1 /*
2 * Copyright (c) 2024 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #ifndef CORE__GLTF__GLTF2_DATA_STRUCTURES_H
17 #define CORE__GLTF__GLTF2_DATA_STRUCTURES_H
18
19 #include <cstdint>
20
21 #include <base/containers/string.h>
22 #include <base/containers/unique_ptr.h>
23 #include <base/containers/vector.h>
24 #include <base/math/matrix.h>
25 #include <base/math/quaternion.h>
26 #include <base/math/vector.h>
27 #include <core/namespace.h>
28
29 #define GLTF2_EXTENSION_IGFX_COMPRESSED
30 #define GLTF2_EXTENSION_KHR_LIGHTS
31 #define GLTF2_EXTENSION_KHR_LIGHTS_PBR
32 #define GLTF2_EXTENSION_KHR_MATERIALS_CLEARCOAT
33 #define GLTF2_EXTENSION_KHR_MATERIALS_EMISSIVE_STRENGTH
34 #define GLTF2_EXTENSION_KHR_MATERIALS_IOR
35 #define GLTF2_EXTENSION_KHR_MATERIALS_PBRSPECULARGLOSSINESS
36 #define GLTF2_EXTENSION_KHR_MATERIALS_SHEEN
37 #define GLTF2_EXTENSION_KHR_MATERIALS_SPECULAR
38 #define GLTF2_EXTENSION_KHR_MATERIALS_TRANSMISSION
39 #define GLTF2_EXTENSION_KHR_MATERIALS_UNLIT
40 #define GLTF2_EXTENSION_KHR_MESH_QUANTIZATION
41 #define GLTF2_EXTENSION_KHR_TEXTURE_BASISU
42 #define GLTF2_EXTENSION_KHR_TEXTURE_TRANSFORM
43 #define GLTF2_EXTENSION_EXT_LIGHTS_IMAGE_BASED
44 #define GLTF2_EXTRAS_CLEAR_COAT_MATERIAL
45 #define GLTF2_EXTENSION_HW_XR_EXT
46 #define GLTF2_EXTRAS_RSDZ
47
48 #ifdef OPAQUE
49 // hrpm win32 gdi..
50 #undef OPAQUE
51 #endif
52
CORE3D_BEGIN_NAMESPACE()53 CORE3D_BEGIN_NAMESPACE()
54 namespace GLTF2 {
55 constexpr const uint32_t GLTF_INVALID_INDEX = 0xFFFFFFFF;
56 constexpr const uint32_t GLTF_MAGIC = 0x46546C67; // ASCII string "glTF"
57
58 struct Skin;
59 struct AttributeBase;
60 struct Node;
61
62 // extensions
63 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
64 struct KHRLight;
65 #endif
66
67 enum class BufferTarget : int {
68 NOT_DEFINED = 0,
69 ARRAY_BUFFER = 34962,
70 ELEMENT_ARRAY_BUFFER = 34963,
71 };
72
73 enum class ChunkType : int {
74 JSON = 0x4E4F534A, // JSON
75 BIN = 0x004E4942, // BIN Binary buffer
76 };
77
78 enum class AttributeType : int {
79 NORMAL = 0,
80 POSITION = 1,
81 TANGENT = 2,
82 TEXCOORD = 3,
83 COLOR = 4,
84 JOINTS = 5,
85 WEIGHTS = 6,
86 INVALID = 0xff
87 };
88
89 enum class RenderMode : int {
90 // WebGL enums
91 BEGIN = 0,
92 POINTS = 0,
93 LINES = 1,
94 LINE_LOOP = 2,
95 LINE_STRIP = 3,
96 TRIANGLES = 4,
97 TRIANGLE_STRIP = 5,
98 TRIANGLE_FAN = 6,
99 COUNT = 7,
100 INVALID = 0xff
101 };
102
103 enum class ComponentType : int {
104 INVALID,
105 BYTE = 5120,
106 UNSIGNED_BYTE = 5121,
107 SHORT = 5122,
108 UNSIGNED_SHORT = 5123,
109 INT = 5124, // not used in GLTF2
110 UNSIGNED_INT = 5125,
111 FLOAT = 5126,
112 };
113
114 enum class DataType : int { INVALID, SCALAR, VEC2, VEC3, VEC4, MAT2, MAT3, MAT4 };
115
116 enum class AlphaMode : int {
117 // The alpha value is ignored and the rendered output is fully opaque.
