1 /*
2 * Copyright (c) 2023 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #ifndef MMI_MATRIX3_H
17 #define MMI_MATRIX3_H
18
19 #define USE_MATH_DEFINES
20 #include <cmath>
21 #include <vector>
22
23 #include "mmi_vector2.h"
24 #include "mmi_vector3.h"
25
26 // column-major order
27 namespace OHOS {
28 namespace MMI {
29 inline constexpr int32_t MATRIX3_SIZE { 9 };
30 template<typename T>
31 class Matrix3 {
32 public:
33 static const Matrix3 ZERO;
34 static const Matrix3 IDENTITY;
35 Matrix3();
36 Matrix3(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22);
37 Matrix3(std::vector<T> M);
38
39 Matrix3(const Matrix3& matrix) noexcept = default;
40
41 explicit Matrix3(const T* v);
42
43 ~Matrix3();
44 T Trace() const;
45 static int Index(int row, int col);
46 void SetIdentity();
47 void SetZero();
48 bool IsIdentity() const;
49 Matrix3 Inverse() const;
50 Matrix3 Multiply(const Matrix3& other) const;
51
52 Matrix3 operator+(const Matrix3& other) const;
53 Matrix3 operator-(const Matrix3& other) const;
54 Matrix3 operator-() const;
55 Matrix3 operator*(const Matrix3& other) const;
56 Vector3<T> operator*(const Vector3<T>& other) const;
57 Matrix3 operator*(T scale) const;
58 T* operator[](int col);
59 Matrix3& operator=(const Matrix3& other);
60 Matrix3& operator+=(const Matrix3& other);
61 Matrix3& operator-=(const Matrix3& other);
62 Matrix3& operator*=(const Matrix3& other);
63 Matrix3& operator*=(T scale);
64 bool operator==(const Matrix3& other) const;
65 bool operator!=(const Matrix3& other) const;
66 bool IsNearEqual(const Matrix3& other, T threshold = std::numeric_limits<T>::epsilon()) const;
67 T* GetData();
68 const T* GetConstData() const;
69 T Determinant() const;
70 Matrix3 Transpose() const;
71 Matrix3 Translate(const Vector2<T>& vec) const;
72 Matrix3 Rotate(T angle) const;
73 Matrix3 Rotate(T angle, T pivotx, T pivoty) const;
74 Matrix3 Scale(const Vector2<T>& vec) const;
75 Matrix3 Scale(const Vector2<T>& vec, T pivotx, T pivoty) const;
76 Matrix3 ShearX(T y) const;
77 Matrix3 ShearY(T x) const;
78
79 protected:
80 T data_[MATRIX3_SIZE] = { 0 };
81 };
82
83 typedef Matrix3<float> Matrix3f;
84 typedef Matrix3<double> Matrix3d;
85
86 template<typename T>
87 const Matrix3<T> Matrix3<T>::ZERO(0, 0, 0, 0, 0, 0, 0, 0, 0);
88
89 template<typename T>
90 const Matrix3<T> Matrix3<T>::IDENTITY(1, 0, 0, 0, 1, 0, 0, 0, 1);
91
92 template<typename T>
Matrix3()93 Matrix3<T>::Matrix3()
94 {}
95
96 template<typename T>
Matrix3(T m00,T m01,T m02,T m10,T m11,T m12,T m20,T m21,T m22)97 Matrix3<T>::Matrix3(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22)
98 {
99 data_[0] = m00;
100 data_[1] = m01;
101 data_[2] = m02;
102
103 data_[3] = m10;
104 data_[4] = m11;
105 data_[5] = m12;
106
107 data_[6] = m20;
108 data_[7] = m21;
109 data_[8] = m22;
110 }
111
112 template<typename T>
Matrix3(std::vector<T> matrix)113 Matrix3<T>::Matrix3(std::vector<T> matrix)
114 {
115 if (matrix.size() != MATRIX3_SIZE) {
116 Matrix3();
117 } else {
118 for (size_t i = 0; i < MATRIX3_SIZE; i++) {
119 data_[i] = matrix[i];
120 }
121 }
