1 /*
2 * Copyright (C) 2021-2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "address_utils.h"
17 #include <arpa/inet.h>
18 #include <netinet/in.h>
19 #include <securec.h>
20 #include <string.h>
21 #include <sys/socket.h>
22 #include "dhcp_s_define.h"
23
24 #define IPV4_ADDRESS_BITS 32
25 #define BIT_MAX_VALUE 2
26 #define IP_ADDRESS_LENGTH 4
27 #define MAD_ADDR_BUF_SIZE 50
28 #define MAC_STRING_SIZE 17
29 #define IP_ADDRESS_STRING_LENGTH 64
30
31 enum MacAddressIndex {
32 MAI_ZERO = 0,
33 MAI_ONE = 1,
34 MAI_TWO = 2,
35 MAI_THREE = 3,
36 MAI_FOUR = 4,
37 MAI_FIVE = 5
38 };
39
NetworkAddress(uint32_t ip,uint32_t netmask)40 uint32_t NetworkAddress(uint32_t ip, uint32_t netmask)
41 {
42 return (ip & netmask);
43 }
44
FirstIpAddress(uint32_t ip,uint32_t netmask)45 uint32_t FirstIpAddress(uint32_t ip, uint32_t netmask)
46 {
47 uint32_t network = NetworkAddress(ip, netmask);
48 uint32_t firstIp = htonl(network) + 1;
49 return htonl(firstIp);
50 }
51
NextIpAddress(uint32_t currIp,uint32_t netmask,uint32_t offset)52 uint32_t NextIpAddress(uint32_t currIp, uint32_t netmask, uint32_t offset)
53 {
54 uint32_t network = NetworkAddress(currIp, netmask);
55 uint32_t broadcast = BroadCastAddress(currIp, netmask);
56 uint32_t lastIp = LastIpAddress(currIp, netmask);
57 uint32_t hostTotal = HostTotal(netmask);
58 uint32_t next = offset;
59 if (currIp == lastIp || currIp == broadcast) {
60 return FirstIpAddress(currIp, netmask);
61 }
62 if (next > hostTotal && hostTotal > 0) {
63 next = next % hostTotal;
64 }
65 uint32_t nextIp = htonl(currIp) + next + 1;
66 if (next && nextIp > htonl(lastIp)) {
67 nextIp = htonl(network) + (nextIp - htonl(lastIp));
68 }
69 return htonl(nextIp);
70 }
71
FirstNetIpAddress(uint32_t network)72 uint32_t FirstNetIpAddress(uint32_t network)
73 {
74 uint32_t firstIp = htonl(network) + 1;
75 return htonl(firstIp);
76 }
77
LastIpAddress(uint32_t ip,uint32_t netmask)78 uint32_t LastIpAddress(uint32_t ip, uint32_t netmask)
79 {
80 uint32_t network = NetworkAddress(ip, netmask);
81 uint32_t lastIp = htonl(network) + HostTotal(netmask);
82 if (lastIp) {
83 lastIp -= 1;
84 }
85 return htonl(lastIp);
86 }
87
IpInNetwork(uint32_t ip,uint32_t network,uint32_t netmask)88 int IpInNetwork(uint32_t ip, uint32_t network, uint32_t netmask)
89 {
90 uint32_t firstNet = NetworkAddress(ip, netmask);
91 uint32_t secondNet = NetworkAddress(network, netmask);
92
93 uint32_t beginIp = FirstIpAddress(network, netmask);
94 uint32_t broadCast = BroadCastAddress(network, netmask);
95
96 if (firstNet == secondNet) {
97 if (ip >= beginIp && ip <= broadCast) {
98 return DHCP_TRUE;
99 }
100 }
101 return DHCP_FALSE;
102 }
103
IpInRange(uint32_t ip,uint32_t beginIp,uint32_t endIp,uint32_t netmask)104 int IpInRange(uint32_t ip, uint32_t beginIp, uint32_t endIp, uint32_t netmask)
105 {
106 uint32_t network = NetworkAddress(ip, netmask);
107 uint32_t firstNet = NetworkAddress(beginIp, netmask);
108 uint32_t secondNet = NetworkAddress(endIp, netmask);
109 if (network != firstNet || firstNet != secondNet) {
