1# I2C 2 3 4## Overview 5 6### Function 7 8The Inter-Integrated Circuit (I2C) is a simple, bidirectional, and synchronous serial bus that uses merely two wires. It is widely used in short-distance communication due to simple connection and low cost. 9 10### Working Principles 11 12In I2C communication, one controller communicates with one or more devices through the serial data line (SDA) and serial clock line (SCL), as shown in the figure below. 13 14I2C data transfer must begin with a **START** condition and end with a **STOP** condition. Data is transmitted byte-by-byte from the most significant bit to the least significant bit. 15 16Each I2C node is recognized by a unique address and can serve as either a controller or a device. When the controller needs to communicate with a device, it writes the device address to the bus through broadcast. A device matching this address sends a response to set up a data transfer channel. 17 18The I2C module provides a set of APIs for I2C data transfer, including: 19- Opening or closing an I2C controller 20- Performing custom transfer via a message array 21 22 **Figure 1** I2C physical connection 23 24  25 26## Usage Guidelines 27 28### When to Use 29 30The I2C is used in communication with the sensors, executors, and input/output devices that support the I2C protocol. 31 32### Available APIs 33 34The following table describes the APIs provided by the I2C module. For more information about the APIs, see **//drivers/hdf_core/framework/include/platform/i2c_if.h**. 35 36**Table 1** I2C driver APIs 37 38| API | Description| 39| -------- | -------- | 40| DevHandle I2cOpen(int16_t number) | Opens an I2C controller.| 41| void I2cClose(DevHandle handle) | Closes an I2C controller.| 42| int32_t I2cTransfer(DevHandle handle, struct I2cMsg \*msgs, int16_t count) | Transfers data.| 43 44### How to Use 45 46The following figure illustrates how to use I2C APIs. 47 48**Figure 2** Process of using I2C APIs 49 50 51 52 53#### Opening an I2C Controller 54 55Call **I2cOpen()** to open an I2C controller. 56 57```c 58DevHandle I2cOpen(int16_t number); 59``` 60 61 **Table 2** Description of I2cOpen 62 63| **Parameter**| **Description**| 64| -------- | -------- | 65| number | I2C controller number.| 66| Return Value| **Description**| 67| NULL | The operation fails.| 68| Device handle| The operation is successful. The handle of the I2C controller opened is returned.| 69 70Example: Open controller 3 of the eight I2C controllers (numbered 0 and 7) in the system. 71 72```c 73DevHandle i2cHandle = NULL; /* I2C controller handle. */ 74 75/* Open I2C controller 3. */ 76i2cHandle = I2cOpen(3); 77if (i2cHandle == NULL) { 78 HDF_LOGE("I2cOpen: failed\n"); 79 return; 80} 81``` 82 83 84#### Performing I2C Communication 85 86Call **I2cTransfer()** to transfer data. 87 88```c 89int32_t I2cTransfer(DevHandle handle, struct I2cMsg \*msgs, int16_t count); 90``` 91 92 **Table 3** Description of I2cTransfer 93 94| **Parameter**| **Description**| 95| -------- | -------- | 96| handle | Handle of the I2C controller.| 97| msgs | Pointer to the message array to transfer.| 98| count | Number of messages in the message array to transfer.| 99| Return Value| **Description**| 100| Positive integer| The operation is successful. The number of messages that are successfully transferred is returned.| 101| Negative value| The operation fails.| 102 103The I2C message type is defined by **I2cMsg**. Each message structure indicates a read or write operation. A message array specifies multiple read and write operations to perform. 