122 }
123
124 template<typename T>
Matrix3(const T * v)125 Matrix3<T>::Matrix3(const T* v)
126 {
127 std::copy_n(v, std::size(data_), data_);
128 }
129
130 template<typename T>
~Matrix3()131 Matrix3<T>::~Matrix3()
132 {}
133
134 template<typename T>
Trace()135 T Matrix3<T>::Trace() const
136 {
137 T rTrace = 0.0;
138 rTrace += data_[0];
139 rTrace += data_[4];
140 rTrace += data_[8];
141 return rTrace;
142 }
143
144 template<typename T>
Index(int row,int col)145 int Matrix3<T>::Index(int row, int col)
146 {
147 return (col * 3) + row;
148 }
149
150 template<typename T>
SetIdentity()151 void Matrix3<T>::SetIdentity()
152 {
153 *this = IDENTITY;
154 }
155
156 template<typename T>
SetZero()157 void Matrix3<T>::SetZero()
158 {
159 *this = ZERO;
160 }
161
162 template<typename T>
IsIdentity()163 bool Matrix3<T>::IsIdentity() const
164 {
165 return (MMI_EQ<T>(data_[0], 1.0)) && (MMI_EQ<T>(data_[1], 0.0)) && (MMI_EQ<T>(data_[2], 0.0)) &&
166 (MMI_EQ<T>(data_[3], 0.0)) && (MMI_EQ<T>(data_[4], 1.0)) && (MMI_EQ<T>(data_[5], 0.0)) &&
167 (MMI_EQ<T>(data_[6], 0.0)) && (MMI_EQ<T>(data_[7], 0.0)) && (MMI_EQ<T>(data_[8], 1.0));
168 }
169
170 template<typename T>
Inverse()171 Matrix3<T> Matrix3<T>::Inverse() const
172 {
173 T det = Determinant();
174 if (MMI_EQ<T>(det, 0.0)) {
175 return Matrix3<T>(*this);
176 }
177
178 const T invDet = 1.0f / det;
179 const T* data = data_;
180
181 T iX = invDet * (data[4] * data[8] - data[5] * data[7]);
182 T iY = invDet * (data[2] * data[7] - data[1] * data[8]);
183 T iZ = invDet * (data[1] * data[5] - data[2] * data[4]);
184 T jX = invDet * (data[5] * data[6] - data[3] * data[8]);
185 T jY = invDet * (data[0] * data[8] - data[2] * data[6]);
186 T jZ = invDet * (data[2] * data[3] - data[0] * data[5]);
187 T kX = invDet * (data[3] * data[7] - data[4] * data[6]);
188 T kY = invDet * (data[1] * data[6] - data[0] * data[7]);
189 T kZ = invDet * (data[0] * data[4] - data[1] * data[3]);
190
191 return Matrix3<T>(iX, iY, iZ, jX, jY, jZ, kX, kY, kZ);
192 }
193
194 template<typename T>
Multiply(const Matrix3<T> & other)195 Matrix3<T> Matrix3<T>::Multiply(const Matrix3<T>& other) const
196 {
197 Matrix3<T> rMulti;
198 T* rData = rMulti.data_;
199 const T* oData = other.data_;
200
201 rData[0] = data_[0] * oData[0] + data_[3] * oData[1] + data_[6] * oData[2];
202 rData[3] = data_[0] * oData[3] + data_[3] * oData[4] + data_[6] * oData[5];
203 rData[6] = data_[0] * oData[6] + data_[3] * oData[7] + data_[6] * oData[8];
204
205 rData[1] = data_[1] * oData[0] + data_[4] * oData[1] + data_[7] * oData[2];
206 rData[4] = data_[1] * oData[3] + data_[4] * oData[4] + data_[7] * oData[5];
207 rData[7] = data_[1] * oData[6] + data_[4] * oData[7] + data_[7] * oData[8];
208
209 rData[2] = data_[2] * oData[0] + data_[5] * oData[1] + data_[8] * oData[2];
210 rData[5] = data_[2] * oData[3] + data_[5] * oData[4] + data_[8] * oData[5];
211 rData[8] = data_[2] * oData[6] + data_[5] * oData[7] + data_[8] * oData[8];
212 return rMulti;
213 }
214
215 template<typename T>
216 Matrix3<T> Matrix3<T>::operator+(const Matrix3<T>& other) const
