1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "ops/softmax_builder.h"
17
18 #include <gtest/gtest.h>
19 #include "nn_tensor.h"
20 #include "ops_test.h"
21
22 using namespace testing;
23 using namespace testing::ext;
24 using namespace OHOS::NeuralNetworkRuntime::Ops;
25
26 namespace OHOS {
27 namespace NeuralNetworkRuntime {
28 namespace UnitTest {
29 class SoftmaxBuilderTest : public OpsTest {
30 protected:
31 void InitTensor(const std::vector<uint32_t>& inputsIndex,
32 const std::vector<uint32_t>& outputsIndex) override;
33 void SaveAxisTensor(OH_NN_DataType dataType, const std::vector<int32_t> &dim,
34 const OH_NN_QuantParam* quantParam, OH_NN_TensorType type);
35
36 protected:
37 SoftmaxBuilder m_builder;
38 std::vector<int64_t> m_expectAxisValue;
39 };
40
SaveAxisTensor(OH_NN_DataType dataType,const std::vector<int32_t> & dim,const OH_NN_QuantParam * quantParam,OH_NN_TensorType type)41 void SoftmaxBuilderTest::SaveAxisTensor(OH_NN_DataType dataType, const std::vector<int32_t> &dim,
42 const OH_NN_QuantParam* quantParam, OH_NN_TensorType type)
43 {
44 std::shared_ptr<NNTensor> axisTensor = TransToNNTensor(dataType, dim, quantParam, type);
45 int64_t* axisValue = new (std::nothrow) int64_t[1]{1};
46 EXPECT_NE(nullptr, axisValue);
47 axisTensor->SetBuffer(axisValue, sizeof(int64_t));
48 m_allTensors.emplace_back(axisTensor);
49 m_expectAxisValue.emplace_back(*axisValue);
50 }
51
InitTensor(const std::vector<uint32_t> & inputsIndex,const std::vector<uint32_t> & outputsIndex)52 void SoftmaxBuilderTest::InitTensor(const std::vector<uint32_t>& inputsIndex,
53 const std::vector<uint32_t>& outputsIndex)
54 {
55 std::vector<uint32_t> paramsIndex = { 2 };
56 std::vector<int32_t> inputDim = {1, 5, 1, 1};
57 std::vector<int32_t> OutputDim = {1, 5, 1, 1};
58
59 m_paramsIndex = paramsIndex;
60 SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr);
61 SaveOutputTensor(outputsIndex, OH_NN_FLOAT32, OutputDim, nullptr);
62 }
63
64 /**
65 * @tc.name: softmax_build_001
66 * @tc.desc: Provide normal input, output, and parameters to verify the normal behavior of the Build function
67 * @tc.type: FUNC
68 */
69 HWTEST_F(SoftmaxBuilderTest, softmax_build_001, TestSize.Level0)
70 {
71 std::vector<uint32_t> inputsIndex = { 0 };
72 std::vector<uint32_t> outputsIndex = { 1 };
73 std::vector<int32_t> paramDim = {};
74
75 InitTensor(inputsIndex, outputsIndex);
76 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
77
78 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
79 EXPECT_EQ(OH_NN_SUCCESS, ret);
80 }
81
82 /**
83 * @tc.name: softmax_build_002
84 * @tc.desc: Call Build func twice to verify the abnormal behavior of the Build function
85 * @tc.type: FUNC
86 */
87 HWTEST_F(SoftmaxBuilderTest, softmax_build_002, TestSize.Level0)
88 {
89 std::vector<uint32_t> inputsIndex = { 0 };
90 std::vector<uint32_t> outputsIndex = { 1 };
91 std::vector<int32_t> paramDim = {};
92
93 InitTensor(inputsIndex, outputsIndex);
94 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
95
96 EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors));
97 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
98 EXPECT_EQ(OH_NN_OPERATION_FORBIDDEN, ret);
99 }
100
101 /**
102 * @tc.name: softmax_build_003
103 * @tc.desc: Provide two more than normal input to verify the abnormal behavior of the Build function
104 * @tc.type: FUNC
105 */
106 HWTEST_F(SoftmaxBuilderTest, softmax_build_003, TestSize.Level0)
107 {
108 std::vector<uint32_t> inputsIndex = { 0, 1, 2 };
109 std::vector<uint32_t> outputsIndex = { 3 };
