1# 使用MindSpore Lite实现图像分类(C/C++)
2
3## 场景说明
4
5开发者可以使用[MindSpore](../../reference/apis-mindspore-lite-kit/_mind_spore.md),在UI代码中直接集成MindSpore Lite能力,快速部署AI算法,进行AI模型推理,实现图像分类的应用。
6
7图像分类可实现对图像中物体的识别,在医学影像分析、自动驾驶、电子商务、人脸识别等有广泛的应用。
8
9## 基本概念
10
11- N-API:用于构建ArkTS本地化组件的一套接口。可利用N-API,将C/C++开发的库封装成ArkTS模块。
12
13## 开发流程
14
151. 选择图像分类模型。
162. 在端侧使用MindSpore Lite推理模型,实现对选择的图片进行分类。
17
18## 环境准备
19
20安装DevEco Studio,要求版本 >= 4.1,并更新SDK到API 11或以上。
21
22## 开发步骤
23
24本文以对相册的一张图片进行推理为例,提供使用MindSpore Lite实现图像分类的开发指导。
25
26### 选择模型
27
28本示例程序中使用的图像分类模型文件为[mobilenetv2.ms](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/1.5/mobilenetv2.ms),放置在entry/src/main/resources/rawfile工程目录下。
29
30如果开发者有其他图像分类的预训练模型,请参考[MindSpore Lite 模型转换](mindspore-lite-converter-guidelines.md)介绍,将原始模型转换成.ms格式。
31
32### 编写代码
33
34#### 图像输入和预处理
35
361. 此处以获取相册图片为例,调用[@ohos.file.picker](../../reference/apis-core-file-kit/js-apis-file-picker.md) 实现相册图片文件的选择。
37
38   ```ts
39   import { photoAccessHelper } from '@kit.MediaLibraryKit';
40   import { BusinessError } from '@kit.BasicServicesKit';
41
42   let uris: Array<string> = [];
43
44   // 创建图片文件选择实例
45   let photoSelectOptions = new photoAccessHelper.PhotoSelectOptions();
46
47   // 设置选择媒体文件类型为IMAGE,设置选择媒体文件的最大数目
48   photoSelectOptions.MIMEType = photoAccessHelper.PhotoViewMIMETypes.IMAGE_TYPE;
49   photoSelectOptions.maxSelectNumber = 1;
50
51   // 创建图库选择器实例,调用select()接口拉起图库界面进行文件选择。文件选择成功后,返回photoSelectResult结果集。
52   let photoPicker = new photoAccessHelper.PhotoViewPicker();
53   photoPicker.select(photoSelectOptions, async (
54     err: BusinessError, photoSelectResult: photoAccessHelper.PhotoSelectResult) => {
55     if (err) {
56       console.error('MS_LITE_ERR: PhotoViewPicker.select failed with err: ' + JSON.stringify(err));
57       return;
58     }
59     console.info('MS_LITE_LOG: PhotoViewPicker.select successfully, ' +
60       'photoSelectResult uri: ' + JSON.stringify(photoSelectResult));
61     uris = photoSelectResult.photoUris;
62     console.info('MS_LITE_LOG: uri: ' + uris);
63   })
64   ```
65
662. 根据模型的输入尺寸,调用[@ohos.multimedia.image](../../reference/apis-image-kit/js-apis-image.md) (实现图片处理)、[@ohos.file.fs](../../reference/apis-core-file-kit/js-apis-file-fs.md) (实现基础文件操作) API对选择图片进行裁剪、获取图片buffer数据,并进行标准化处理。
67
68   ```ts
69   import { image } from '@kit.ImageKit';
70   import { fileIo } from '@kit.CoreFileKit';
71
72   let modelInputHeight: number = 224;
73   let modelInputWidth: number = 224;
74
75   // 使用fileIo.openSync接口,通过uri打开这个文件得到fd
76   let file = fileIo.openSync(this.uris[0], fileIo.OpenMode.READ_ONLY);
77   console.info('MS_LITE_LOG: file fd: ' + file.fd);
78
79   // 通过fd使用fileIo.readSync接口读取这个文件内的数据
80   let inputBuffer = new ArrayBuffer(4096000);
81   let readLen = fileIo.readSync(file.fd, inputBuffer);
82   console.info('MS_LITE_LOG: readSync data to file succeed and inputBuffer size is:' + readLen);
83
84   // 通过PixelMap预处理
85   let imageSource = image.createImageSource(file.fd);
86   imageSource.createPixelMap().then((pixelMap) => {
87     pixelMap.getImageInfo().then((info) => {
88       console.info('MS_LITE_LOG: info.width = ' + info.size.width);
89       console.info('MS_LITE_LOG: info.height = ' + info.size.height);
90       // 根据模型输入的尺寸,将图片裁剪为对应的size,获取图片buffer数据readBuffer
91       pixelMap.scale(256.0 / info.size.width, 256.0 / info.size.height).then(() => {
92         pixelMap.crop(
93           { x: 16, y: 16, size: { height: modelInputHeight, width: modelInputWidth } }
94         ).then(async () => {
95           let info = await pixelMap.getImageInfo();
96           console.info('MS_LITE_LOG: crop info.width = ' + info.size.width);
97           console.info('MS_LITE_LOG: crop info.height = ' + info.size.height);
98           // 需要创建的像素buffer大小
99           let readBuffer = new ArrayBuffer(modelInputHeight * modelInputWidth * 4);