118 OPAQUE,
119 // The rendered output is either fully opaque or fully transparent
120 // depending on the alpha value and the specified alpha cutoff value.
121 MASK,
122 // The alpha value is used to composite the source and destination areas.
123 // The rendered output is combined with the background using the normal
124 // painting operation (i.e. the Porter and Duff over operator).
125 BLEND,
126 };
127
128 enum class BlendMode : int {
129 TRANSPARENT_ALPHA, // transparentAlpha
130 TRANSPARENT_COLOR, // transparentColor
131 ADD, // add
132 MODULATE, // modulate
133 REPLACE, // replace
134 NONE // use alphaMode if blendMode not mentioned, (default)
135 };
136
137 enum class MimeType : int { INVALID, JPEG, PNG, KTX, DDS, KTX2 };
138
139 enum class CameraType : int { INVALID, PERSPECTIVE, ORTHOGRAPHIC };
140
141 enum class LightType : int { INVALID, DIRECTIONAL, POINT, SPOT, AMBIENT };
142
143 enum class FilterMode : int {
144 NEAREST = 9728,
145 LINEAR = 9729,
146 NEAREST_MIPMAP_NEAREST = 9984,
147 LINEAR_MIPMAP_NEAREST = 9985,
148 NEAREST_MIPMAP_LINEAR = 9986,
149 LINEAR_MIPMAP_LINEAR = 9987
150 };
151
152 enum class WrapMode : int { CLAMP_TO_EDGE = 33071, MIRRORED_REPEAT = 33648, REPEAT = 10497 };
153
154 enum class AnimationInterpolation : int { INVALID, STEP, LINEAR, SPLINE };
155
156 enum class AnimationPath : int {
157 INVALID,
158 TRANSLATION,
159 ROTATION,
160 SCALE,
161 WEIGHTS,
162 // RDSZ specific
163 VISIBLE,
164 OPACITY,
165 };
166
167 struct GLBHeader {
168 uint32_t magic = 0;
169 uint32_t version = 0;
170 uint32_t length = 0;
171 };
172
173 struct GLBChunk {
174 uint32_t chunkLength = 0;
175 uint32_t chunkType = 0;
176 };
177
178 struct Buffer {
179 // [required field]
180 size_t byteLength = 0;
181
182 // either empty (indicating GLB buffer)
183 // or path to file
184 // or data:[<mediatype>][;base64],<data> as defined
185 // in https://tools.ietf.org/html/rfc2397
186 BASE_NS::string uri;
187
188 // Data for this buffer.
189 BASE_NS::vector<uint8_t> data;
190 };
191
192 struct BufferView {
193 // [required field], with the index to the buffer.
194 // Note: referenced buffers needs to be loaded first.
195 Buffer* buffer { nullptr };
196
197 // required, "minimum": 1
198 size_t byteLength = 0;
199
200 // "minimum": 0, "default": 0
201 size_t byteOffset = 0;
202
203 // "minimum": 4, "maximum": 252, "multipleOf": 4
204 // The stride, in bytes, between vertex attributes.
205 // When this is not defined (0), data is tightly packed.
206 // When two or more accessors use the same bufferView, this field must be defined.
207 size_t byteStride = 0;
208
209 BufferTarget target = BufferTarget::NOT_DEFINED; // ARRAY_BUFFER, ELEMENT_ARRAY_BUFFER
210
211 // Data for this buffer view.