110 return 0;
111 }
112 if (ip >= beginIp && ip <= endIp) {
113 return DHCP_TRUE;
114 }
115 return DHCP_FALSE;
116 }
117
BroadCastAddress(uint32_t ip,uint32_t netmask)118 uint32_t BroadCastAddress(uint32_t ip, uint32_t netmask)
119 {
120 uint32_t network = NetworkAddress(ip, netmask);
121 uint32_t broadcast = htonl(network) + HostTotal(netmask);
122 return htonl(broadcast);
123 }
124
NetworkBits(uint32_t netmask)125 int NetworkBits(uint32_t netmask)
126 {
127 int bits = 0;
128 uint32_t net = htonl(netmask);
129 for (size_t i = 0; i < IPV4_ADDRESS_BITS; i++) {
130 if (net == 0) {
131 break;
132 }
133 bits++;
134 net <<= 1;
135 }
136 return bits;
137 }
138
HostBits(uint32_t netmask)139 uint32_t HostBits(uint32_t netmask)
140 {
141 uint32_t bits = 0;
142 uint32_t net = htonl(netmask);
143 for (int i = IPV4_ADDRESS_BITS; i > 0; --i) {
144 bits++;
145 net >>= 1;
146 if ((net & 1) != 0) {
147 break;
148 }
149 }
150 return bits;
151 }
152
HostTotal(uint32_t netmask)153 uint32_t HostTotal(uint32_t netmask)
154 {
155 uint32_t hostBits = HostBits(netmask);
156 uint32_t total = 1;
157 for (size_t i = 0; i < (size_t)hostBits; i++) {
158 total *= BIT_MAX_VALUE;
159 }
160 total--;
161 return total;
162 }
163
ParseIpAddr(const char * strIp)164 uint32_t ParseIpAddr(const char *strIp)
165 {
166 struct in_addr inAddr;
167 uint32_t ip = 0;
168 int ret = inet_aton(strIp, &inAddr);
169 if (ret != 0) {
170 if (memcpy_s(&ip, sizeof(uint32_t), &inAddr, sizeof(struct in_addr)) != EOK) {
171 return 0;
172 }
173 return ip;
174 }
175 return 0;
176 }
177
ParseIpHtonl(const char * strIp)178 uint32_t ParseIpHtonl(const char *strIp)
179 {
180 uint32_t ip = ParseIpAddr(strIp);
181 return htonl(ip);
182 }
183
ParseIp(const uint8_t * ipAddr)184 uint32_t ParseIp(const uint8_t *ipAddr)
185 {
186 uint32_t ip = 0;
187 if (memcpy_s(&ip, IP_ADDRESS_LENGTH, ipAddr, IP_ADDRESS_LENGTH) != EOK) {
188 return 0;
189 }
190 return ip;
191 }
192
ParseStrIp(uint32_t ipAddr)193 const char *ParseStrIp(uint32_t ipAddr)
194 {
195 static char strIpAddr[IP_ADDRESS_STRING_LENGTH] = {0};
196 struct in_addr inAddr;
197 if (memcpy_s(&inAddr, sizeof(inAddr), &ipAddr, sizeof(ipAddr)) != EOK ||
198 memset_s(strIpAddr, sizeof(strIpAddr), 0, sizeof(strIpAddr)) != EOK) {
199 return "0.0.0.0";
200 }
201 if (inet_ntop(AF_INET, &inAddr, strIpAddr, sizeof(strIpAddr)) == NULL) {
202 return "0.0.0.0";
203 }
204 return strIpAddr;
205 }
206
ParseStrMac(const uint8_t * macAddr,size_t addrSize)207 char *ParseStrMac(const uint8_t *macAddr, size_t addrSize)
208 {
209 static char strMacAddr[MAD_ADDR_BUF_SIZE] = {0};
210 if (!macAddr || addrSize < MAC_ADDR_LENGTH) {
211 return 0;
212 }
213 if (memset_s(strMacAddr, MAD_ADDR_BUF_SIZE, '\0', sizeof(strMacAddr)) != EOK ||
214 sprintf_s(strMacAddr, MAD_ADDR_BUF_SIZE, "%02x:%02x:%02x:%02x:%02x:%02x", macAddr[MAI_ZERO],
215 macAddr[MAI_ONE], macAddr[MAI_TWO], macAddr[MAI_THREE], macAddr[MAI_FOUR], macAddr[MAI_FIVE]) < 0) {
216 return 0;
217 }
218 return strMacAddr;
219 }
220