100           await pixelMap.readPixelsToBuffer(readBuffer);
101           console.info('MS_LITE_LOG: Succeeded in reading image pixel data, buffer: ' +
102           readBuffer.byteLength);
103           // 处理readBuffer,转换成float32格式,并进行标准化处理
104           const imageArr = new Uint8Array(
105             readBuffer.slice(0, modelInputHeight * modelInputWidth * 4));
106           console.info('MS_LITE_LOG: imageArr length: ' + imageArr.length);
107           let means = [0.485, 0.456, 0.406];
108           let stds = [0.229, 0.224, 0.225];
109           let float32View = new Float32Array(modelInputHeight * modelInputWidth * 3);
110           let index = 0;
111           for (let i = 0; i < imageArr.length; i++) {
112             if ((i + 1) % 4 == 0) {
113               float32View[index] = (imageArr[i - 3] / 255.0 - means[0]) / stds[0]; // B
114               float32View[index+1] = (imageArr[i - 2] / 255.0 - means[1]) / stds[1]; // G
115               float32View[index+2] = (imageArr[i - 1] / 255.0 - means[2]) / stds[2]; // R
116               index += 3;
117             }
118           }
119           console.info('MS_LITE_LOG: float32View length: ' + float32View.length);
120           let printStr = 'float32View data:';
121           for (let i = 0; i < 20; i++) {
122             printStr += ' ' + float32View[i];
123           }
124           console.info('MS_LITE_LOG: float32View data: ' + printStr);
125         })
126       })
127     });
128   });
129   ```
130
131#### 编写推理代码
132
133调用[MindSpore](../../reference/apis-mindspore-lite-kit/_mind_spore.md)实现端侧推理,推理代码流程如下。
134
1351. 引用对应的头文件
136
137   ```c++
138   #include <iostream>
139   #include <sstream>
140   #include <stdlib.h>
141   #include <hilog/log.h>
142   #include <rawfile/raw_file_manager.h>
143   #include <mindspore/types.h>
144   #include <mindspore/model.h>
145   #include <mindspore/context.h>
146   #include <mindspore/status.h>
147   #include <mindspore/tensor.h>
148   #include "napi/native_api.h"
149   ```
150
1512. 读取模型文件
152
153   ```c++
154   #define LOGI(...) ((void)OH_LOG_Print(LOG_APP, LOG_INFO, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
155   #define LOGD(...) ((void)OH_LOG_Print(LOG_APP, LOG_DEBUG, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
156   #define LOGW(...) ((void)OH_LOG_Print(LOG_APP, LOG_WARN, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
157   #define LOGE(...) ((void)OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
158
159   void *ReadModelFile(NativeResourceManager *nativeResourceManager, const std::string &modelName, size_t *modelSize) {
160       auto rawFile = OH_ResourceManager_OpenRawFile(nativeResourceManager, modelName.c_str());
161       if (rawFile == nullptr) {
162           LOGE("MS_LITE_ERR: Open model file failed");
163           return nullptr;
164       }
165       long fileSize = OH_ResourceManager_GetRawFileSize(rawFile);
166       void *modelBuffer = malloc(fileSize);
167       if (modelBuffer == nullptr) {
168           LOGE("MS_LITE_ERR: OH_ResourceManager_ReadRawFile failed");
169       }
170       int ret = OH_ResourceManager_ReadRawFile(rawFile, modelBuffer, fileSize);
171       if (ret == 0) {
172           LOGI("MS_LITE_LOG: OH_ResourceManager_ReadRawFile failed");
173           OH_ResourceManager_CloseRawFile(rawFile);
174           return nullptr;
175       }
176       OH_ResourceManager_CloseRawFile(rawFile);
177       *modelSize = fileSize;
178       return modelBuffer;
179   }
180   ```
181
1823. 创建上下文,设置线程数、设备类型等参数,并加载模型。
183
184   ```c++
185   void DestroyModelBuffer(void **buffer) {
186       if (buffer == nullptr) {
187           return;
188       }
189       free(*buffer);
190       *buffer = nullptr;
191   }
192
193   OH_AI_ContextHandle CreateMSLiteContext(void *modelBuffer) {
194       // Set executing context for model.