110 std::vector<int32_t> paramDim = {};
111
112 InitTensor(inputsIndex, outputsIndex);
113 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
114
115 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
116 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
117 }
118
119 /**
120 * @tc.name: softmax_build_004
121 * @tc.desc: Provide one more than normal output to verify the abnormal behavior of the Build function
122 * @tc.type: FUNC
123 */
124 HWTEST_F(SoftmaxBuilderTest, softmax_build_004, TestSize.Level0)
125 {
126 std::vector<uint32_t> inputsIndex = { 0 };
127 std::vector<uint32_t> outputsIndex = { 1, 2 };
128 std::vector<int32_t> paramDim = {};
129
130 InitTensor(inputsIndex, outputsIndex);
131 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
132
133 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
134 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
135 }
136
137 /**
138 * @tc.name: softmax_build_005
139 * @tc.desc: Provide empty input, output, and parameters to verify the normal behavior of the Build function
140 * @tc.type: FUNC
141 */
142 HWTEST_F(SoftmaxBuilderTest, softmax_build_005, TestSize.Level0)
143 {
144 std::vector<uint32_t> inputsIndex = { 0, 1 };
145 std::vector<uint32_t> outputsIndex = { 2 };
146 std::vector<uint32_t> paramsIndex = { 3 };
147 OH_NN_ReturnCode ret = m_builder.Build(paramsIndex, inputsIndex, outputsIndex, m_allTensors);
148 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
149 }
150
151 /**
152 * @tc.name: softmax_build_006
153 * @tc.desc: Provide empty output to verify the normal behavior of the Build function
154 * @tc.type: FUNC
155 */
156 HWTEST_F(SoftmaxBuilderTest, softmax_build_006, TestSize.Level0)
157 {
158 std::vector<uint32_t> inputsIndex = { 0 };
159 std::vector<uint32_t> outputsIndex = {};
160 std::vector<int32_t> paramDim = {};
161
162 InitTensor(inputsIndex, outputsIndex);
163 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
164
165 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
166 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
167 }
168
169 /**
170 * @tc.name: softmax_build_007
171 * @tc.desc: Provide no param error to verify the abnormal behavior of the Build function
172 * @tc.type: FUNC
173 */
174 HWTEST_F(SoftmaxBuilderTest, softmax_build_007, TestSize.Level0)
175 {
176 std::vector<uint32_t> inputsIndex = { 0, 1 };
177 std::vector<uint32_t> outputsIndex = { 2 };
178 std::vector<uint32_t> paramsIndex = {};
179 std::vector<int32_t> inputDim = {1, 5, 1, 1};
180 std::vector<int32_t> OutputDim = {1, 5, 1, 1};
181
182 m_paramsIndex = paramsIndex;
183 SaveInputTensor(inputsIndex, OH_NN_FLOAT32, inputDim, nullptr);
184 SaveOutputTensor(outputsIndex, OH_NN_FLOAT32, OutputDim, nullptr);
185
186 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
187 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
188 }
189
190 /**
191 * @tc.name: softmax_build_008
192 * @tc.desc: Provide param type error to verify the abnormal behavior of the Build function
193 * @tc.type: FUNC
194 */
195 HWTEST_F(SoftmaxBuilderTest, softmax_build_008, TestSize.Level0)
196 {
197 std::vector<uint32_t> inputsIndex = { 0 };
198 std::vector<uint32_t> outputsIndex = { 1 };
199 std::vector<int32_t> paramDim = {};
200
201 InitTensor(inputsIndex, outputsIndex);
202 SaveAxisTensor(OH_NN_INT32, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
203
204 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
205 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
206 }
207
208 /**
209 * @tc.name: softmax_build_009
