 'H';
615        return 0;
616    }
617    ```
618
619    This is one of the most common examples. In this case, "hello world" is a constant string and is placed in **.rodata section** of GCC. When the target program is generated, **.rodata section** is merged into the **text segment** and placed together with the **code segment**. Therefore, the memory area where the **.rodata section** is located is read-only. This is the **SIGSEGV(SEGV_ACCERR)** crash caused by writing to read-only memory area.
620
621    ![cppcrash-demo2](figures/cppcrash_image_005.png)
622
623- The memory area is out of the process address space.
624
625    The sample code is as follows:
626
627    ```
628    static napi_value TriggerCrash(napi_env env, napi_callback_info info)
629    {
630        uint64_t* p = (uint64_t*)0xffffffcfc42ae6f4;
631        *p = 10;
632        return 0;
633    }
634    ```
635
636    In this example, the program accesses a memory address in the kernel. The **SIGSEGV(SEGV_MAPERR)@0xffffffcfc42ae6f4** crash is usually triggered by the program by accident. The key logs of this cpp crash are as follows:
637
638    ```
639    Device info:xxxxxx xxxx xx xxx
640    Build info:xxxxxxx
641    Fingerprint:73a5dcdf3e509605563aa11ac8cb4f3d7f99b9946dc142212246b53b741c4129
642    Module name:com.samples.recovery
643    Version:1.0.0
644    VersionCode:1000000
645    PreInstalled:No
646    Foreground:Yes
647    Timestamp:2024-04-29 14:07:12.082
648    Pid:21374
649    Uid:20020144
650    Process name:com.samples.recovery
651    Process life time:8s
652    Reason:Signal:SIGSEGV(SEGV_MAPERR)@0xffffffcfc42ae6f4
653    Fault thread info:
654    Tid:21374, Name:amples.recovery
655    # 00 pc 0000000000001ccc /data/storage/el1/bundle/libs/arm64/libentry.so(TriggerCrash(napi_env__*, napi_callback_info__*)+36)(4dd115fa8b8c1b3f37bdb5b7b67fc70f31f0dbac)
656    # 01 pc 0000000000033678 /system/lib64/platformsdk/libace_napi.z.so(ArkNativeFunctionCallBack(panda::JsiRuntimeCallInfo*)+372)(7d6f229764fdd4b72926465066bc475e)
657    # 02 pc 00000000001d7f38 /system/lib64/module/arkcompiler/stub.an(RTStub_PushCallArgsAndDispatchNative+40)
658    # 03 at doTriggerException (entry/src/main/ets/pages/FaultTriggerPage.ets:72:7)
659    # 04 at triggerNativeException (entry/src/main/ets/pages/FaultTriggerPage.ets:79:5)
660    # 05 at anonymous (entry/src/main/ets/pages/FaultTriggerPage.ets:353:19)
661    # 06 pc 000000000048e024 /system/lib64/platformsdk/libark_jsruntime.so(panda::FunctionRef::Call(panda::ecmascript::EcmaVM const*, panda::Local<panda::JSValueRef>, panda::Local<panda::JSValueRef> const*, int)+1040)(9fa942a1d42bd4ae607257975fbc1b77)
662    ...
663    # 38 pc 00000000000324b0 /system/bin/appspawn(AppSpawnRun+172)(c992404f8d1cf03c84c067fbf3e1dff9)
664    # 39 pc 00000000000213a8 /system/bin/appspawn(main+956)(c992404f8d1cf03c84c067fbf3e1dff9)
665    # 40 pc 00000000000a4b98 /system/lib/ld-musl-aarch64.so.1(libc_start_main_stage2+64)(ff4c94d996663814715bedb2032b2bbc)
666    ```
667
6683. The memory does not exist.
669    The sample code is as follows:
670
671    ```
672    static napi_value TriggerCrash(napi_env env, napi_callback_info info)
673    {
674        int *a = NULL;
675        *a = 1;
676        return 0;
677    }
678    ```
679
680    In practice, the most common null pointer dereference occurs when the user-mode address to which the null pointer points does not exist. The inference information "Reason:Signal:SIGSEGV(SEGV_MAPERR)@000000000000000000 probably caused by NULL pointer dereference" is printed in the **Reason** of CppCrash logs, as shown in the following figure.