195       auto context = OH_AI_ContextCreate();
196       if (context == nullptr) {
197           DestroyModelBuffer(&modelBuffer);
198           LOGE("MS_LITE_ERR: Create MSLite context failed.\n");
199           return nullptr;
200       }
201       auto cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
202
203       OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, true);
204       OH_AI_ContextAddDeviceInfo(context, cpu_device_info);
205
206       LOGI("MS_LITE_LOG: Build MSLite context success.\n");
207       return context;
208   }
209
210   OH_AI_ModelHandle CreateMSLiteModel(void *modelBuffer, size_t modelSize, OH_AI_ContextHandle context) {
211       // Create model
212       auto model = OH_AI_ModelCreate();
213       if (model == nullptr) {
214           DestroyModelBuffer(&modelBuffer);
215           LOGE("MS_LITE_ERR: Allocate MSLite Model failed.\n");
216           return nullptr;
217       }
218
219       // Build model object
220       auto build_ret = OH_AI_ModelBuild(model, modelBuffer, modelSize, OH_AI_MODELTYPE_MINDIR, context);
221       DestroyModelBuffer(&modelBuffer);
222       if (build_ret != OH_AI_STATUS_SUCCESS) {
223           OH_AI_ModelDestroy(&model);
224           LOGE("MS_LITE_ERR: Build MSLite model failed.\n");
225           return nullptr;
226       }
227       LOGI("MS_LITE_LOG: Build MSLite model success.\n");
228       return model;
229   }
230   ```
231
2324. 设置模型输入数据,执行模型推理。
233
234   ```c++
235   constexpr int K_NUM_PRINT_OF_OUT_DATA = 20;
236
237   // 设置模型输入数据
238   int FillInputTensor(OH_AI_TensorHandle input, std::vector<float> input_data) {
239       if (OH_AI_TensorGetDataType(input) == OH_AI_DATATYPE_NUMBERTYPE_FLOAT32) {
240           float *data = (float *)OH_AI_TensorGetMutableData(input);
241           for (size_t i = 0; i < OH_AI_TensorGetElementNum(input); i++) {
242               data[i] = input_data[i];
243           }
244           return OH_AI_STATUS_SUCCESS;
245       } else {
246           return OH_AI_STATUS_LITE_ERROR;
247       }
248   }
249
250   // 执行模型推理
251   int RunMSLiteModel(OH_AI_ModelHandle model, std::vector<float> input_data) {
252       // Set input data for model.
253       auto inputs = OH_AI_ModelGetInputs(model);
254
255       auto ret = FillInputTensor(inputs.handle_list[0], input_data);
256       if (ret != OH_AI_STATUS_SUCCESS) {
257           LOGE("MS_LITE_ERR: RunMSLiteModel set input error.\n");
258           return OH_AI_STATUS_LITE_ERROR;
259       }
260       // Get model output.
261       auto outputs = OH_AI_ModelGetOutputs(model);
262       // Predict model.
263       auto predict_ret = OH_AI_ModelPredict(model, inputs, &outputs, nullptr, nullptr);
264       if (predict_ret != OH_AI_STATUS_SUCCESS) {
265           LOGE("MS_LITE_ERR: MSLite Predict error.\n");
266           return OH_AI_STATUS_LITE_ERROR;
267       }
268       LOGI("MS_LITE_LOG: Run MSLite model Predict success.\n");
269       // Print output tensor data.