212 const uint8_t* data { nullptr };
213 };
214
215 struct SparseIndices {
216 // The bufferView with sparse indices.
217 // Referenced bufferView can't have ARRAY_BUFFER or
218 // ELEMENT_ARRAY_BUFFER target.
219 BufferView* bufferView { nullptr };
220
221 // The offset relative to the start of the bufferView in bytes.
222 // Must be aligned.
223 // "minimum": 0,
224 // "default": 0
225 uint32_t byteOffset = 0;
226
227 // The indices data type.
228 // Valid values correspond to WebGL enums:
229 // `5121` means UNSIGNED_BYTE, `5123` means UNSIGNED_SHORT
230 // `5125` means UNSIGNED_INT.
231 ComponentType componentType = ComponentType::UNSIGNED_INT;
232 };
233
234 struct SparseValues {
235 // The bufferView with sparse values.
236 // Referenced bufferView can't have ARRAY_BUFFER or
237 // ELEMENT_ARRAY_BUFFER target."
238 BufferView* bufferView { nullptr };
239
240 // The offset relative to the start of the bufferView in bytes.
241 // Must be aligned.
242 uint32_t byteOffset = 0;
243 };
244
245 struct Sparse {
246 // The number of attributes encoded in this sparse accessor.
247 uint32_t count = 0;
248
249 // Index array of size `count` that points to those accessor attributes
250 // that deviate from their initialization value. Indices must strictly increase.
251 SparseIndices indices;
252
253 // Array of size `count` times number of components,
254 // storing the displaced accessor attributes pointed by `indices`.
255 // Substituted values must have the same `componentType` and
256 // number of components as the base accessor."
257 SparseValues values;
258 };
259
260 struct Accessor {
261 // The bufferView.
262 // When not defined, accessor must be initialized with zeros;
263 // `sparse` property or extensions could override zeros with actual values.
264 BufferView* bufferView { nullptr };
265
266 // [required] The datatype of components in the attribute.
267 // All valid values correspond to WebGL enums.
268 // The corresponding typed arrays are
269 // `Int8Array`, `Uint8Array`, `Int16Array`, `Uint16Array`,
270 // `Uint32Array`, and `Float32Array`, respectively.
271 // 5125 (UNSIGNED_INT) is only allowed when the accessor contains indices,
272 // i.e., the accessor is only referenced by `primitive.indices`.
273 ComponentType componentType = ComponentType::UNSIGNED_INT;
274
275 // [required] The number of attributes referenced by this accessor,
276 // not to be confused with the number of bytes or number of components.
277 // "minimum": 1
278 uint32_t count = 0;
279
280 // [required] Specifies if the attribute is a scalar, vector, or matrix.
281 DataType type = DataType::INVALID;
282
283 // The offset relative to the start of the bufferView in bytes.
284 // This must be a multiple of the size of the component datatype.
285 // minimum: 0
286 // default: 0
287 uint32_t byteOffset = 0;
288
289 // Specifies whether integer data values should be normalized
290 // (`true`) to [0, 1] (for unsigned types) or [-1, 1] (for signed types),
291 // or converted directly (`false`) when they are accessed.
292 // This property is defined only for accessors that contain vertex attributes
293 // or animation output data.
294 // "default": false
295 bool normalized = false;
296
297 // Maximum value of each component in this attribute.
298 // Array elements must be treated as having the same data type as
299 // accessor's `componentType`. Both min and max arrays have the same length.
300 // The length is determined by the value of the type property;
301 // it can be 1, 2, 3, 4, 9, or 16.
302 // `normalized` property has no effect on array values:
303 // they always correspond to the actual values stored in the buffer.
304 // When accessor is sparse, this property must contain max values of
305 // accessor data with sparse substitution applied.
306 // "minItems": 1,
307 // "maxItems": 16,
308 BASE_NS::vector<float> max;
309
310 // Minimum value of each component in this attribute.
