1 /*
2  * Copyright (c) 2024 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "ops/log_softmax_builder.h"
17 
18 #include "ops_test.h"
19 
20 using namespace testing;
21 using namespace testing::ext;
22 using namespace OHOS::NeuralNetworkRuntime::Ops;
23 
24 namespace OHOS {
25 namespace NeuralNetworkRuntime {
26 namespace UnitTest {
27 class LogSoftmaxBuilderTest : public OpsTest {
28 public:
29     void SetUp() override;
30     void TearDown() override;
31 
32 protected:
33     void SaveParamsTensor(OH_NN_DataType dataType,
34         const std::vector<int32_t> &dim,  const OH_NN_QuantParam* quantParam, OH_NN_TensorType type);
35 
36 protected:
37     LogSoftmaxBuilder m_builder;
38     std::vector<uint32_t> m_inputs {0};
39     std::vector<uint32_t> m_outputs {1};
40     std::vector<uint32_t> m_params {2};
41     std::vector<int32_t> m_dim {2, 2};
42     std::vector<int32_t> m_paramDim {};
43 };
44 
SetUp()45 void LogSoftmaxBuilderTest::SetUp() {}
46 
TearDown()47 void LogSoftmaxBuilderTest::TearDown() {}
48 
SaveParamsTensor(OH_NN_DataType dataType,const std::vector<int32_t> & dim,const OH_NN_QuantParam * quantParam,OH_NN_TensorType type)49 void LogSoftmaxBuilderTest::SaveParamsTensor(OH_NN_DataType dataType,
50     const std::vector<int32_t> &dim, const OH_NN_QuantParam* quantParam, OH_NN_TensorType type)
51 {
52     std::shared_ptr<NNTensor> axisTensor = TransToNNTensor(dataType, dim, quantParam, type);
53     int64_t* axisValue = new (std::nothrow) int64_t[1] {0};
54     EXPECT_NE(nullptr, axisValue);
55     axisTensor->SetBuffer(axisValue, sizeof(int64_t));
56     m_allTensors.emplace_back(axisTensor);
57 }
58 
59 /**
60  * @tc.name: log_softmax_build_001
61  * @tc.desc: Verify that the build function returns a successful message.
62  * @tc.type: FUNC
63  */
64 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_001, TestSize.Level1)
65 {
66     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
67     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
68     SaveParamsTensor(OH_NN_INT64, m_paramDim, nullptr, OH_NN_LOG_SOFTMAX_AXIS);
69 
70     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
71     EXPECT_EQ(OH_NN_SUCCESS, ret);
72 }
73 
74 /**
75  * @tc.name: log_softmax_build_002
76  * @tc.desc: Verify that the build function returns a failed message with true m_isBuild.
77  * @tc.type: FUNC
78  */
79 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_002, TestSize.Level1)
80 {
81     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
82     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
83     SaveParamsTensor(OH_NN_INT64, m_paramDim, nullptr, OH_NN_LOG_SOFTMAX_AXIS);
84 
85     EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors));
86     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
87     EXPECT_EQ(OH_NN_OPERATION_FORBIDDEN, ret);
88 }
89 
90 /**
91  * @tc.name: log_softmax_build_003
92  * @tc.desc: Verify that the build function returns a failed message with invalided input.
93  * @tc.type: FUNC
94  */
95 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_003, TestSize.Level1)
96 {
97     m_inputs = {0, 1};
98     m_outputs = {3};
99     m_params = {4};
100 
101     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
102     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
103     SaveParamsTensor(OH_NN_INT64, m_paramDim, nullptr, OH_NN_LOG_SOFTMAX_AXIS);
104 
105     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
106     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
107 }
108 
109 /**
110  * @tc.name: log_softmax_build_004
111  * @tc.desc: Verify that the build function returns a failed message with invalided output.
112  * @tc.type: FUNC
113  */
114 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_004, TestSize.Level1)
115 {
116     m_outputs = {1, 2};
117     m_params = {3};
118 
119     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
120     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
121     SaveParamsTensor(OH_NN_INT64, m_paramDim, nullptr, OH_NN_LOG_SOFTMAX_AXIS);
122 
123     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
124     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
125 }
126 
127 /**
128  * @tc.name: log_softmax_build_005
129  * @tc.desc: Verify that the build function returns a failed message with empty allTensor.