270       LOGI("MS_LITE_LOG: Get model outputs:\n");
271       for (size_t i = 0; i < outputs.handle_num; i++) {
272           auto tensor = outputs.handle_list[i];
273           LOGI("MS_LITE_LOG: - Tensor %{public}d name is: %{public}s.\n", static_cast<int>(i),
274                OH_AI_TensorGetName(tensor));
275           LOGI("MS_LITE_LOG: - Tensor %{public}d size is: %{public}d.\n", static_cast<int>(i),
276                (int)OH_AI_TensorGetDataSize(tensor));
277           LOGI("MS_LITE_LOG: - Tensor data is:\n");
278           auto out_data = reinterpret_cast<const float *>(OH_AI_TensorGetData(tensor));
279           std::stringstream outStr;
280           for (int i = 0; (i < OH_AI_TensorGetElementNum(tensor)) && (i <= K_NUM_PRINT_OF_OUT_DATA); i++) {
281               outStr << out_data[i] << " ";
282           }
283           LOGI("MS_LITE_LOG: %{public}s", outStr.str().c_str());
284       }
285       return OH_AI_STATUS_SUCCESS;
286   }
287   ```
288
2895. 调用以上方法,实现完整的模型推理流程。
290
291   ```c++
292   static napi_value RunDemo(napi_env env, napi_callback_info info) {
293       LOGI("MS_LITE_LOG: Enter runDemo()");
294       napi_value error_ret;
295       napi_create_int32(env, -1, &error_ret);
296       // 传入数据处理
297       size_t argc = 2;
298       napi_value argv[2] = {nullptr};
299       napi_get_cb_info(env, info, &argc, argv, nullptr, nullptr);
300       bool isArray = false;
301       napi_is_array(env, argv[0], &isArray);
302       uint32_t length = 0;
303       // 获取数组的长度
304       napi_get_array_length(env, argv[0], &length);
305   	LOGI("MS_LITE_LOG: argv array length = %{public}d", length);
306       std::vector<float> input_data;
307       double param = 0;
308       for (int i = 0; i < length; i++) {
309           napi_value value;
310           napi_get_element(env, argv[0], i, &value);
311           napi_get_value_double(env, value, &param);
312           input_data.push_back(static_cast<float>(param));
313       }
314       std::stringstream outstr;
315       for (int i = 0; i < K_NUM_PRINT_OF_OUT_DATA; i++) {
316           outstr << input_data[i] << " ";
317       }
318   	LOGI("MS_LITE_LOG: input_data = %{public}s", outstr.str().c_str());
319       // Read model file
320       const std::string modelName = "mobilenetv2.ms";
321       LOGI("MS_LITE_LOG: Run model: %{public}s", modelName.c_str());
322       size_t modelSize;
323       auto resourcesManager = OH_ResourceManager_InitNativeResourceManager(env, argv[1]);
324       auto modelBuffer = ReadModelFile(resourcesManager, modelName, &modelSize);
325       if (modelBuffer == nullptr) {
326           LOGE("MS_LITE_ERR: Read model failed");
327           return error_ret;
328       }
329       LOGI("MS_LITE_LOG: Read model file success");
330
331       auto context = CreateMSLiteContext(modelBuffer);
332       if (context == nullptr) {
333           LOGE("MS_LITE_ERR: MSLiteFwk Build context failed.\n");
334           return error_ret;
335       }
336       auto model = CreateMSLiteModel(modelBuffer, modelSize, context);
337       if (model == nullptr) {
338           OH_AI_ContextDestroy(&context);
339           LOGE("MS_LITE_ERR: MSLiteFwk Build model failed.\n");
340           return error_ret;
341       }
342       int ret = RunMSLiteModel(model, input_data);
343       if (ret != OH_AI_STATUS_SUCCESS) {
344           OH_AI_ModelDestroy(&model);
345           OH_AI_ContextDestroy(&context);
346           LOGE("MS_LITE_ERR: RunMSLiteModel failed.\n");
347           return error_ret;
348       }
349       napi_value out_data;
350       napi_create_array(env, &out_data);
351       auto outputs = OH_AI_ModelGetOutputs(model);
352       OH_AI_TensorHandle output_0 = outputs.handle_list[0];
353       float *output0Data = reinterpret_cast<float *>(OH_AI_TensorGetMutableData(output_0));
354       for (size_t i = 0; i < OH_AI_TensorGetElementNum(output_0); i++) {
355           napi_value element;
356           napi_create_double(env, static_cast<double>(output0Data[i]), &element);
357           napi_set_element(env, out_data, i, element);
358       }
359       OH_AI_ModelDestroy(&model);
360       OH_AI_ContextDestroy(&context);
361       LOGI("MS_LITE_LOG: Exit runDemo()");
362       return out_data;
363   }
364   ```
365
3666. 编写CMake脚本,链接MindSpore Lite动态库。
367
368   ```c++
369   # the minimum version of CMake.