311 // Array elements must be treated as having the same data type as
312 // accessor's `componentType`. Both min and max arrays have the same length.
313 // The length is determined by the value of the type property;
314 // it can be 1, 2, 3, 4, 9, or 16.
315 // `normalized` property has no effect on array values:
316 // they always correspond to the actual values stored in the buffer.
317 // When accessor is sparse, this property must contain min values of
318 // accessor data with sparse substitution applied.
319 // "minItems": 1,
320 // "maxItems": 16,
321 BASE_NS::vector<float> min;
322
323 // Sparse storage of attributes that deviate from their initialization value.
324 Sparse sparse;
325 };
326
327 struct AttributeBase {
328 AttributeType type;
329 uint32_t index; // for example texcoord 0,1,2...
330 };
331
332 struct Attribute {
333 AttributeBase attribute;
334 Accessor* accessor { nullptr };
335 };
336
337 struct Image {
338 // The uri of the image.
339 // Relative paths are relative to the .gltf file.
340 // Instead of referencing an external file,
341 // the uri can also be a data-uri.
342 // The image format must be jpg or png.
343 BASE_NS::string uri;
344
345 // The bufferView that contains the image.
346 // Use this instead of the image's uri property.
347 BufferView* bufferView { nullptr };
348
349 // The image's MIME type. Needed when BufferView is used.
350 MimeType type;
351 };
352
353 struct Sampler {
354 FilterMode magFilter = FilterMode::LINEAR;
355 FilterMode minFilter = FilterMode::LINEAR;
356
357 WrapMode wrapS = WrapMode::REPEAT;
358 WrapMode wrapT = WrapMode::REPEAT;
359 };
360
361 struct Texture {
362 // The sampler used by this texture.
363 // When nullptr, a sampler with repeat wrapping
364 // and auto filtering should be used.
365 Sampler* sampler { nullptr };
366
367 // The image used by this texture.
368 Image* image { nullptr };
369 };
370
371 struct TextureInfo {
372 // The texture.
373 Texture* texture { nullptr };
374
375 // index defined in gltf.
376 uint32_t index = GLTF_INVALID_INDEX;
377
378 // The set index of texture's TEXCOORD attribute
379 // used for texture coordinate mapping.
380 // "default": 0
381 uint32_t texCoordIndex = 0;
382
383 #if defined(GLTF2_EXTENSION_KHR_TEXTURE_TRANSFORM)
384 struct TextureTransform {
385 BASE_NS::Math::Vec2 offset { 0.0f, 0.0f };
386 BASE_NS::Math::Vec2 scale { 1.f, 1.f };
387 float rotation = 0.0f;
388 uint32_t texCoordIndex = GLTF_INVALID_INDEX;
389 } transform;
390 #endif
391 };
392
393 struct MetallicRoughness {
394 // The RGBA components of the base color of the material.
395 // The fourth component (A) is the alpha coverage of the material.
396 // The `alphaMode` property specifies how alpha is interpreted.
397 // These values are linear. If a baseColorTexture is specified,
398 // this value is multiplied with the texel values.
399 // "default": [ 1.0, 1.0, 1.0, 1.0 ]
400 BASE_NS::Math::Vec4 baseColorFactor { 1.f, 1.f, 1.f, 1.f };
401
402 // The base color texture.
403 // This texture contains RGB(A) components in sRGB color space.
404 // The first three components (RGB) specify the base color of the
405 // material. If the fourth component (A) is present, it represents
406 // the alpha coverage of the material. Otherwise, an alpha of 1.0 is
407 // assumed. The `alphaMode` property specifies how alpha is
408 // interpreted. The stored texels must not be premultiplied.
409 // "default": 1.0
410 TextureInfo baseColorTexture;
411
412 // The metalness of the material.
413 // A value of 1.0 means the material is a metal.
414 // A value of 0.0 means the material is a dielectric.