104 105Example of read and write operations: 106 107 108```c 109int32_t ret; 110uint8_t wbuff[2] = { 0x12, 0x13 }; 111uint8_t rbuff[2] = { 0 }; 112struct I2cMsg msgs[2]; /* Custom message array to transfer. */ 113msgs[0].buf = wbuff; /* Data to write. */ 114msgs[0].len = 2; /* The length of the data to write is 2. */ 115msgs[0].addr = 0x5A; /* The address of the device to write the data is 0x5A. */ 116msgs[0].flags = 0; /* The flag 0 indicates a write operation. */ 117msgs[1].buf = rbuff; /* Data to read. */ 118msgs[1].len = 2; /* The length of the data to read is 2. */ 119msgs[1].addr = 0x5A; /* The address of the device to read is 0x5A. */ 120msgs[1].flags = I2C_FLAG_READ /* I2C_FLAG_READ is set. */ 121/* Transfer two messages. */ 122ret = I2cTransfer(i2cHandle, msgs, 2); 123if (ret != 2) { 124 HDF_LOGE("I2cTransfer: failed, ret %d\n", ret); 125 return; 126} 127``` 128 129>  **CAUTION**<br/> 130> - The device address in the **I2cMsg** structure does not contain the read/write flag bit. The read/write information is passed by the read/write control bit in **flags**. 131> 132> - The I2C controller determines the maximum number of messages to be transferred at a time and the maximum length of each message to transfer. 133> 134> - The **I2cTransfer** function may cause the system to sleep and therefore cannot be called in the interrupt context. 135 136 137#### Closing an I2C Controller 138 139Call **I2cClose()** to close the I2C controller after the communication is complete. 140 141```c 142void I2cClose(DevHandle handle); 143``` 144 145 **Table 4** Description of I2cClose 146 147| Parameter| Description| 148| -------- | -------- | 149| handle | Handle of the I2C controller to close.| 150 151Example: 152 153```c 154I2cClose(i2cHandle); /* Close an I2C controller. */ 155``` 156 157 158### Example 159 160The following example describes how to use I2C APIs to implement simple read/write operations on TouchPad from a Hi3516D V300 development board. 161 162The basic hardware information is as follows: 163 164- SoC: Hi3516D V300 165 166- Touch IC: The I2C address is 0x38, and the bit width of touch IC internal register is 1 byte. 167 168- Hardware connection: The TouchPad is connected to I2C controller 3. The reset pin of the touch IC is GPIO 3. 169 170In this example, reset the touch IC (the development board supplies power to the touch IC by default after being powered on) and perform read/write operations on the internal register to test whether the I2C channel is functioning. 171 172>  **NOTE**<br> 173> This example focuses on access to the I2C device and verifies the I2C channel, rather than the specific data read from or written to the device register and the result caused by the read and write operations on the register. 174 175The sample code is as follows: 176 177```c 178#include "i2c_if.h" /* Header file of I2C APIs. */ 179#include "gpio_if.h" /* Header file of GPIO APIs. */ 180#include "hdf_log.h" /* Header file of log APIs. */ 181#include "osal_io.h" /* Header file of I/O read and write APIs. */ 182#include "osal_time.h" /* Header file of delay and sleep APIs. */ 183 184/* Define a TP device structure to store I2C and GPIO hardware information. */ 185struct TpI2cDevice { 186 uint16_t rstGpio; /* Reset pin. */ 187 uint16_t busId; /* I2C bus number. */ 188 uint16_t addr; /* I2C device address. */ 189 uint16_t regLen; /* Register bit width. */ 190 DevHandle i2cHandle; /* I2C controller handle. */ 191}; 192 193/* I2C pin I/O configuration. For details, see the SoC register manual. */ 194#define I2C3_DATA_REG_ADDR 0x112f008c /* Address of the SDA pin configuration register of I2C controller 3. */ 195#define I2C3_CLK_REG_ADDR 0x112f0090 /* Address of the SCL pin configuration register of I2C controller 3. */ 196#define I2C_REG_CFG 0x5f1 /* Configuration values of SDA and SCL pins of I2C controller 3. */ 197 198static void TpSocIoCfg(void) 199{ 200 /* Set the I/O function of the two pins corresponding to I2C controller 3 to I2C. */ 201 OSAL_WRITEL(I2C_REG_CFG, IO_DEVICE_ADDR(I2C3_DATA_REG_ADDR)); 202 OSAL_WRITEL(I2C_REG_CFG, IO_DEVICE_ADDR(I2C3_CLK_REG_ADDR)); 203} 204 205/* Initialize the reset pin of the TP. Pull up the pin for 20 ms, pull down the pin for 50 ms, and then pull up the pin for 20 ms to complete the reset. */ 206static int32_t TestCaseGpioInit(struct TpI2cDevice *tpDevice) 207{ 208 int32_t ret; 209 210 /* Set the output direction for the reset pin. */ 211 ret = GpioSetDir(tpDevice->rstGpio, GPIO_DIR_OUT); 212 if (ret != HDF_SUCCESS) { 213 HDF_LOGE("%s: set rst dir fail!:%d", __func__, ret); 