1# Exception Debugging 2 3 4## Basic Concepts 5 6The OpenHarmony LiteOS-M provides exception handling and debugging measures to help locate and analyze problems. Exception handling involves a series of actions taken by the OS to respond to exceptions occurred during the OS running, for example, printing the exception type, system status, call stack information of the current function, CPU information, and call stack information of tasks. 7 8 9## Working Principles 10 11A stack frame contains information such as function parameters, variables, and return value in a function call process. When a function is called, a stack frame of the subfunction is created, and the input parameters, local variables, and registers of the function are stored into the stack. Stack frames grow towards lower addresses. The ARM32 CPU architecture is used as an example. Each stack frame stores the historical values of the program counter (PC), link register (LR), stack pointer (SP), and frame pointer (FP) registers. The LR points to the return address of a function, and the FP points to the start address of the stack frame of the function's parent function. The FP helps locate the parent function's stack frame, which further helps locate the parent function's FP. The parent function's FP helps locate the grandparent function's stack frame and FP... In this way, the call stack of the program can be traced to obtain the relationship between the functions called. 12 13When an exception occurs in the system, the system prints the register information in the stack frame of the abnormal function as well as the LRs and FPs in the stack frames of its parent function and grandfather function. The relationships between the functions help you locate the cause of the exception. 14 15The following figure illustrates the stack analysis mechanism for your reference. The actual stack information varies depending on the CPU architecture. 16 17**Figure 1** Stack analysis mechanism 18 19 20 21In the figure, the registers in different colors indicate different functions. The registers save related data when functions are called. The FP register helps track the stack to the parent function of the abnormal function and further presents the relationships between the functions called. 22 23 24## Available APIs 25 26The following table describes APIs available for the OpenHarmony LiteOS-M stack trace module. For more details about the APIs, see the API reference. 27 28**Table 1** APIs of the stack trace module 29 30| API| Description| 31| -------- | -------- | 32| LOS_BackTrace | Prints the call stack relationship at the calling point.| 33| LOS_RecordLR | Obtains the call stack relationship at the calling point when print is unavailable.| 34 35 36## Development Guidelines 37 38 39### How to Develop 40 41The typical process for enabling exception debugging is as follows: 42 431. Configure the macros related to exception handling in the **target_config.h** file. 44 45 | Configuration Item| Description| Value| 46 | -------- | -------- | -------- | 47 | LOSCFG_BACKTRACE_DEPTH | Depth of the function call stack. The default value is **15**.| 15 | 48 | LOSCFG_BACKTRACE_TYPE | Type of the stack tracing.<br>**0**: The stack tracing is disabled.<br>**1**: supports call stack analysis of the Cortex-M series hardware.<br>**2**: supports call stack analysis of the RISC-V series hardware.| Set this parameter to **1** or **2** based on the toolchain type.| 49 502. Use the error code in the example to build and run a project, and check the error information displayed on the serial port terminal. The sample code simulates error code. During actual product development, use the exception debugging mechanism to locate exceptions. 51 52 The following example demonstrates the exception output through a task. The task entry function simulates calling of multiple functions and finally calls a function that simulates an exception. The sample code is as follows: 53 54 The sample code is built and verified in **./kernel/liteos_m/testsuites/src/osTest.c**. Call **ExampleExcEntry** in **TestTaskEntry**. 