415 // Values in between are for blending between metals
416 // and dielectrics such as dirty metallic surfaces.
417 // This value is linear. If a metallicRoughnessTexture is specified,
418 // this value is multiplied with the metallic texel values.
419 float metallicFactor { 1.f };
420
421 // The roughness of the material.
422 // A value of 1.0 means the material is completely rough.
423 // A value of 0.0 means the material is completely smooth.
424 // This value is linear. If a metallicRoughnessTexture is specified,
425 // this value is multiplied with the roughness texel values.
426 // "default": 1.0
427 float roughnessFactor { 1.f };
428
429 // The metallic-roughness texture.
430 // The metalness values are sampled from the B channel.
431 // The roughness values are sampled from the G channel.
432 // These values are linear. If other channels are present (R or A),
433 // they are ignored for metallic-roughness calculations.
434 TextureInfo metallicRoughnessTexture;
435 };
436
437 struct NormalTexture {
438 TextureInfo textureInfo;
439 float scale = 1.0f;
440 };
441
442 struct OcclusionTexture {
443 TextureInfo textureInfo;
444 float strength = 1.0f;
445 };
446
447 struct Material {
448 enum class Type { MetallicRoughness, SpecularGlossiness, Unlit, TextureSheetAnimation };
449
450 Type type { Type::MetallicRoughness };
451
452 BASE_NS::string name; // name
453 MetallicRoughness metallicRoughness;
454
455 // "The scalar multiplier applied to each normal vector of the texture.
456 // This value scales the normal vector using the formula:
457 // `scaledNormal = normalize((normalize(<sampled normal texture value>) * 2.0
458 // - 1.0) * vec3(<normal scale>, <normal scale>, 1.0))`. This value is ignored if
459 // normalTexture is not specified. This value is linear."
460 NormalTexture normalTexture;
461
462 // A scalar multiplier controlling the amount of occlusion applied.
463 // A value of 0.0 means no occlusion. A value of 1.0 means full occlusion.
464 // This value affects the resulting color using the formula:
465 // `occludedColor = lerp(color, color * <sampled occlusion texture value>,
466 // <occlusion strength>)`. This value is ignored if the corresponding texture
467 // is not specified. This value is linear. "default": 1.0, "minimum": 0.0,
468 // "maximum": 1.0,
469 OcclusionTexture occlusionTexture;
470
471 TextureInfo emissiveTexture;
472
473 BASE_NS::Math::Vec4 emissiveFactor = BASE_NS::Math::Vec4(0.f, 0.f, 0.f, 1.f); // "default": [ 0.0, 0.0, 0.0 ],
474
475 AlphaMode alphaMode = AlphaMode::OPAQUE;
476
477 BlendMode blendMode = BlendMode::NONE;
478
479 float alphaCutoff = 0.5f; // "minimum": 0.0,
480
481 // default": false,
482 // Specifies whether the material is double sided.
483 // When this value is false, back-face culling is enabled.
484 // When this value is true, back-face culling is disabled
485 // and double sided lighting is enabled.
486 // The back-face must have its normals reversed before
487 // the lighting equation is evaluated.
488 bool doubleSided = false;
489
490 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_CLEARCOAT) || defined(GLTF2_EXTRAS_CLEAR_COAT_MATERIAL)
491 struct Clearcoat {
492 // The clearcoat layer intensity.
493 float factor = 0.0f;
494 // The clearcoat layer intensity texture.
495 TextureInfo texture;
496 // The clearcoat layer roughness.
497 float roughness = 0.0f;
498 // The clearcoat layer roughness texture.
499 TextureInfo roughnessTexture;
500 // The clearcoat normal map texture.
501 NormalTexture normalTexture;
502 } clearcoat;
503 #endif
504
505 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_IOR)
506 struct Ior {
507 // Material's index of refraction.