681
682    ![cppcrash-demo3](figures/cppcrash_image_006.png)
683
6844. Double free.
685    The sample code is as follows:
686
687    ```
688    static napi_value TriggerCrash(napi_env env, napi_callback_info info)
689    {
690        void *pc = malloc(1024);
691        free(pc);
692        free (pc); // Double free
693        printf("free ok!\n");
694        return 0;
695    }
696    ```
697
698    In the double-free memory scenario, the system throws a **SIGSEGV(SI_TKILL)** fault indicating an illegal memory operation, as shown below
699
700    ![cppcrash-demo3](figures/cppcrash_image_007.png)
701
702    The preceding are common causes for **SIGSEGV** crashes. Other scenarios may also trigger **SIGSEGV** crashes, which include stack overflow memory access, heap overflow memory access, global wild pointer access, execution on an invalid address, and invalid parameter invocation. The **SIGSEGV** crash is associated to the stack allocation and recovery of the operating system and the compiler.
703
704#### Type 2: SIGABRT Crash
705
706The **SIGABRT** signal is sent to abort the process. This signal can be called by the process executing **abort()** in C standard library, or it can be sent to the process from outside like other signals.
707
708- Executing the **abort()** function.
709    The sample code is as follows:
710
711    ```
712    static napi_value TriggerCrash(napi_env env, napi_callback_info info)
713    {
714        OH_LOG_FATAL(LOG_APP, "test fatal log.");
715        abort();
716        return 0;
717    }
718    ```
719
720    In this scenario, the **abort()** function is proactively called when a process is identified as not safe in checks from basic libraries. The last fatal log before the process exits is printed in the crash log, as shown in the following figure:
721
722    ![cppcrash-demo4](figures/cppcrash_image_008.png)
723
724- Executing the **assert()** function.
725    The sample code is as follows:
726
727    ```
728    static napi_value TriggerCrash(napi_env env, napi_callback_info info)
729    {
730    # if 0 // If the value is 0, an error is reported. If the value is 1, it is normal.
731        void *pc = malloc(1024);
732    # else
733        void *pc = nullptr;
734    # endif
735        assert(pc != nullptr);
736        return 0;
737    }
738    ```
739
740    In addition to the **abort()** function, other exception handling mechanisms in C++ include the **assert()** function, **exit()** function, exception capture mechanism (**try-catch**), and **exception** class. The **assert()** function is used to check some data in the function execution. If the check fails, the process aborts. The corresponding fault scenario is shown below.
741
742    ![cppcrash-demo5](figures/cppcrash_image_009.png)
743
744### Analyzing CppCrash Based on Scenarios
745
746#### Type 1: Memory Access Crash
747
748**Background**
749The crash address **0x7f82764b70** is in the readable and executable segment of **libace_napi_ark.z.so**. The cause is that the address needs to be written, but the corresponding **maps** segment has only the read and execute permissions. In other words, when a process attempts to access a memory area that is not allowed to be accessed, the process crashes.
750
751```
7527f82740000-7f8275c000 r--p 00000000 /system/lib64/libace_napi_ark.z.so
7537f8275c000-7f8276e000 r-xp 0001b000 /system/lib64/libace_napi_ark.z.so <- The crash address locates within this address range.
7547f8276e000-7f82773000 r--p 0002c000 /system/lib64/libace_napi_ark.z.so
7557f82773000-7f82774000 rw-p 00030000 /system/lib64/libace_napi_ark.z.so
756```
757
758The following figure shows the crash call stack.
759
760![cppcrash-demo6](figures/cppcrash_image_010.png)
761
762**Fault Analysis**
763This address error is regular, but it is abnormal that the node address fall in **libace_napi_ark.z.so**. In this case, this may be memory corruption error. You can use [ASan Check](https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-asan-V5) to locate the memory corruption error. By performing stress tests to reproduce the problem, ASan can also be used to find the regular crash scenario. The fault detected by ASan is the same as that in the crash stack above. The stack reports **heap-use-after-free**, which was actually a double free of the same address. During the second free operation, the address is used to access to its object member, resulting in a UAF fault.