IsValidHexCharAndConvert(char c)221 static int8_t IsValidHexCharAndConvert(char c)
222 {
223 if (c >= '0' && c <= '9') {
224 return c - '0';
225 }
226 if (c >= 'a' && c <= 'f') {
227 return c - 'a' + ('9' - '0' + 1);
228 }
229 if (c >= 'A' && c <= 'F') {
230 return c - 'A' + ('9' - '0' + 1);
231 }
232 return -1;
233 }
234
ParseMacAddress(const char * strMac,uint8_t macAddr[DHCP_HWADDR_LENGTH])235 int ParseMacAddress(const char *strMac, uint8_t macAddr[DHCP_HWADDR_LENGTH])
236 {
237 if (strMac == NULL || strlen(strMac) != MAC_STRING_SIZE) {
238 return DHCP_FALSE;
239 }
240 size_t len = strlen(strMac);
241 const int shiftNum = 4;
242 const int macSpaceNum = 3;
243 unsigned char tmp = 0;
244 for (size_t i = 0, j = 0; i < len; ++i) {
245 if (j == 0 || j == 1) {
246 int8_t v = IsValidHexCharAndConvert(strMac[i]);
247 if (v < 0) {
248 return 0;
249 }
250 tmp <<= shiftNum;
251 tmp |= static_cast<unsigned char>(v);
252 ++j;
253 } else {
254 if (strMac[i] != ':') {
255 return 0;
256 }
257 macAddr[i / macSpaceNum] = tmp;
258 j = 0;
259 tmp = 0;
260 }
261 }
262 macAddr[MAC_STRING_SIZE / macSpaceNum] = tmp;
263 return DHCP_TRUE;
264 }
265
HostToNetwork(uint32_t host)266 uint32_t HostToNetwork(uint32_t host)
267 {
268 return htonl(host);
269 }
270
NetworkToHost(uint32_t network)271 uint32_t NetworkToHost(uint32_t network)
272 {
273 return ntohl(network);
274 }
275
ParseLogMac(uint8_t macAddr[DHCP_HWADDR_LENGTH])276 char *ParseLogMac(uint8_t macAddr[DHCP_HWADDR_LENGTH])
277 {
278 static char strLogMacAddr[MAD_ADDR_BUF_SIZE] = {0};
279 if (!macAddr) {
280 return 0;
281 }
282 if (memset_s(strLogMacAddr, MAD_ADDR_BUF_SIZE, '\0', MAD_ADDR_BUF_SIZE) != EOK ||
283 sprintf_s(strLogMacAddr, MAD_ADDR_BUF_SIZE, "??:%02x:??:??:%02x:%02x", macAddr[NUM_ONE], macAddr[MAI_FOUR],
284 macAddr[MAI_FIVE]) < 0) {
285 return 0;
286 }
287 return strLogMacAddr;
288 }
289
IsEmptyHWAddr(const uint8_t macAddr[DHCP_HWADDR_LENGTH])290 int IsEmptyHWAddr(const uint8_t macAddr[DHCP_HWADDR_LENGTH])
291 {
292 for (int i = 0; i < MAC_ADDR_LENGTH; i++) {
293 if (macAddr[i] != 0) {
294 return DHCP_FALSE;
295 }
296 }
297 return DHCP_TRUE;
298 }
299
AddrEquels(const uint8_t firstAddr[DHCP_HWADDR_LENGTH],uint8_t secondAddr[DHCP_HWADDR_LENGTH],int addrLength)300 int AddrEquels(const uint8_t firstAddr[DHCP_HWADDR_LENGTH], uint8_t secondAddr[DHCP_HWADDR_LENGTH], int addrLength)
301 {
302 int len = addrLength;
303 if (len > DHCP_HWADDR_LENGTH) {
304 len = DHCP_HWADDR_LENGTH;
305 }
306 for (int i = 0; i < len; i++) {
307 if ((firstAddr[i] != secondAddr[i])) {
308 return DHCP_FALSE;
309 }
310 }
311 return DHCP_TRUE;
312 }
313
ParseHostName(const char * strHostName,char hostName[DHCP_BOOT_FILE_LENGTH])314 int ParseHostName(const char *strHostName, char hostName[DHCP_BOOT_FILE_LENGTH])
315 {
316 if (strHostName == nullptr || hostName == nullptr) {
317 return DHCP_FALSE;
318 }
319 if (memcpy_s(hostName, DHCP_BOOT_FILE_LENGTH, strHostName, strlen(strHostName)) != EOK) {
320 return DHCP_FALSE;
321 }
322 return DHCP_TRUE;
323 }
324