370   cmake_minimum_required(VERSION 3.4.1)
371   project(MindSporeLiteCDemo)
372
373   set(NATIVERENDER_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR})
374
375   if(DEFINED PACKAGE_FIND_FILE)
376       include(${PACKAGE_FIND_FILE})
377   endif()
378
379   include_directories(${NATIVERENDER_ROOT_PATH}
380                       ${NATIVERENDER_ROOT_PATH}/include)
381
382   add_library(entry SHARED mslite_napi.cpp)
383   target_link_libraries(entry PUBLIC mindspore_lite_ndk)
384   target_link_libraries(entry PUBLIC hilog_ndk.z)
385   target_link_libraries(entry PUBLIC rawfile.z)
386   target_link_libraries(entry PUBLIC ace_napi.z)
387   ```
388
389#### 使用N-API将C++动态库封装成ArkTS模块
390
3911. 在 entry/src/main/cpp/types/libentry/Index.d.ts,定义ArkTS接口`runDemo()` 。内容如下:
392
393   ```ts
394   export const runDemo: (a: number[], b:Object) => Array<number>;
395   ```
396
3972. 在 oh-package.json5 文件,将API与so相关联,成为一个完整的ArkTS模块:
398
399   ```json
400   {
401     "name": "libentry.so",
402     "types": "./Index.d.ts",
403     "version": "1.0.0",
404     "description": "MindSpore Lite inference module"
405   }
406   ```
407
408#### 调用封装的ArkTS模块进行推理并输出结果
409
410entry/src/main/ets/pages/Index.ets 中,调用封装的ArkTS模块,最后对推理结果进行处理。
411
412```ts
413import msliteNapi from 'libentry.so'
414import { resourceManager } from '@kit.LocalizationKit';
415
416let resMgr: resourceManager.ResourceManager = getContext().getApplicationContext().resourceManager;
417let max: number = 0;
418let maxIndex: number = 0;
419let maxArray: Array<number> = [];
420let maxIndexArray: Array<number> = [];
421
422// 调用c++的runDemo方法,完成图像输入和预处理后的buffer数据保存在float32View,具体可见上文图像输入和预处理中float32View的定义和处理。
423console.info('MS_LITE_LOG: *** Start MSLite Demo ***');
424let output: Array<number> = msliteNapi.runDemo(Array.from(float32View), resMgr);
425// 取分类占比的最大值
426this.max = 0;
427this.maxIndex = 0;
428this.maxArray = [];
429this.maxIndexArray = [];
430let newArray = output.filter(value => value !== max);
431for (let n = 0; n < 5; n++) {
432  max = output[0];
433  maxIndex = 0;
434  for (let m = 0; m < newArray.length; m++) {
435    if (newArray[m] > max) {
436      max = newArray[m];
437      maxIndex = m;
438    }
439  }
440  maxArray.push(Math.round(this.max * 10000));
441  maxIndexArray.push(this.maxIndex);
442  // filter函数数组过滤函数
443  newArray = newArray.filter(value => value !== max);
444}
445console.info('MS_LITE_LOG: max:' + this.maxArray);
446console.info('MS_LITE_LOG: maxIndex:' + this.maxIndexArray);
447console.info('MS_LITE_LOG: *** Finished MSLite Demo ***');
448```
449
450### 调测验证
451
4521. 在DevEco Studio中连接设备,点击Run entry,编译Hap,有如下显示:
453
454   ```shell
455   Launching com.samples.mindsporelitecdemo
456   $ hdc shell aa force-stop com.samples.mindsporelitecdemo
457   $ hdc shell mkdir data/local/tmp/xxx
458   $ hdc file send C:\Users\xxx\MindSporeLiteCDemo\entry\build\default\outputs\default\entry-default-signed.hap "data/local/tmp/xxx"
459   $ hdc shell bm install -p data/local/tmp/xxx
460   $ hdc shell rm -rf data/local/tmp/xxx
461   $ hdc shell aa start -a EntryAbility -b com.samples.mindsporelitecdemo
462   ```
463
4642. 在设备屏幕点击photo按钮,选择图片,点击确定。设备屏幕显示所选图片的分类结果,在日志打印结果中,过滤关键字”MS_LITE“,可得到如下结果:
465
466   ```verilog
467   08-05 17:15:52.001   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: PhotoViewPicker.select successfully, photoSelectResult uri: {"photoUris":["file://media/Photo/13/IMG_1501955351_012/plant.jpg"]}
468   ...