764The key logs of ASan are as follows:
765
766```
767=================================================================
768==appspawn==2029==ERROR: AddressSanitizer: heap-use-after-free on address 0x003a375eb724 at pc 0x002029ba8514 bp 0x007fd8175710 sp 0x007fd8175708
769READ of size 1 at 0x003a375eb724 thread T0 (thread name)
770    # 0 0x2029ba8510  (/system/asan/lib64/platformsdk/libark_jsruntime.so+0xca8510) panda::ecmascript::Node::IsUsing() const at arkcompiler/ets_runtime/ecmascript/ecma_global_storage.h:82:16
771(inlined by) panda::JSNApi::DisposeGlobalHandleAddr(panda::ecmascript::EcmaVM const*, unsigned long) at arkcompiler/ets_runtime/ecmascript/napi/jsnapi.cpp:749:67 BuildID[md5/uuid]=9a18e2ec0dc8a83216800b2f0dd7b76a
772    # 1 0x403ee94d30  (/system/asan/lib64/libace.z.so+0x6194d30) panda::CopyableGlobal<panda::ObjectRef>::Free() at arkcompiler/ets_runtime/ecmascript/napi/include/jsnapi.h:1520:9
773(inlined by) panda::CopyableGlobal<panda::ObjectRef>::Reset() at arkcompiler/ets_runtime/ecmascript/napi/include/jsnapi.h:189:9
774(inlined by) OHOS::Ace::Framework::JsiType<panda::ObjectRef>::Reset() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/engine/jsi/jsi_types.inl:112:13
775(inlined by) OHOS::Ace::Framework::JsiWeak<OHOS::Ace::Framework::JsiObject>::~JsiWeak() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/engine/jsi/jsi_ref.h:167:16
776(inlined by) OHOS::Ace::Framework::ViewFunctions::~ViewFunctions() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view_functions.h:44:5 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
777    # 2 0x403ee9296c  (/system/asan/lib64/libace.z.so+0x619296c) OHOS::Ace::Framework::ViewFunctions::~ViewFunctions() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view_functions.h:42:5
778(inlined by) OHOS::Ace::Framework::ViewFunctions::~ViewFunctions() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view_functions.h:42:5 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
779    # 3 0x403ed9b130  (/system/asan/lib64/libace.z.so+0x609b130) OHOS::Ace::Referenced::DecRefCount() at foundation/arkui/ace_engine/frameworks/base/memory/referenced.h:76:13
780(inlined by) OHOS::Ace::RefPtr<OHOS::Ace::Framework::ViewFunctions>::~RefPtr() at foundation/arkui/ace_engine/frameworks/base/memory/referenced.h:148:22 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
781    # 4 0x403ed9b838  (/system/asan/lib64/libace.z.so+0x609b838) OHOS::Ace::RefPtr<OHOS::Ace::Framework::ViewFunctions>::Reset() at foundation/arkui/ace_engine/frameworks/base/memory/referenced.h:163:9
782(inlined by) OHOS::Ace::Framework::JSViewFullUpdate::~JSViewFullUpdate() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view.cpp:159:21 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
783    # 5 0x403ed9bf24  (/system/asan/lib64/libace.z.so+0x609bf24) OHOS::Ace::Framework::JSViewFullUpdate::~JSViewFullUpdate() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view.cpp:157:1
784(inlined by) OHOS::Ace::Framework::JSViewFullUpdate::~JSViewFullUpdate() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view.cpp:157:1 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
785...