55 56 ``` 57 #include <stdio.h> 58 #include "los_config.h" 59 #include "los_interrupt.h" 60 #include "los_task.h" 61 62 UINT32 g_taskExcId; 63 #define TSK_PRIOR 4 64 65 /* Simulate an exception. */ 66 UINT32 GetResultException0(UINT16 dividend){ 67 UINT32 result = *(UINT32 *)(0xffffffff); 68 printf("Enter GetResultException0. %u\r\n", result); 69 return result; 70 } 71 72 UINT32 GetResultException1(UINT16 dividend){ 73 printf("Enter GetResultException1.\r\n"); 74 return GetResultException0(dividend); 75 } 76 77 UINT32 GetResultException2(UINT16 dividend){ 78 printf("Enter GetResultException2.\r\n"); 79 return GetResultException1(dividend); 80 } 81 82 UINT32 ExampleExc(VOID) 83 { 84 UINT32 ret; 85 86 printf("Enter Example_Exc Handler.\r\n"); 87 88 /* Simulate the triggering of the exception. */ 89 ret = GetResultException2(TSK_PRIOR); 90 printf("Divided result =%u.\r\n", ret); 91 92 printf("Exit Example_Exc Handler.\r\n"); 93 return ret; 94 } 95 96 97 /* Create a task with an exception in the task entry function. */ 98 UINT32 ExampleExcEntry(VOID) 99 { 100 UINT32 ret; 101 TSK_INIT_PARAM_S initParam = { 0 }; 102 103 /* Lock task scheduling to prevent newly created tasks from being scheduled prior to this task due to higher priority. */ 104 LOS_TaskLock(); 105 106 printf("LOS_TaskLock() Success!\r\n"); 107 108 initParam.pfnTaskEntry = (TSK_ENTRY_FUNC)ExampleExc; 109 initParam.usTaskPrio = TSK_PRIOR; 110 initParam.pcName = "Example_Exc"; 111 initParam.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE; 112 /* Create a task with a higher priority. The task will not be executed because task scheduling is locked. */ 113 ret = LOS_TaskCreate(&g_taskExcId, &initParam); 114 if (ret != LOS_OK) { 115 LOS_TaskUnlock(); 116 117 printf("Example_Exc create Failed!\r\n"); 118 return LOS_NOK; 119 } 120 121 printf("Example_Exc create Success!\r\n"); 122 123 /* Unlock task scheduling. The task with the highest priority in the Ready queue will be executed. */ 124 LOS_TaskUnlock(); 125 126 return LOS_OK; 127 } 128 ``` 129 130 The error information output by the serial port terminal is as follows: 131 132 ``` 133 LOS_TaskLock() Success! 134 Example_Exc create Success! 135 Enter Example_Exc Handler. 136 Enter GetResultException2. 137 Enter GetResultException1. 138 *************Exception Information************** 139 Type = 4 140 ThrdPid = 5 141 Phase = exc in task 142 FaultAddr = 0xfffffffc 143 Current task info: 144 Task name = Example_Exc 145 Task ID = 5 146 Task SP = 0x210549bc 147 Task ST = 0x21053a00 148 Task SS = 0x1000 149 Exception reg dump: 150 PC = 0x2101c61a 151 LR = 0x2101c64d 152 SP = 0x210549a8 153 R0 = 0x4 154 R1 = 0xa 155 R2 = 0x0 156 R3 = 0xffffffff 157 R4 = 0x2103fb20 158 R5 = 0x5050505 159 R6 = 0x6060606 160 R7 = 0x210549a8 161 R8 = 0x8080808 162 R9 = 0x9090909 163 R10 = 0x10101010 164 R11 = 0x11111111 165 R12 = 0x0 166 PriMask = 0x0 167 xPSR = 0x41000000 168 ----- backtrace start ----- 169 backtrace 0 -- lr = 0x2101c64c 170 backtrace 1 -- lr = 0x2101c674 171 backtrace 2 -- lr = 0x2101c696 172 backtrace 3 -- lr = 0x2101b1ec 173 ----- backtrace end ----- 174 175 TID Priority Status StackSize WaterLine StackPoint TopOfStack EventMask SemID CPUUSE CPUUSE10s CPUUSE1s TaskEntry name 176 --- -------- -------- --------- --------- ---------- ---------- --------- ------ ------- --------- -------- ---------- ---- 177 0 0 Pend 0x1000 0xdc 0x2104730c 0x210463e8 0 0xffff 0.0 0.0 0.0 0x2101a199 Swt_Task 178 1 31 Ready 0x500 0x44 0x210478e4 0x21047428 0 0xffff 0.0 0.0 0.0 0x2101a9c9 IdleCore000 179 2 5 PendTime 0x6000 0xd4 0x2104e8f4 0x210489c8 0 0xffff 5.7 5.7 0.0 0x21016149 tcpip_thread 180 3 3 Pend 0x1000 0x488 0x2104f90c 0x2104e9e8 0x1 0xffff 8.6 8.6 0.0 0x21016db5 ShellTaskEntry 181 4 25 Ready 0x4000 0x460 0x21053964 0x2104f9f0 0 0xffff 9.0 8.9 0.0 0x2101c765 IT_TST_INI 182 5 4 Running 0x1000 0x458 0x210549bc 0x21053a00 0 0xffff 76.5 76.6 0.0 0x2101c685 Example_Exc 183 184 OS exception NVIC dump: 185 interrupt enable register, base address: 0xe000e100, size: 0x20 186 0x2001 0x0 0x0 0x0 0x0 0x0 0x0 0x0 187 interrupt