469   08-05 17:15:52.627   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: crop info.width = 224
470   08-05 17:15:52.627   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: crop info.height = 224
471   08-05 17:15:52.628   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: Succeeded in reading image pixel data, buffer: 200704
472   08-05 17:15:52.971   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: float32View data: float32View data: 1.2385478019714355 1.308123230934143 1.4722440242767334 1.2385478019714355 1.308123230934143 1.4722440242767334 1.2385478019714355 1.308123230934143 1.4722440242767334 1.2385478019714355 1.308123230934143 1.4722440242767334 1.2385478019714355 1.308123230934143 1.4722440242767334 1.2385478019714355 1.308123230934143 1.4722440242767334 1.2385478019714355 1.308123230934143
473   08-05 17:15:52.971   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: *** Start MSLite Demo ***
474   08-05 17:15:53.454   4684-4684    A00000/[MSLiteNapi]            pid-4684              I     MS_LITE_LOG: Build MSLite model success.
475   08-05 17:15:53.753   4684-4684    A00000/[MSLiteNapi]            pid-4684              I     MS_LITE_LOG: Run MSLite model Predict success.
476   08-05 17:15:53.753   4684-4684    A00000/[MSLiteNapi]            pid-4684              I     MS_LITE_LOG: Get model outputs:
477   08-05 17:15:53.753   4684-4684    A00000/[MSLiteNapi]            pid-4684              I     MS_LITE_LOG: - Tensor 0 name is: Default/head-MobileNetV2Head/Sigmoid-op466.
478   08-05 17:15:53.753   4684-4684    A00000/[MSLiteNapi]            pid-4684              I     MS_LITE_LOG: - Tensor data is:
479   08-05 17:15:53.753   4684-4684    A00000/[MSLiteNapi]            pid-4684              I     MS_LITE_LOG: 3.43385e-06 1.40285e-05 9.11969e-07 4.91007e-05 9.50266e-07 3.94537e-07 0.0434676 3.97196e-05 0.00054832 0.000246202 1.576e-05 3.6494e-06 1.23553e-05 0.196977 5.3028e-05 3.29346e-05 4.90475e-07 1.66109e-06 7.03273e-06 8.83677e-07 3.1365e-06
480   08-05 17:15:53.781   4684-4684    A03d00/JSAPP                   pid-4684              W     MS_LITE_WARN: output length =  500 ;value =  0.0000034338463592575863,0.000014028532859811094,9.119685273617506e-7,0.000049100715841632336,9.502661555416125e-7,3.945370394831116e-7,0.04346757382154465,0.00003971960904891603,0.0005483203567564487,0.00024620210751891136,0.000015759984307806008,0.0000036493988773145247,0.00001235533181898063,0.1969769448041916,0.000053027983085485175,0.000032934600312728435,4.904751449430478e-7,0.0000016610861166554969,0.000007032729172351537,8.836767619868624e-7
481   08-05 17:15:53.831   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: max:9497,7756,1970,435,46
482   08-05 17:15:53.831   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: maxIndex:323,46,13,6,349
483   08-05 17:15:53.831   4684-4684    A03d00/JSAPP                   pid-4684              I     MS_LITE_LOG: *** Finished MSLite Demo ***
484   ```
485
486
487### 效果示意
488
489在设备上,点击photo按钮,选择相册中的一张图片,点击确定。在图片下方显示此图片占比前4的分类信息。
490
491<img src="figures/stepc1.png"  width="20%"/>     <img src="figures/step2.png" width="20%"/>     <img src="figures/step3.png" width="20%"/>     <img src="figures/stepc4.png" width="20%"/>
492
493## 相关实例
494
495针对使用MindSpore Lite进行图像分类应用的开发,有以下相关实例可供参考:
496
497- [基于Native接口的MindSpore Lite应用开发(C/C++)(API11)](https://gitee.com/openharmony/applications_app_samples/tree/master/code/DocsSample/ApplicationModels/MindSporeLiteCDemo)
498
499