508 float ior = 1.5f;
509 } ior;
510 #endif
511
512 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_PBRSPECULARGLOSSINESS)
513 struct SpecularGlossiness {
514 // The RGBA components of the reflected diffuse color of the material.
515 // Metals have a diffuse value of `[0.0, 0.0, 0.0]`. The fourth component (A) is the alpha coverage of the
516 // material. The 'alphaMode' property specifies how alpha is interpreted. The values are linear.
517 BASE_NS::Math::Vec4 diffuseFactor { 1.f, 1.f, 1.f, 1.f }; // "default": [ 1.0, 1.0, 1.0, 1.0 ]
518
519 // The diffuse texture. This texture contains RGB(A) components of the reflected diffuse color of the material
520 // in sRGB color space. If the fourth component (A) is present, it represents the alpha coverage of the
521 // material. Otherwise, an alpha of 1.0 is assumed. The `alphaMode` property specifies how alpha is interpreted.
522 // The stored texels must not be premultiplied.
523 TextureInfo diffuseTexture;
524
525 // The specular RGB color of the material. This value is linear.
526 BASE_NS::Math::Vec3 specularFactor { 1.f, 1.f, 1.f }; // "default": [ 1.0, 1.0, 1.0 ]
527
528 // The glossiness or smoothness of the material.A value of 1.0 means the material has full glossiness
529 // or is perfectly smooth.A value of 0.0 means the material has no glossiness or is completely rough.This value
530 // is linear.
531 float glossinessFactor = 1.0f;
532
533 // The specular-glossiness texture is RGBA texture, containing the specular color of the material (RGB
534 // components) and its glossiness (A component). The values are in sRGB space.
535 TextureInfo specularGlossinessTexture;
536 } specularGlossiness;
537 #endif
538
539 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_SHEEN)
540 struct Sheen {
541 // The sheen color in linear space
542 BASE_NS::Math::Vec3 factor;
543 // The sheen color (sRGB)
544 TextureInfo texture;
545 // The sheen roughness.
546 float roughness = 0.0f;
547 // The sheen roughness texture, stored in the alpha channel.
548 TextureInfo roughnessTexture;
549 } sheen;
550 #endif
551
552 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_SPECULAR)
553 struct Specular {
554 // The specular reflection strength.
555 float factor = 1.f;
556 // The specular reflection strength texture, stored in the alpha channel.
557 TextureInfo texture;
558 // The specular color in linear space.
559 BASE_NS::Math::Vec3 color { 1.f, 1.f, 1.f };
560 // The specular color texture. The values are in sRGB space.
561 TextureInfo colorTexture;
562 } specular;
563 #endif
564
565 #if defined(GLTF2_EXTENSION_KHR_MATERIALS_TRANSMISSION)
566 struct Transmission {
567 // Percentage of light that is transmitted through the surface
568 float factor = 0.0f;
569 // Transmission percentage of the surface, stored in the R channel. This will be multiplied by
570 // transmissionFactor.
571 TextureInfo texture;
572 } transmission;
573 #endif
574 };
575
576 struct MorphTarget {
577 // extension of spec
578 // see https://github.com/KhronosGroup/glTF-Blender-Exporter/pull/153)
579 // https://github.com/KhronosGroup/glTF/issues/1036
580 BASE_NS::string name;
581 BASE_NS::vector<Attribute> target;
582 #if defined(GLTF2_EXTENSION_IGFX_COMPRESSED)
583 // true when morph target is using IGFX_compressed extension.
584 bool iGfxCompressed = false;
585 #endif
586 };
587
588 struct MeshPrimitive {
589 // [required fields]
590 // A dictionary object, where each key corresponds
591 // to mesh attribute semantic and each value is the index
592 // of the accessor containing attribute's data.
593 BASE_NS::vector<Attribute> attributes;
594
595 // "The index of the accessor that contains mesh indices.
596 // When this is not defined, the primitives should be rendered
597 // without indices using drawArrays.