217 {
218 Matrix3<T> rMat3Add;
219 T* rMat3Data = rMat3Add.data_;
220 const T* oData = other.data_;
221
222 rMat3Data[0] = data_[0] + oData[0];
223 rMat3Data[1] = data_[1] + oData[1];
224 rMat3Data[2] = data_[2] + oData[2];
225 rMat3Data[3] = data_[3] + oData[3];
226 rMat3Data[4] = data_[4] + oData[4];
227 rMat3Data[5] = data_[5] + oData[5];
228 rMat3Data[6] = data_[6] + oData[6];
229 rMat3Data[7] = data_[7] + oData[7];
230 rMat3Data[8] = data_[8] + oData[8];
231
232 return rMat3Add;
233 }
234
235 template<typename T>
236 Matrix3<T> Matrix3<T>::operator-(const Matrix3<T>& other) const
237 {
238 return *this + (-other);
239 }
240
241 template<typename T>
242 Matrix3<T> Matrix3<T>::operator-() const
243 {
244 Matrix3<T> rMat3Sub;
245 T* rMat3Data = rMat3Sub.data_;
246
247 rMat3Data[0] = -data_[0];
248 rMat3Data[1] = -data_[1];
249 rMat3Data[2] = -data_[2];
250 rMat3Data[3] = -data_[3];
251 rMat3Data[4] = -data_[4];
252 rMat3Data[5] = -data_[5];
253 rMat3Data[6] = -data_[6];
254 rMat3Data[7] = -data_[7];
255 rMat3Data[8] = -data_[8];
256
257 return rMat3Sub;
258 }
259
260 template<typename T>
261 Matrix3<T> Matrix3<T>::operator*(const Matrix3<T>& other) const
262 {
263 return Multiply(other);
264 }
265
266 template<typename T>
267 Vector3<T> Matrix3<T>::operator*(const Vector3<T>& other) const
268 {
269 Vector3<T> rMulti;
270 T* rData = rMulti.data_;
271 const T* oData = other.data_;
272 rData[0] = data_[0] * oData[0] + data_[3] * oData[1] + data_[6] * oData[2];
273
274 rData[1] = data_[1] * oData[0] + data_[4] * oData[1] + data_[7] * oData[2];
275
276 rData[2] = data_[2] * oData[0] + data_[5] * oData[1] + data_[8] * oData[2];
277 return rMulti;
278 }
279
280 template<typename T>
281 Matrix3<T> Matrix3<T>::operator*(T scale) const
282 {
283 Matrix3<T> rMulti;
284 T* rData = rMulti.data_;
285 rData[0] = data_[0] * scale;
286 rData[1] = data_[1] * scale;
287 rData[2] = data_[2] * scale;
288 rData[3] = data_[3] * scale;
289 rData[4] = data_[4] * scale;
290 rData[5] = data_[5] * scale;
291 rData[6] = data_[6] * scale;
292 rData[7] = data_[7] * scale;
293 rData[8] = data_[8] * scale;
294
295 return rMulti;
296 }
297
298 template<typename T>
299 T* Matrix3<T>::operator[](int col)
300 {
301 return &data_[col * 3];
302 }
303
304 template<typename T>
305 Matrix3<T>& Matrix3<T>::operator=(const Matrix3<T>& other)
306 {
307 const T* oMat3Data = other.data_;
308 data_[0] = oMat3Data[0];
309 data_[1] = oMat3Data[1];
310 data_[2] = oMat3Data[2];
311 data_[3] = oMat3Data[3];
312 data_[4] = oMat3Data[4];
313 data_[5] = oMat3Data[5];
314 data_[6] = oMat3Data[6];
315 data_[7] = oMat3Data[7];
316 data_[8] = oMat3Data[8];
317
318 return *this;
319 }
320
321 template<typename T>
322 Matrix3<T>& Matrix3<T>::operator+=(const Matrix3<T>& other)
323 {
324 const T* oData = other.data_;
325
326 data_[0] += oData[0];
327 data_[1] += oData[1];
328 data_[2] += oData[2];
329 data_[3] += oData[3];
330 data_[4] += oData[4];
331 data_[5] += oData[5];
332 data_[6] += oData[6];
333 data_[7] += oData[7];
334 data_[8] += oData[8];
335
336 return *this;