210 * @tc.desc: Provide param dimension error to verify the abnormal behavior of the Build function
211 * @tc.type: FUNC
212 */
213 HWTEST_F(SoftmaxBuilderTest, softmax_build_009, TestSize.Level0)
214 {
215 std::vector<uint32_t> inputsIndex = { 0 };
216 std::vector<uint32_t> outputsIndex = { 1 };
217 std::vector<int32_t> paramDim = {1, 5, 1, 1};
218
219 InitTensor(inputsIndex, outputsIndex);
220 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
221
222 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
223 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
224 }
225
226 /**
227 * @tc.name: softmax_build_010
228 * @tc.desc: Provide parameter buffer is nullptr to verify the abnormal behavior of the Build function
229 * @tc.type: FUNC
230 */
231 HWTEST_F(SoftmaxBuilderTest, softmax_build_010, TestSize.Level0)
232 {
233 std::vector<uint32_t> inputsIndex = { 0 };
234 std::vector<uint32_t> outputsIndex = { 1 };
235 std::vector<int32_t> paramDim = {};
236
237 InitTensor(inputsIndex, outputsIndex);
238 std::shared_ptr<NNTensor> axisTensor = TransToNNTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
239 axisTensor->SetBuffer(nullptr, 0);
240 m_allTensors.emplace_back(axisTensor);
241
242 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
243 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
244 }
245
246 /**
247 * @tc.name: softmax_build_011
248 * @tc.desc: Provide invalid parameter type to verify the abnormal behavior of the Build function
249 * @tc.type: FUNC
250 */
251 HWTEST_F(SoftmaxBuilderTest, softmax_build_011, TestSize.Level0)
252 {
253 std::vector<uint32_t> inputsIndex = { 0 };
254 std::vector<uint32_t> outputsIndex = { 1 };
255 std::vector<int32_t> paramDim = {};
256
257 InitTensor(inputsIndex, outputsIndex);
258 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SCALE_AXIS);
259
260 OH_NN_ReturnCode ret = m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors);
261 EXPECT_EQ(OH_NN_INVALID_PARAMETER, ret);
262 }
263
264 /**
265 * @tc.name: softmax_getprimitive_001
266 * @tc.desc: Verify the GetPrimitive function return nullptr
267 * @tc.type: FUNC
268 */
269 HWTEST_F(SoftmaxBuilderTest, softmax_getprimitive_001, TestSize.Level0)
270 {
271 LiteGraphTensorPtr primitive = m_builder.GetPrimitive();
272 LiteGraphTensorPtr expectPrimitive(nullptr, DestroyLiteGraphPrimitive);
273 EXPECT_EQ(primitive, expectPrimitive);
274 }
275
276 /**
277 * @tc.name: softmax_getprimitive_002
278 * @tc.desc: Verify the normal params return behavior of the getprimitive function
279 * @tc.type: FUNC
280 */
281 HWTEST_F(SoftmaxBuilderTest, softmax_getprimitive_002, TestSize.Level0)
282 {
283 std::vector<uint32_t> inputsIndex = { 0 };
284 std::vector<uint32_t> outputsIndex = { 1 };
285 std::vector<int32_t> paramDim = {};
286
287 InitTensor(inputsIndex, outputsIndex);
288 SaveAxisTensor(OH_NN_INT64, paramDim, nullptr, OH_NN_SOFTMAX_AXIS);
289
290 EXPECT_EQ(OH_NN_SUCCESS, m_builder.Build(m_paramsIndex, m_inputsIndex, m_outputsIndex, m_allTensors));
291 LiteGraphTensorPtr primitive = m_builder.GetPrimitive();
292 LiteGraphTensorPtr nullPrimitive(nullptr, DestroyLiteGraphPrimitive);
293 EXPECT_NE(nullPrimitive, primitive);
294
295 auto returnValue = mindspore::lite::MindIR_Softmax_GetAxis(primitive.get());
296 auto returnValueSize = returnValue.size();
297 for (size_t i = 0; i < returnValueSize; ++i) {
298 EXPECT_EQ(returnValue[i], m_expectAxisValue[i]);
299 }
300 }
301 } // namespace UnitTest
302 } // namespace NeuralNetworkRuntime
303 } // namespace OHOS
304