130  * @tc.type: FUNC
131  */
132 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_005, TestSize.Level1)
133 {
134     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputs, m_outputs, m_allTensors);
135     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
136 }
137 
138 /**
139  * @tc.name: log_softmax_build_006
140  * @tc.desc: Verify that the build function returns a failed message without output tensor.
141  * @tc.type: FUNC
142  */
143 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_006, TestSize.Level1)
144 {
145     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
146 
147     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputs, m_allTensors);
148     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
149 }
150 
151 /**
152  * @tc.name: log_softmax_build_007
153  * @tc.desc: Verify that the build function returns a failed message with invalid keep_dims's dataType.
154  * @tc.type: FUNC
155  */
156 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_007, TestSize.Level1)
157 {
158     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
159     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
160 
161     std::shared_ptr<NNTensor> axisTensor = TransToNNTensor(OH_NN_FLOAT32, m_paramDim,
162         nullptr, OH_NN_LOG_SOFTMAX_AXIS);
__anona5cf5d540102null163     float* axisValue = new (std::nothrow) float[1] {0.0f};
164     axisTensor->SetBuffer(axisValue, sizeof(float));
165     m_allTensors.emplace_back(axisTensor);
166 
167     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
168     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
169 }
170 
171 /**
172  * @tc.name: log_softmax_build_008
173  * @tc.desc: Verify that the build function returns a failed message with passing invalid keep_dims param.
174  * @tc.type: FUNC
175  */
176 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_008, TestSize.Level1)
177 {
178     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
179     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
180     SaveParamsTensor(OH_NN_INT64, m_paramDim, nullptr, OH_NN_MUL_ACTIVATION_TYPE);
181 
182     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
183     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
184 }
185 
186 /**
187  * @tc.name: log_softmax_build_009
188  * @tc.desc: Verify that the build function returns a failed message without set buffer for keep_dims.
189  * @tc.type: FUNC
190  */
191 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_build_009, TestSize.Level1)
192 {
193     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
194     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
195 
196     std::shared_ptr<NNTensor> axisTensor = TransToNNTensor(OH_NN_INT64, m_paramDim,
197         nullptr, OH_NN_LOG_SOFTMAX_AXIS);
198     m_allTensors.emplace_back(axisTensor);
199 
200     OH_NN_ReturnCode ret = m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors);
201     EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
202 }
203 
204 /**
205  * @tc.name: log_softmax_getprimitive_001
206  * @tc.desc: Verify that the getPrimitive function returns a successful message
207  * @tc.type: FUNC
208  */
209 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_getprimitive_001, TestSize.Level1)
210 {
211     SaveInputTensor(m_inputs, OH_NN_INT32, m_dim, nullptr);
212     SaveOutputTensor(m_outputs, OH_NN_INT32, m_dim, nullptr);
213     SaveParamsTensor(OH_NN_INT64, m_paramDim, nullptr, OH_NN_LOG_SOFTMAX_AXIS);
214 
215     int64_t axisValue = 0;
216     EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_params, m_inputsIndex, m_outputsIndex, m_allTensors));
217     LiteGraphPrimitvePtr primitive = m_builder.GetPrimitive();
218     LiteGraphPrimitvePtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive);
219     EXPECT_NE(expectPrimitive, primitive);
220 
221     auto returnValue = mindspore::lite::MindIR_LogSoftmax_GetAxis(primitive.get());
222     EXPECT_EQ(returnValue, axisValue);
223 }
224 
225 /**
226  * @tc.name: log_softmax_getprimitive_002
227  * @tc.desc: Verify that the getPrimitive function returns a failed message without build.
228  * @tc.type: FUNC
229  */
230 HWTEST_F(LogSoftmaxBuilderTest, log_softmax_getprimitive_002, TestSize.Level1)
231 {
232     LiteGraphPrimitvePtr primitive = m_builder.GetPrimitive();
233     LiteGraphPrimitvePtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive);
234     EXPECT_EQ(expectPrimitive, primitive);
235 }
236 }
237 }
238 }