786freed by thread T0 (thread name) here:
787    # 0 0x2024ed3abc  (/system/asan/lib64/libclang_rt.asan.so+0xd3abc)
788    # 1 0x2029ba8424  (/system/asan/lib64/platformsdk/libark_jsruntime.so+0xca8424) std::__h::__function::__value_func<void (unsigned long)>::operator()[abi:v15004](unsigned long&&) const at prebuilts/clang/ohos/linux-x86_64/llvm/bin/../include/libcxx-ohos/include/c++/v1/__functional/function.h:512:16
789(inlined by) std::__h::function<void (unsigned long)>::operator()(unsigned long) const at prebuilts/clang/ohos/linux-x86_64/llvm/bin/../include/libcxx-ohos/include/c++/v1/__functional/function.h:1197:12
790(inlined by) panda::ecmascript::JSThread::DisposeGlobalHandle(unsigned long) at arkcompiler/ets_runtime/ecmascript/js_thread.h:604:9
791(inlined by) panda::JSNApi::DisposeGlobalHandleAddr(panda::ecmascript::EcmaVM const*, unsigned long) at arkcompiler/ets_runtime/ecmascript/napi/jsnapi.cpp:752:24 BuildID[md5/uuid]=9a18e2ec0dc8a83216800b2f0dd7b76a
792    # 2 0x403ee94b68  (/system/asan/lib64/libace.z.so+0x6194b68) panda::CopyableGlobal<panda::FunctionRef>::Free() at arkcompiler/ets_runtime/ecmascript/napi/include/jsnapi.h:1520:9
793(inlined by) panda::CopyableGlobal<panda::FunctionRef>::Reset() at arkcompiler/ets_runtime/ecmascript/napi/include/jsnapi.h:189:9
794(inlined by) OHOS::Ace::Framework::JsiType<panda::FunctionRef>::Reset() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/engine/jsi/jsi_types.inl:112:13
795(inlined by) OHOS::Ace::Framework::JsiWeak<OHOS::Ace::Framework::JsiFunction>::~JsiWeak() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/engine/jsi/jsi_ref.h:167:16
796(inlined by) OHOS::Ace::Framework::ViewFunctions::~ViewFunctions() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view_functions.h:44:5 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
797    # 3 0x403ee9296c  (/system/asan/lib64/libace.z.so+0x619296c) OHOS::Ace::Framework::ViewFunctions::~ViewFunctions() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view_functions.h:42:5
798(inlined by) OHOS::Ace::Framework::ViewFunctions::~ViewFunctions() at foundation/arkui/ace_engine/frameworks/bridge/declarative_frontend/jsview/js_view_functions.h:42:5 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
799    # 4 0x403ed9b130  (/system/asan/lib64/libace.z.so+0x609b130) OHOS::Ace::Referenced::DecRefCount() at foundation/arkui/ace_engine/frameworks/base/memory/referenced.h:76:13
800(inlined by) OHOS::Ace::RefPtr<OHOS::Ace::Framework::ViewFunctions>::~RefPtr() at foundation/arkui/ace_engine/frameworks/base/memory/referenced.h:148:22 BuildID[md5/uuid]=1330f8b9be73bdb76ae18107c2a60ca1
801...
802previously allocated by thread T0 (thread name) here:
803    # 0 0x2024ed3be4  (/system/asan/lib64/libclang_rt.asan.so+0xd3be4)
804    # 1 0x2029ade778  (/system/asan/lib64/platformsdk/libark_jsruntime.so+0xbde778) panda::ecmascript::NativeAreaAllocator::AllocateBuffer(unsigned long) at arkcompiler/ets_runtime/ecmascript/mem/native_area_allocator.cpp:98:17 BuildID[md5/uuid]=9a18e2ec0dc8a83216800b2f0dd7b76a
805    # 2 0x2029a39064  (/system/asan/lib64/platformsdk/libark_jsruntime.so+0xb39064) std::__h::enable_if<!std::is_array_v<panda::ecmascript::NodeList<panda::ecmascript::WeakNode>>, panda::ecmascript::NodeList<panda::ecmascript::WeakNode>*>::type panda::ecmascript::NativeAreaAllocator::New<panda::ecmascript::NodeList<panda::ecmascript::WeakNode>>() at arkcompiler/ets_runtime/ecmascript/mem/native_area_allocator.h:61:19
806(inlined by) unsigned long panda::ecmascript::EcmaGlobalStorage<panda::ecmascript::Node>::NewGlobalHandleImplement<panda::ecmascript::WeakNode>(panda::ecmascript::NodeList<panda::ecmascript::WeakNode>**, panda::ecmascript::NodeList<panda::ecmascript::WeakNode>**, unsigned long) at arkcompiler/ets_runtime/ecmascript/ecma_global_storage.h:565:34
807(inlined by) panda::ecmascript::EcmaGlobalStorage<panda::ecmascript::Node>::SetWeak(unsigned long, void*, void (*)(void*), void (*)(void*)) at arkcompiler/ets_runtime/ecmascript/ecma_global_storage.h:455:26 BuildID[md5/uuid]=9a18e2ec0dc8a83216800b2f0dd7b76a
808    # 3 0x2029ba5620  (/system/asan/lib64/platformsdk/libark_jsruntime.so+0xca5620) std::__h::__function::__value_func<unsigned long (unsigned long, void*, void (*)(void*), void (*)(void*))>::operator()[abi:v15004](unsigned long&&, void*&&, void (*&&)(void*), void (*&&)(void*)) const at prebuilts/clang/ohos/linux-x86_64/llvm/bin/../include/libcxx-ohos/include/c++/v1/__functional/function.h:512:16
809(inlined by) std::__h::function<unsigned long (unsigned long, void*, void (*)(void*), void (*)(void*))>::operator()(unsigned long, void*, void (*)(void*), void (*)(void*)) const at prebuilts/clang/ohos/linux-x86_64/llvm/bin/../include/libcxx-ohos/include/c++/v1/__functional/function.h:1197:12
810(inlined by) panda::ecmascript::JSThread::SetWeak(unsigned long, void*, void (*)(void*), void (*)(void*)) at arkcompiler/ets_runtime/ecmascript/js_thread.h:610:16
811(inlined by) panda::JSNApi::SetWeak(panda::ecmascript::EcmaVM const*, unsigned long) at arkcompiler/ets_runtime/ecmascript/napi/jsnapi.cpp:711:31 BuildID[md5/uuid]=9a18e2ec0dc8a83216800b2f0dd7b76a
812...