598 // When defined, the accessor must contain indices:
599 // the `bufferView` referenced by the accessor should have
600 // a `target` equal to 34963 (ELEMENT_ARRAY_BUFFER)
601 // `componentType` must be 5121 (UNSIGNED_BYTE),
602 // 5123 (UNSIGNED_SHORT) or 5125 (UNSIGNED_INT),
603 // the latter may require enabling additional hardware support;
604 // `type` must be `\"SCALAR\"`.
605 // For triangle primitives, the front face has
606 // a counter-clockwise (CCW) winding order."
607 Accessor* indices { nullptr };
608
609 // "The index of the material to apply to this primitive when rendering.
610 Material* material { nullptr };
611
612 // index defined in gltf.
613 uint32_t materialIndex = GLTF_INVALID_INDEX;
614
615 // The type of primitives to render. All valid values correspond to WebGL enums.
616 RenderMode mode = RenderMode::TRIANGLES;
617
618 // An array of Morph Targets,
619 // each Morph Target is a dictionary mapping attributes
620 // (only `POSITION`, `NORMAL`, and `TANGENT` supported)
621 // to their deviations in the Morph Target.
622 BASE_NS::vector<MorphTarget> targets;
623 };
624
625 struct Mesh {
626 // Name.
627 BASE_NS::string name;
628 // [required field], primitives
629 BASE_NS::vector<MeshPrimitive> primitives;
630 // Array of weights to be applied to the Morph Targets.
631 BASE_NS::vector<float> weights;
632 };
633
634 struct Camera {
635 // Name.
636 BASE_NS::string name;
637
638 CameraType type;
639
640 union Attributes {
641 struct Perspective {
642 // PERSPECTIVE
643 // minimum value for each is 0
644 // => in this implementation negative is used to disable parameter
645 float aspect;
646 float yfov; // required
647 float zfar;
648 float znear; // required
649 } perspective;
650
651 struct Ortho {
652 // ORTHOGRAPHIC
653 // xmag, ymag cant't be zero
654 // zfar, znear : minimum is zero
655 // all are required
656 float xmag;
657 float ymag;
658 float zfar;
659 float znear;
660 } ortho;
661 } attributes;
662 };
663
664 struct Skin {
665 BASE_NS::string name;
666
667 // The accessor containing the floating-point 4X4 inverse-bind matrices.
668 // The default is that each matrix is a 4X4 identity matrix,
669 // which implies that inverse-bind matrices were pre-applied.
670 Accessor* inverseBindMatrices { nullptr };
671
672 // The node used as a skeleton root. When undefined, joints transforms resolve to scene root.
673 Node* skeleton { nullptr };
674
675 // The skeleton nodes, used as joints in this skin.
676 BASE_NS::vector<Node*> joints;
677 };
678
679 struct Node {
680 BASE_NS::string name;
681
682 Mesh* mesh { nullptr };
683
684 Camera* camera { nullptr };
685
686 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
687 KHRLight* light { nullptr };
688 #endif
689
690 #if defined(GLTF2_EXTRAS_RSDZ)
691 BASE_NS::string modelIdRSDZ;
692 #endif
693
694 // Helpers mostly for skeleton support
695 Node* parent { nullptr };
696 bool isJoint = false;
697
698 BASE_NS::vector<Node*> children;
699 BASE_NS::vector<size_t> tmpChildren; // indices, used when gltf is parsed. (NOTE: move outside of node)
700
701 Skin* skin { nullptr };
702 uint32_t tmpSkin; // index to skin (NOTE: move outside of node)
703
704 bool usesTRS = true;
705
706 BASE_NS::Math::Vec3 translation { 0.f, 0.f, 0.f };
707 BASE_NS::Math::Quat rotation { 0.f, 0.f, 0.f, 1.f };