pending register, base address: 0xe000e200, size: 0x20 188 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 189 interrupt active register, base address: 0xe000e300, size: 0x20 190 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 191 interrupt priority register, base address: 0xe000e400, size: 0xf0 192 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 193 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 194 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 195 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 196 interrupt exception register, base address: 0xe000ed18, size: 0xc 197 0x0 0x0 0xf0f00000 198 interrupt shcsr register, base address: 0xe000ed24, size: 0x4 199 0x70002 200 interrupt control register, base address: 0xe000ed04, size: 0x4 201 0x1000e805 202 203 memory pools check: 204 system heap memcheck over, all passed! 205 memory pool check end! 206 207 The preceding data may vary depending on the running environment. 208 ``` 209 210 211### How to Locate Exceptions 212 213The procedure for locating the exception is as follows: 214 2151. Check that the compiler optimization is disabled. Otherwise, the following problems may be optimized during the compilation process. 216 2172. Open the image disassembly file (.asm) generated. If the file is not generated, use the objdump tool to generate it. The command is as follows: 218 219 ``` 220 arm-none-eabi-objdump -S -l XXX.elf 221 ``` 222 2233. Search for the PC (pointing to the instruction being executed) in the .asm file to locate the abnormal function. 224 225 The PC address directs to the instruction being executed when the exception occurs. In the .asm file corresponding to the currently executed binary file, search for the PC value **0x2101c61a** and locate the instruction being executed by the CPU. Disassemble the code as follows: 226 227 ``` 228 2101c60c <GetResultException0>: 229 2101c60c: b580 push {r7, lr} 230 2101c60e: b084 sub sp, #16 231 2101c610: af00 add r7, sp, #0 232 2101c612: 4603 mov r3, r0 233 2101c614: 80fb strh r3, [r7, #6] 234 2101c616: f04f 33ff mov.w r3, #4294967295 ; 0xffffffff 235 2101c61a: 681b ldr r3, [r3, #0] 236 2101c61c: 60fb str r3, [r7, #12] 237 2101c61e: 68f9 ldr r1, [r7, #12] 238 2101c620: 4803 ldr r0, [pc, #12] ; (2101c630 <GetResultException0+0x24>) 239 2101c622: f001 f92b bl 2101d87c <printf> 240 2101c626: 68fb ldr r3, [r7, #12] 241 2101c628: 4618 mov r0, r3 242 2101c62a: 3710 adds r7, #16 243 2101c62c: 46bd mov sp, r7 244 2101c62e: bd80 pop {r7, pc} 245 2101c630: 21025f90 .word 0x21025f90 246 ``` 247 248 As indicated by the information displayed: 249 - When the exception occurs, the CPU is executing the **ldr r3, [r3, #0]** instruction. The value of **r3** is **0xffffffff**, which causes an invalid address. 250 - The exception occurs in the **GetResultException0** function. 251 2525. Search for the parent function of the abnormal function based on the LR value. 253 254 The code disassembly of the LR value **0x2101c64d** is as follows: 255 256 ``` 257 2101c634 <GetResultException1>: 258 2101c634: b580 push {r7, lr} 259 2101c636: b082 sub sp, #8 260 2101c638: af00 add r7, sp, #0 261 2101c63a: 4603 mov r3, r0 262 2101c63c: 80fb strh r3, [r7, #6] 263 2101c63e: 4806 ldr r0, [pc, #24] ; (2101c658 <GetResultException1+0x24>) 264 2101c640: f001 f91c bl 2101d87c <printf> 265 2101c644: 88fb ldrh r3, [r7, #6] 266 2101c646: 4618 mov r0, r3 267 2101c648: f7ff ffe0 bl 2101c60c <GetResultException0> 268 2101c64c: 4603 mov r3, r0 269 2101c64e: 4618 mov r0, r3 270 2101c650: 3708 adds r7, #8 271 2101c652: 46bd mov sp, r7 272 2101c654: bd80 pop {r7, pc} 273 2101c656: bf00 nop 274 2101c658: 21025fb0 .word 0x21025fb0 275 ``` 276 277 The previous line of LR **2101c648** is **bl 2101c60c \<GetResultException0\>**, which calls the abnormal function. The parent function is **GetResultException1**. 278 2797. Repeat step 3 to parse the LR value between **backtrace start** and **backtrace end** in the exception information to obtain the call stack relationship where the exception occurs and find the cause of the exception. 280