813```
814
815Continue the analysis based on the stack.
816When **JsiWeak** is destructed or reset, **CopyableGlobal** in the parent class **JsiType** of its member (**JsiObject**/**JsiValue**/**JsiFunction**) is released, as shown in the following figure.
817
818![cppcrash-demo5](figures/cppcrash_image_011.png)
819
820During Garbage Collection (GC), **IterateWeakEcmaGlobalStorage** calls **DisposeGlobalHandle** on **WeakNode** without a callback, and releases it, as shown in the following figure.
821
822![cppcrash-demo6](figures/cppcrash_image_012.png)
823
824Therefore, for the same **WeakNode**, there may be two functions for release. If **IterateWeakEcmaGlobalStorage** releases it first during GC, without a callback notification to **JsiWeak** for cleanup, **JsiWeak** still retains a reference **CopyableGlobal** to the released **WeakNode**. When the **NodeList** containing the **WeakNode** is released and returned to the operating system, the retained **CopyableGlobal** in **JsiWeak** is released again, leading to a double-free error.
825
826![cppcrash-demo7](figures/cppcrash_image_013.png)
827
828**Solutions**
829Invoke a callback when **JsiWeak** calls **SetWeakCallback**. Therefore, the callback can notify **JsiWeak** to reset **CopyableGlobal** when **IterateWeakEcmaGlobalStorage** releases the **WeakNode**, ensuring the same address is not double-freed.
830
831**Suggestions**
832When using memory, consider whether the memory is double-freed or not freed. Additionally, when locating memory access crashes (usually **SIGSEGV** crashes), run the ASan to reproduce the fault if there is no clue based on the crash stack analysis.
833
834#### Type 2: Multi-thread Crash
835
836**Background**
837**napi_env** is still used after being released.
838
839**Symptom**
840The **env** of a **napi** API is invalid. The crash stack is mounted to **NativeEngineInterface::ClearLastError()**. Based on the log of **env** address, it is found that the **env** is used after being released.
841
842![cppcrash-demo9](figures/cppcrash_image_015.png)
843
844The key crash stack is as follows.
845
846![cppcrash-demo8](figures/cppcrash_image_014.png)
847
848**Solutions**
849The **env** created by a thread should not be transferred to another thread.
850
851**Suggestions**
852You can select the **Multi Thread Check** option to locate multi thread faults. For details, see "Ark Multi Thread Check" in guideline.
853
854Note: **env** in the **napi** interface is the **arkNativeEngine** when the engine is created.
855
856#### Type 3: Lifecycle Crash
857
858**Background**
859When you create a native **napi_value**, it needs to be used with **napi_handle_scope**. The **napi_handle_scope** is used to manage the lifecycle of **napi_value**. **napi_value** can be used only within **napi_handle_scope**, otherwise, the lifecycle of **napi_value** and its JS objects is no longer protected. If the reference count is 0, **napi_value** is collected by GC. Using **napi_value** at this point indicates accessing freed memory, which results in faults.