337 }
338
339 template<typename T>
340 Matrix3<T>& Matrix3<T>::operator-=(const Matrix3<T>& other)
341 {
342 const T* oData = other.data_;
343
344 data_[0] -= oData[0];
345 data_[1] -= oData[1];
346 data_[2] -= oData[2];
347 data_[3] -= oData[3];
348 data_[4] -= oData[4];
349 data_[5] -= oData[5];
350 data_[6] -= oData[6];
351 data_[7] -= oData[7];
352 data_[8] -= oData[8];
353
354 return *this;
355 }
356
357 template<typename T>
358 Matrix3<T>& Matrix3<T>::operator*=(const Matrix3<T>& other)
359 {
360 return (*this = *this * other);
361 }
362
363 template<typename T>
364 Matrix3<T>& Matrix3<T>::operator*=(T scale)
365 {
366 data_[0] *= scale;
367 data_[1] *= scale;
368 data_[2] *= scale;
369 data_[3] *= scale;
370 data_[4] *= scale;
371 data_[5] *= scale;
372 data_[6] *= scale;
373 data_[7] *= scale;
374 data_[8] *= scale;
375 return *this;
376 }
377
378 template<typename T>
379 bool Matrix3<T>::operator==(const Matrix3& other) const
380 {
381 const T* oData = other.data_;
382
383 return (MMI_EQ<T>(data_[0], oData[0])) && (MMI_EQ<T>(data_[1], oData[1])) &&
384 (MMI_EQ<T>(data_[2], oData[2])) && (MMI_EQ<T>(data_[3], oData[3])) &&
385 (MMI_EQ<T>(data_[4], oData[4])) && (MMI_EQ<T>(data_[5], oData[5])) &&
386 (MMI_EQ<T>(data_[6], oData[6])) && (MMI_EQ<T>(data_[7], oData[7])) && (MMI_EQ<T>(data_[8], oData[8]));
387 }
388
389 template<typename T>
390 bool Matrix3<T>::operator!=(const Matrix3& other) const
391 {
392 return !operator==(other);
393 }
394
395 template<typename T>
IsNearEqual(const Matrix3 & other,T threshold)396 bool Matrix3<T>::IsNearEqual(const Matrix3& other, T threshold) const
397 {
398 const T* otherData = other.data_;
399 auto result = std::equal(data_, data_ + 8, otherData,
400 [&threshold](const T& left, const T& right) { return MMI_EQ<T>(left, right, threshold); });
401 return result;
402 }
403
404 template<typename T>
GetData()405 inline T* Matrix3<T>::GetData()
406 {
407 return data_;
408 }
409
410 template<typename T>
GetConstData()411 const T* Matrix3<T>::GetConstData() const
412 {
413 return data_;
414 }
415
416 template<typename T>
Determinant()417 T Matrix3<T>::Determinant() const
418 {
419 T x = data_[0] * ((data_[4] * data_[8]) - (data_[5] * data_[7]));
420 T y = data_[1] * ((data_[3] * data_[8]) - (data_[5] * data_[6]));
421 T z = data_[2] * ((data_[3] * data_[7]) - (data_[4] * data_[6]));
422 return x - y + z;
423 }
424
425 template<typename T>
Transpose()426 Matrix3<T> Matrix3<T>::Transpose() const
427 {
428 Matrix3<T> rTrans;
429 T* rData = rTrans.data_;
430 rData[0] = data_[0];
431 rData[1] = data_[3];
432 rData[2] = data_[6];
433 rData[3] = data_[1];
434 rData[4] = data_[4];
435 rData[5] = data_[7];
436 rData[6] = data_[2];
437 rData[7] = data_[5];
438 rData[8] = data_[8];
439 return rTrans;
440 }
441
442 template<typename T>
Translate(const Vector2<T> & vec)443 Matrix3<T> Matrix3<T>::Translate(const Vector2<T>& vec) const
444 {
445 Matrix3<T> rTrans(*this);
446 T* rData = rTrans.data_;
447
448 rData[6] = data_[0] * vec[0] + data_[3] * vec[1] + data_[6];
449 rData[7] = data_[1] * vec[0] + data_[4] * vec[1] + data_[7];