708 BASE_NS::Math::Vec3 scale { 1.f, 1.f, 1.f };
709
710 BASE_NS::Math::Mat4X4 matrix;
711
712 BASE_NS::vector<float> weights;
713 };
714
715 struct Scene {
716 BASE_NS::string name;
717 BASE_NS::vector<Node*> nodes;
718
719 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
720 KHRLight* light { nullptr }; // Ambient light
721 #endif
722
723 #if defined(GLTF2_EXTENSION_EXT_LIGHTS_IMAGE_BASED)
724 size_t imageBasedLightIndex = GLTF_INVALID_INDEX;
725 #endif
726 };
727
728 struct AnimationSampler {
729 Accessor* input { nullptr };
730 Accessor* output { nullptr };
731 AnimationInterpolation interpolation;
732 };
733
734 struct AnimationChannel // = animation.channel.target
735 {
736 Node* node { nullptr };
737 AnimationPath path;
738 };
739
740 struct AnimationTrack // = animation.channel
741 {
742 AnimationChannel channel;
743 AnimationSampler* sampler { nullptr };
744 };
745
746 struct Animation {
747 BASE_NS::string name;
748 BASE_NS::vector<AnimationTrack> tracks;
749 BASE_NS::vector<BASE_NS::unique_ptr<AnimationSampler>> samplers;
750 };
751
752 // extensions
753 #if defined(GLTF2_EXTENSION_KHR_LIGHTS) || defined(GLTF2_EXTENSION_KHR_LIGHTS_PBR)
754 struct KHRLight {
755 BASE_NS::string name;
756 LightType type = LightType::DIRECTIONAL;
757 BASE_NS::Math::Vec3 color = BASE_NS::Math::Vec3(1.f, 1.f, 1.f); // RGB
758 float intensity = 1.0f; // Intensity of the light source in lumens. default 1.0
759
760 struct {
761 float range = .0f;
762
763 struct {
764 // SPOT
765 float innerAngle = 0.f;
766 float outerAngle = 0.785398163397448f; // PI / 4
767 } spot;
768
769 } positional;
770
771 struct {
772 bool shadowCaster = false;
773 float nearClipDistance = 100.f;
774 float farClipDistance = 10000.f;
775 } shadow;
776 };
777 #endif
778
779 #if defined(GLTF2_EXTENSION_EXT_LIGHTS_IMAGE_BASED)
780 struct ImageBasedLight {
781 // Represents one mip level of a cube map.
782 using CubemapMipLevel = BASE_NS::vector<size_t>;
783 // Represents one set of irrandiance coefficients.
784 using LightingCoeff = BASE_NS::vector<float>;
785
786 // Name of the light.
787 BASE_NS::string name;
788 // Quaternion that represents the rotation of the IBL environment.
789 BASE_NS::Math::Quat rotation { 0.0f, 0.0f, 0.0f, 1.0f };
790 // Brightness multiplier for environment.
791 float intensity { 1.0f };
792 // Declares spherical harmonic coefficients for irradiance up to l=2. This is a 9x3 array.
793 BASE_NS::vector<LightingCoeff> irradianceCoefficients;
794 // Declares an array of the first N mips of the prefiltered cubemap.
795 // Each mip is, in turn, defined with an array of 6 images, one for each cube face. i.e. this is an Nx6 array.
796 BASE_NS::vector<CubemapMipLevel> specularImages;
797 // The dimension (in pixels) of the first specular mip. This is needed to determine, pre-load, the total number of
798 // mips needed.
799 uint32_t specularImageSize { 0 };
800 // Specular cubemap image, optional.
801 size_t specularCubeImage { GLTF_INVALID_INDEX };
802 // Skymap cubemap image, optional.
803 size_t skymapImage { GLTF_INVALID_INDEX };
804 // Skymap image lod level, optional.
805 float skymapImageLodLevel { 0.0f };
806 };
807 #endif
808
809 } // namespace GLTF2
810 CORE3D_END_NAMESPACE()
811
812 #endif // CORE__GLTF__GLTF2_DATA_STRUCTURES_H