214 return ret; 215 } 216 217 ret = GpioWrite(tpDevice->rstGpio, GPIO_VAL_HIGH); 218 if (ret != HDF_SUCCESS) { 219 HDF_LOGE("%s: set rst hight fail!:%d", __func__, ret); 220 return ret; 221 } 222 OsalMSleep(20); 223 224 ret = GpioWrite(tpDevice->rstGpio, GPIO_VAL_LOW); 225 if (ret != HDF_SUCCESS) { 226 HDF_LOGE("%s: set rst low fail!:%d", __func__, ret); 227 return ret; 228 } 229 OsalMSleep(50); 230 231 ret = GpioWrite(tpDevice->rstGpio, GPIO_VAL_HIGH); 232 if (ret != HDF_SUCCESS) { 233 HDF_LOGE("%s: set rst high fail!:%d", __func__, ret); 234 return ret; 235 } 236 OsalMSleep(20); 237 238 return HDF_SUCCESS; 239} 240 241/* Use I2cTransfer to encapsulate a register read/write auxiliary function. Use flag to indicate the read or write operation. */ 242static int TpI2cReadWrite(struct TpI2cDevice *tpDevice, unsigned int regAddr, 243 unsigned char *regData, unsigned int dataLen, uint8_t flag) 244{ 245 int index = 0; 246 unsigned char regBuf[4] = {0}; 247 struct I2cMsg msgs[2] = {0}; 248 249 /* Perform length adaptation for the single- or dual-byte register. */ 250 if (tpDevice->regLen == 1) { 251 regBuf[index++] = regAddr & 0xFF; 252 } else { 253 regBuf[index++] = (regAddr >> 8) & 0xFF; 254 regBuf[index++] = regAddr & 0xFF; 255 } 256 257 /* Fill in the I2cMsg message structure. */ 258 msgs[0].addr = tpDevice->addr; 259 msgs[0].flags = 0; /* The flag 0 indicates a write operation. */ 260 msgs[0].len = tpDevice->regLen; 261 msgs[0].buf = regBuf; 262 263 msgs[1].addr = tpDevice->addr; 264 msgs[1].flags = (flag == 1)? I2C_FLAG_READ: 0; /* Add the read flag. */ 265 msgs[1].len = dataLen; 266 msgs[1].buf = regData; 267 268 if (I2cTransfer(tpDevice->i2cHandle, msgs, 2) != 2) { 269 HDF_LOGE("%s: i2c read err", __func__); 270 return HDF_FAILURE; 271 } 272 return HDF_SUCCESS; 273} 274 275/* TP register read function. */ 276static inline int TpI2cReadReg(struct TpI2cDevice *tpDevice, unsigned int regAddr, 277 unsigned char *regData, unsigned int dataLen) 278{ 279 return TpI2cReadWrite(tpDevice, regAddr, regData, dataLen, 1); 280} 281 282/* TP register write function. */ 283static inline int TpI2cWriteReg(struct TpI2cDevice *tpDevice, unsigned int regAddr, 284 unsigned char *regData, unsigned int dataLen) 285{ 286 return TpI2cReadWrite(tpDevice, regAddr, regData, dataLen, 0); 287} 288 289/* Main entry of I2C */ 290static int32_t TestCaseI2c(void) 291{ 292 int32_t i; 293 int32_t ret; 294 unsigned char bufWrite[7] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xA, 0xB, 0xC }; 295 unsigned char bufRead[7] = {0}; 296 static struct TpI2cDevice tpDevice; 297 298 /* Configuration of I/O pin functions. */ 299 TpSocIoCfg(); 300 301 /* Initialize TP device information. */ 302 tpDevice.rstGpio = 3; 303 tpDevice.busId = 3; 304 tpDevice.addr = 0x38; 305 tpDevice.regLen = 1; 306 tpDevice.i2cHandle = NULL; 307 308 /* Initialize the GPIO pin. */ 309 ret = TestCaseGpioInit(&tpDevice); 310 if (ret != HDF_SUCCESS) { 311 HDF_LOGE("%s: gpio init fail!:%d", __func__, ret); 312 return ret; 313 } 314 315 /* Open an I2C controller. */ 316 tpDevice.i2cHandle = I2cOpen(tpDevice.busId); 317 if (tpDevice.i2cHandle == NULL) { 318 HDF_LOGE("%s: Open I2c:%u fail!", __func__, tpDevice.busId); 319 return -1; 320 } 321 322 /* Continuously write 7-byte data to register 0xD5 of TP-IC. */ 323 ret = TpI2cWriteReg(&tpDevice, 0xD5, bufWrite, 7); 324 if (ret != HDF_SUCCESS) { 325 HDF_LOGE("%s: tp i2c write reg fail!:%d", __func__, ret); 326 I2cClose(tpDevice.i2cHandle); 327 return -1; 328 } 329 OsalMSleep(10); 330 331 /* Continuously read 7-byte data from register 0xD5 of TP-IC. */ 332 ret = TpI2cReadReg(&tpDevice, 0xD5, bufRead, 7); 333 if (ret != HDF_SUCCESS) { 334 HDF_LOGE("%s: tp i2c read reg fail!:%d", __func__, ret); 335 I2cClose(tpDevice.i2cHandle); 336 return -1; 337 } 338 339 HDF_LOGE("%s: tp i2c write&read reg success!", __func__); 340 for (i = 0; i < 7; i++) { 341 HDF_LOGE("%s: bufRead[%d] = 0x%x", __func__, i, bufRead[i]); 342 } 343 344 /* Close the I2C controller. */ 345 I2cClose(tpDevice.i2cHandle); 346 return ret; 347} 348``` 349