450 rData[8] = data_[2] * vec[0] + data_[5] * vec[1] + data_[8];
451 return rTrans;
452 }
453
454 template<typename T>
Rotate(T angle)455 Matrix3<T> Matrix3<T>::Rotate(T angle) const
456 {
457 T a = angle;
458 T c = cos(a);
459 T s = sin(a);
460
461 Matrix3<T> rRotate(*this);
462 T* rData = rRotate.data_;
463 rData[0] = data_[0] * c + data_[3] * s;
464 rData[1] = data_[1] * c + data_[4] * s;
465 rData[2] = data_[2] * c + data_[5] * s;
466
467 rData[3] = data_[0] * -s + data_[3] * c;
468 rData[4] = data_[1] * -s + data_[4] * c;
469 rData[5] = data_[2] * -s + data_[5] * c;
470 return rRotate;
471 }
472
473 template<typename T>
Rotate(T angle,T pivotx,T pivoty)474 Matrix3<T> Matrix3<T>::Rotate(T angle, T pivotx, T pivoty) const
475 {
476 T a = angle;
477 T c = cos(a);
478 T s = sin(a);
479 T dx = s * pivoty + (1 - c) * pivotx;
480 T dy = -s * pivotx + (1 - c) * pivoty;
481
482 Matrix3<T> rRotate(*this);
483 T* rData = rRotate.data_;
484 rData[0] = data_[0] * c + data_[3] * s;
485 rData[1] = data_[1] * c + data_[4] * s;
486 rData[2] = data_[2] * c + data_[5] * s;
487
488 rData[3] = data_[0] * -s + data_[3] * c;
489 rData[4] = data_[1] * -s + data_[4] * c;
490 rData[5] = data_[2] * -s + data_[5] * c;
491
492 rData[6] = data_[0] * dx + data_[3] * dy + data_[6];
493 rData[7] = data_[1] * dx + data_[4] * dy + data_[7];
494 rData[8] = data_[2] * dx + data_[5] * dy + data_[8];
495 return rRotate;
496 }
497
498 template<typename T>
Scale(const Vector2<T> & vec)499 Matrix3<T> Matrix3<T>::Scale(const Vector2<T>& vec) const
500 {
501 Matrix3<T> rScale(*this);
502 T* rData = rScale.data_;
503 rData[0] = data_[0] * vec[0];
504 rData[1] = data_[1] * vec[0];
505 rData[2] = data_[2] * vec[0];
506
507 rData[3] = data_[3] * vec[1];
508 rData[4] = data_[4] * vec[1];
509 rData[5] = data_[5] * vec[1];
510 return rScale;
511 }
512
513 template<typename T>
Scale(const Vector2<T> & vec,T pivotx,T pivoty)514 Matrix3<T> Matrix3<T>::Scale(const Vector2<T>& vec, T pivotx, T pivoty) const
515 {
516 T dx = pivotx - vec[0] * pivotx;
517 T dy = pivoty - vec[1] * pivoty;
518
519 Matrix3<T> rScale(*this);
520 T* rData = rScale.data_;
521 rData[0] = data_[0] * vec[0];
522 rData[1] = data_[1] * vec[0];
523 rData[2] = data_[2] * vec[0];
524
525 rData[3] = data_[3] * vec[1];
526 rData[4] = data_[4] * vec[1];
527 rData[5] = data_[5] * vec[1];
528
529 rData[6] = data_[0] * dx + data_[3] * dy + data_[6];
530 rData[7] = data_[1] * dx + data_[4] * dy + data_[7];
531 rData[8] = data_[2] * dx + data_[5] * dy + data_[8];
532 return rScale;
533 }
534
535 template<typename T>
ShearX(T y)536 Matrix3<T> Matrix3<T>::ShearX(T y) const
537 {
538 Matrix3<T> rShear(Matrix3<T>::IDENTITY);
539 rShear.data_[1] = y;
540 return (*this) * rShear;
541 }
542
543 template<typename T>
ShearY(T x)544 Matrix3<T> Matrix3<T>::ShearY(T x) const
545 {
546 Matrix3<T> rShear(Matrix3<T>::IDENTITY);
547 rShear.data_[3] = x;
548 return (*this) * rShear;
549 }
550 } // namespace Rosen
551 } // namespace OHOS
552 #endif // RENDER_SERVICE_CLIENT_CORE_COMMON_RS_MATRIX3_H
553