860
861**Symptom**
862**napi_value** is a raw pointer (a struct pointer). It is used to hold JS objects and maintain the lifecycle of JS objects to ensure that JS objects are not collected by GC. **napi_handle_scope** is used to manage **napi_value**. Once out of **napi_handle_scope**, **napi_value** is collected by GC, and **napi_value** no longer holds the JS object (no longer protects the JS object's lifecycle)
863
864**Fault Analysis**
865By decompiling the crash stack, the upper-level interface of the problematic **napi** interface can be located, in which the problematic **napi_value** can be found. In this case, you need to check if the **napi_value** is used out of **napi_handle_scope**.
866
867**Cases**
868The **napi_value** is used out of the scope of the NAPI framework.
869
870![cppcrash-demo9](figures/cppcrash_image_016.png)
871
872On the JS side, data is added using the **Add()**, and on the native side, **napi_value** is saved to a **vector**. On the JS side, data is obtained using the **get** API, and on the native side, the saved **napi_value** is returned as an array. The JS side then reads the properties of the data. The error message "Can not get Prototype on non ECMA Object" is displayed. The **native_value** across **napi** is not saved using **napi_ref**. As a result, the **native_value** is invalid.
873Note: The scope of the NAPI framework is **napi_handle_scope**. You can use **napi_handle_scope** to manage the lifecycle of **napi_value**. The scope of the framework layer is embedded in the end-to-end process of the JS call native. That is, the scope is opened when the native method is entered, and the scope is closed when the native method ends.
874
875#### Type 4: Pointer Crash
876
877**Background**
878Smart pointers are used without null checks, causing null pointer dereference crashes during process execution.
879
880**Impact**
881The process crashes, causing unexpected exit.
882
883**Fault Analysis**
884![cppcrash-demo10](figures/cppcrash_image_017.png)
885
886Null pointer crashes can be identified based on the fault cause. Run the llvm-addr2line command to parse the line number. It is found that the service code does not check whether the smart pointer is null before using it. As a result, the service code accesses the null address, causing the crash.
887
888**Solution**
889Add protective null checks for the pointer.
890
891**Suggestions**
892Pointers should be null-checked before using it to prevent null pointers and process crashes and exits.
893
894### Analyzing CppCrash Based on Tools
895
896#### Tool 1: ASAN
897
898[ASan Check](https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-asan-V5)
899
900#### Tool 2: Ark Multi Thread Check
901
902**Fundamentals**
903JS is single-threaded. Operations on JS objects can be performed only on the JS thread. Otherwise, multi-thread security problems may occur. (JS objects created on the main thread can be operated only on the main thread, and JS objects created on the worker thread can be operated only on the worker thread.) The napi APIs involve object operations. Therefore, 95% napi APIs can be used only on the JS thread. The multi-thread detection mechanism checks whether the **JS thread ID** of the calling thread is the same as that of the used **VM/Env**. If they are different, the **VM/Env** is used across threads, causing multi-thread security problems. Common problems: 1. Napi APIs are used in non-JS threads. 2. **env** of other threads are used in napi APIs.
904
905**How to Use**
906![cppcrash-demo13](figures/cppcrash_image_020.png)
907
908Select **Multi Thread Check** on DevEco to enable Ark multi-thread detection.
909
910**Scenario**
911If the stack of crash logs is difficult to analyze and the probability of this problem is high, you need to enable multi-thread detection. When the multi-thread detection is enabled, if the fatal information in the **cpp_crash** log is "Fatal: ecma_vm cannot run in multi-thread! thread:3096 currentThread:3550", it indicates that a multi-thread security problem occurs. That is, the calling thread ID is **3550**, but the JS thread is created by thread **3096**. The **vm** is used across threads.
912
913**Cases**
914After the function is enabled, the crash is triggered again. If the problem is caused by multiple threads, fatal information is displayed. The following is an example:
915
916```
917Fatal: ecma_vm cannot run in multi-thread! thread:xxx currentThread:yyy
918```
919
920The preceding information indicates that the calling thread ID is **17585**, but the JS thread is created by thread **17688**. The **vm** is used across threads. The **vm** is the **napi_env__*** of the JS thread. It is the environment for running thread code. One thread uses one **vm**.
921The key crash log is as follows:
922
923```
924
925Reason:Signal:SIGABRT(SI_TKILL)@0x01317b9f000044b1 from:17585: 20020127
926LastFatalMessage: [default] CheckThread:177 Fatal: ecma_vm cannot run in multi-thread! thread:17688 currentThread:17585
927Fault thread Info:
928Tid:17585, Name:xxxxx
929# 00 pc 00000000000f157c /system/lib/ld-musl-aarch64-asan.so.1(__restore_sigs+52)(38eb4ca904ae601d4b4dca502e948960)
930# 01 pc 00000000000f1800 /system/lib/ld-musl-aarch64-asan.so.1(raise+112) (38eb4ca904aeó01d4b4dca502e948960)
931# 02 pc 00000000000adc74 /system/lib/ld-musl-aarch64-asan.so.1(abort.+20) (38eb4ca904ae601d4b4dca502e948960)
932# 03 pc 0000000000844fdc /system/asan/libó4/platformsdk/libark_jsruntime.so(panda::ecmascript::EcmaVM::CheckThread() const+2712)(1df055932338c14060b864435aec88ab)
933# 04 pc 0000000000f3d930 /system/asan/libó4/platformsdk/libark_jsruntime.so(panda::0bjectRef:: New(panda::ecmascript::EcmaVM const*)+908)(1df055932338c14060b864435aec88
934# 05 pC 0000000000095048 /sYstem/asan/lib64/platformsdk/libace_napi.z.so(napi_create_object+80)(efc1b3d1378f56b4b800489fb30dcded)
935# 06 pc 00000000005d9770 /data/ storage/el1/bundle/libs/arm64/xxxxx.so (c0f1735eada49fadc5197745f5afOc0a52246270)
936```
937
938To analyze the multi-thread problem, perform the following steps:
939i. Check the first stack frame under **libace_napi.z.so**. The preceding figure shows **xxxxx.so**. Check whether the **napi_env** of thread **17688** is transferred to thread **17585**.
940ii. If the stack frame under **libace_napi.z.so** does not transfer the **napi_env** parameter, check whether the parameter is transferred as a struct member variable.
941
942#### Tool 3: objdump
943
944**How to Use**
945objdump binary is a system tool. You must have the OpenHarmony compilation environment, whose project code can be obtained from Gitee. The command is as follows:
946
947```
948repo init -u git@gitee.com:openharmony/manifest.git -b master --no-repo-verify --no-clone-bundle --depth=1
949repo sync -c
950./build/prebuilts_download.sh
951```
952
953You can obtain the tool in **prebuilts/clang/ohos/linux-x86_64/llvm/bin/llvm-objdump** of the project. The command is as follows:
954
955```
956prebuilts/clang/ohos/linux-x86_64/llvm/bin/llvm-objdump -d libark_jsruntime.so > dump.txt
957```
958
959**Scenario**
960In some cases, addr2line can only be used to check whether a line of the code is faulty but cannot determine which variable is abnormal. In this case, you can use objdump to disassemble the code and combine the information from the cppcrash register to further determine the crash cause.
961
962**Cases**
963The log is as follows:
964
965```
966Tid:6655, Name:GC_WorkerThread
967# 00 pc 00000000004492d4 /system/lib64/platformsdk/libark_jsruntime.so(panda::ecmascript::NonMovableMarker::MarkObject(unsigned int, panda::ecmascript::TaggedObject*)+124)(21cf5411626d5986a4ba6383e959b3cc)
968# 01 pc 000000000044b580 /system/lib64/platformsdk/libark_jsruntime.so(panda::ecmascript::NonMovableMarker::MarkValue(unsigned int, panda::ecmascript::ObjectSlot&, panda::ecmascript::Region*, bool)+72)(21cf5411626d5986a4ba6383e959b3cc)
969# 02 pc 000000000044b4e8 /system/lib64/platformsdk/libark_jsruntime.so(std::__h::__function::__func<panda::ecmascript::NonMovableMarker::ProcessMarkStack(unsigned int)::$_2, std::__h::allocator<panda::ecmascript::NonMovableMarker::ProcessMarkStack(unsigned int)::$_2>, void (panda::ecmascript::TaggedObject*, panda::ecmascript::ObjectSlot, panda::ecmascript::ObjectSlot, panda::ecmascript::VisitObjectArea)>::operator()(panda::ecmascript::TaggedObject*&&, panda::ecmascript::ObjectSlot&&, panda::ecmascript::ObjectSlot&&, panda::ecmascript::VisitObjectArea&&)+256)(21cf5411626d5986a4ba6383e959b3cc)
970# 03 pc 0000000000442ac0 /system/lib64/platformsdk/libark_jsruntime.so(void panda::ecmascript::ObjectXRay::VisitObjectBody<(panda::ecmascript::VisitType)1>(panda::ecmascript::TaggedObject*, panda::ecmascript::JSHClass*, std::__h::function<void (panda::ecmascript::TaggedObject*, panda::ecmascript::ObjectSlot, panda::ecmascript::ObjectSlot, panda::ecmascript::VisitObjectArea)> const&)+216)(21cf5411626d5986a4ba6383e959b3cc)
971# 04 pc 0000000000447ccc /system/lib64/platformsdk/libark_jsruntime.so(panda::ecmascript::NonMovableMarker::ProcessMarkStack(unsigned int)+248)(21cf5411626d5986a4ba6383e959b3cc)
972# 05 pc 0000000000438588 /system/lib64/platformsdk/libark_jsruntime.so(panda::ecmascript::Heap::ParallelGCTask::Run(unsigned int)+148)(21cf5411626d5986a4ba6383e959b3cc)
973# 06 pc 00000000004e31c8 /system/lib64/platformsdk/libark_jsruntime.so(panda::ecmascript::Runner::Run(unsigned int)+144)(21cf5411626d5986a4ba6383e959b3cc)
974# 07 pc 00000000004e3780 /system/lib64/platformsdk/libark_jsruntime.so(void* std::__h::__thread_proxy[abi:v15004]<std::__h::tuple<std::__h::unique_ptr<std::__h::__thread_struct, std::__h::default_delete<std::__h::__thread_struct>>, void (panda::ecmascript::Runner::*)(unsigned int), panda::ecmascript::Runner*, unsigned int>>(void*)+64)(21cf5411626d5986a4ba6383e959b3cc)
975# 08 pc 000000000014d894 /system/lib/ld-musl-aarch64.so.1
976# 09 pc 0000000000085d04 /system/lib/ld-musl-aarch64.so.1
977```
978
979Run the addr2line command to locate the error line.
980
981![cppcrash-demo14](figures/cppcrash_image_021.png)
982
983The preceding information indicates that a null pointer is accessed and the process is suspended when **InYoungSpace** is accessed. Therefore, it can be suspected that the **Region** is a null pointer.
984Use objdump to disassemble and search for the error address **4492d4**. The command is as follows:
985
986![cppcrash-demo15](figures/cppcrash_image_022.png)
987
988Check the **x20** register, and the value is **0x000000000000000**. The preceding information shows that **x20** performs bitwise operation based on **x2** (the last 18 bits are cleared, which is a typical **Region::ObjectAddressToRange** operation). The analysis shows that **x2** is the second parameter object of the **MarkObject** function, and **x20** is the variable **objectRegion**.
989
990```
991Registers: x0:0000007f0fe31560 x1:0000000000000003 x2:0000000000000000 x3:0000005593100000
992        x4:0000000000000000 x5:0000000000000000 x6:0000000000000000 x7:0000005596374fa0
993        x8:0000000000000000 x9:0000000000000000 x10:0000000000000000 x11:0000007f9cb42bb8
994        x12:000000000000005e x13:000000000061f59e x14:00000005d73d60fb x15:0000000000000000
995        x16:0000007f9cc5f200 x17:0000007f9f201f68 x18:0000000000000000 x19:0000000000000000
996        x20:0000000000000000 x21:0000000000000000 x22:0000000000000000 x23:000000559313f860
997        x24:000000559313f868 x25:0000000000000003 x26:00000055a0e19960 x27:0000007f9cc57b38
998        x28:0000007f9f21a1c0 x29:00000055a0e19700 lr:0000007f9cb4b584 sp:00000055a0e19700 pc:0000007f9cb492d4
999```
1000
1001**ldrb w8, [x20]** corresponds to **packedData_.flags_.spaceFlag_** because **packedData_** is the first field of **region**, **flags_** is the first field of **packedData_**, and **spaceFlag_** is the first field of **flags_**. Therefore, the first byte corresponding to the **objectRegion** address is used.
1002To view assembly code, you need to be familiar with common assembly instructions and parameter transfer rules. For example, the non-inline member function **r0** in C++ stores the **this** pointer. In addition, due to compiler optimization, the mapping between source code and assembly code may not be clear. The mapping can be quickly obtained based on some feature values (constants) in the code.
1003